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Abstract: In this work we study the asymptotic stability of the nonnegative equilibrium points of the 

difference equation 
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 where CBA ,,  are nonnegative real numbers and 

,l k  are nonnegative integers, l k≤ . We discuss the conditions under which there exist prime period 
two solutions and semicycles. Finally we investigate the oscillation and the existence of unbounded 
solutions. 
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INTRODUCTION 

 
 Difference equations have always played an 
important role in the construction and analysis of 
mathematical models of biology, ecology, physics, 
economic processes, etc[1]. 
 The study of nonlinear rational difference 
equations of higher order is of paramount importance, 
since we still know so little about such equations. 
Cinar[2] examined the global asymptotic stability of all 
positive solutions of the rational difference equation 
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Where a  and b are nonnegative real numbers. 
Xiaofan yang et al.[3] investigated the asymptotic 
behavior of solutions of the difference equations  
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Where 0≥a  and dcb ,,  are nonnegative real 
numbers. 
Gibbons et al.[4] investigated the global asymptotic 
behavior of the difference equation 
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where β > 0 and 0, ≥γα . 
In this study, we study the global asymptotic stability of 
the difference equation 
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where A,B,C are nonnegative real numbers and ,l k  are 
nonnegative integers, l k≤ . 
 
The following particular cases can be obtained: 

1. When 0=A , equation (1.2) reduces to the 

equation  1 0, 0,1,...nx n+ = =  

2. When 0=B , equation (1.2) reduces to the 

equation 
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equation can be reduced to the linear difference 
equation 

1 1 2 2 , 0,1,...n n n l n ky y y y nγ+ − − −− + + + = =L  

 by taking , ln A
n n Cy x γ= =  

3. When 0=C , equation (1.2) reduces to the 

equation 1 1 , 0,1,...n n
A
Bx x n+ −= =  which is a linear 

difference equation. 
4. When 0l k= = , and 1=C  equation (1.2) yields 

equation (1.1) with 0=α . For various values of 
l and k , we can get more equations. 

 
Preliminaries: Consider the difference equation 

1 1( , ,..., ), 0,1,...n n n n kx f x x x n+ − −= =  (2.1) 

 Where 1: kf R R+ →   
 
Definition 2.1[5]: An equilibrium point for equation 
(2.1) is a point Rx ∈  such that ),...,( xxxfx = . 
 
Definition 2.2 [5] 
1. An equilibrium point x  for equation (2.1) is called 

locally stable if for every ε  >0, ∃ δ  >0 such that 
every solution { }nx  with initial conditions 

[,],...,, 01 δδ −−∈+−− xxxxx kk  is such 
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that ] , [nx x x n Nε ε∈ − + ∀ ∈ . Otherwise x is said 
to be unstable. 

2. The equilibrium point x  of equation (2.1) is called 
locally asymptotically stable if it is locally stable 
and there exists γ >0 such that for any initial 
conditions 1 0, ,..., ] , [k kx x x x xγ γ− − + ∈ − − , the 
corresponding solution { }nx  tends to x . 

3.  An equilibrium point x  for equation (2.1) is 
called global attractor if every solution }{ nx  
converges to x  as ∞→n . 

4. The equilibrium point x  for equation (2.1) is 
called globally asymptotically stable if it is locally 
asymptotically stable and global attractor. 

 The linearized equation associated with equation 
(2.1) is 
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the characteristic equation associated with equation 
(2.2) is 
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Theorem 2.3[5]: Assume that f is a 1C  function and let 
x  be an equilibrium point of equation (2.2). Then the 
following statements are true: 
1. If all roots of equation (2.3) lie in the open disk 
λ <1, then x  is locally asymptotically stable. 

2. If at least one root of equation (2.3) has absolute 
value greater than one, then x  is unstable. 

The change of variables 1 Bk l
n nCx y− +=  reduces 

equation (1.2) to the difference equation 
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where B
A=γ . 

 
Linearized stability analysis: In this section we study 
the asymptotic stability of the nonnegative equilibrium 
points of equation (2.4). We can see that equation (2.4) 
has two nonnegative equilibrium points y =0 and 

1 1k ly γ− += −  when γ  >1 and the zero equilibrium 
only when γ ≤1. 
The linearized equation associated with equation (2.4) 
about y is 
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the characteristic equation associated with this equation 
is 
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 We summarize the results of this section in the 
following theorem. 
 
Theorem 3.1 
1. If γ <1, then the zero equilibrium point is locally 

asymptotically stable. 
2. If γ  >1, then the equilibrium points y =0 and 

1 1k ly γ− += −  are unstable (saddle points). 
 
Proof: The linearized equation associated with equation 
(2.4) about y =0 is 

1 1 0, 0,1,...n nz z nγ+ −− = =  
the characteristic equation associated with this equation 
is 

2 1 2 1 0k kλ γλ+ −− = . 

So λ =0, ± γ . 
1. If γ <1, then |λ|<1 for all roots and y =0 is locally 

asymptotically stable. 
2. If γ  >1, it follows that y =0 is unstable (saddle 

point). 
 The linearized equation (3.1) about 1 1k ly γ− += −  
becomes 
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 We   can  see  that  ( )f λ   has  a  root   in 

( , 1)−∞ − . Then the point 1 1k ly γ− += −  is unstable 
(saddle point). 
 
Global behavior of equation (2.4) 
Theorem 4.1: If γ <1, then the zero equilibrium point 
is globally asymptotically stable. 
 
 
 
Proof: Let { }ny  be a solution of equation (2.4). Hence 
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In view of theorem (3.1), y =0 is globally 
asymptotically stable. 
 
Existence of prime period two solutions: This section 
is devoted to discuss the condition under which there 
exist prime period two solutions. 
 
Theorem 5.1: A necessary and sufficient condition for 
equation (2.4) to have a prime period two solution is 
that γ =1. In this case the prime period two solution is 
of the form ...,0, ,0, ,0,...ϕ ϕ  where ϕ >0. 
Furthermore, every solution converges to a period two 
solution. 
 
Proof 
Sufficiency: Let γ =1, then for every ϕ > 0, we have 
...,0, ,0, ,0,...ϕ ϕ  is a prime period two solution. 
 
Necessity: Assume that equation (2.4) has a prime 
period two solution ..., , , , , ,...ψ ϕ ψ ϕ ψ  then 

1 11 1
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( ) ( ) ( ),k l k lϕ ψ ϕψ ψ ϕ γ ϕ ψ− −− + − = −  
this implies 

.1)( γϕψ ϕψ
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So .1≤γ  Similarly, 
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So 1.γ ≥ Therefore 1γ = . From (5.2) we have 0ϕψ =  
and the solution is of the form ..., 0, ,0, ,0,...ϕ ϕ  with 
ϕ >0. 

Now let 2{ }n n ky ∞
=− be a solution of equation (2.4) with 

.1=γ   
Then  
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and so the even terms 2{ }n n ky ∞
=−  decreases to a limit 

ϕ  and the odd terms 2 1{ }n n ky ∞
+ =−  decreases to a limit ψ , 
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Then 1 0k lψ ϕ− + =  and 1 0k lϕ ψ− + = . Therefore, 2{ }n n ky ∞
=−  

converges to the periodic solution ..., 0, ,0, ,0,...ϕ ϕ  
with ϕ >0. 
Semicycle analysis: Here we discuss the existence of 
semicycles. We need the following theorem to obtain 
the main result of this section. 
 

Theorem 6.1: Assume that 2 1([0, [ ,[0, [)kf C +∈ ∞ ∞  is 
increasing in the even arguments and decreasing in the 
others. Let y be an equilibrium point for the difference 
equation 

1 1 2( , ,..., ), 0,1,...n n n n ky f y y y n+ − −= =  (6.1) 
Let 2{ }n n ky ∞

=−  be a solution of equation (6.1) such that 
either, 1( )C  2 2 2 0, ,...,k ky y y− − + > y , and 

2 1 2 3 1, ,...,k ky y y− + − + − < y . 
Or 
 2( )C  2 2 2 0, ,...,k ky y y− − +  < y  and 

2 1 2 3 1, ,...,k ky y y− + − + − > y . is satisfied, then ∞
−= knny 2}{  

oscillates about y  with semicycles of length one. 
 
Proof: Assume that f is increasing in the even 
arguments and decreasing in the others. 
 Let f be satisfying condition 1( )C  we have 

),...,,( 2101 kyyyfy −−= < ),...,,,( 1 yyyyf − <

),...,,,( yyyyf = y , 

),...,,( 12012 +−= kyyyfy > ),...,,,( 0 yyyyf >

),...,,,( yyyyf = y . 
By induction we obtain the result. 
If f satisfies condition )( 2C , we can prove the result 
similarly. 
 
Corollary 6.2: Assume that γ > 1 and let 2{ }n n ky ∞

=−  be 
a solution of equation (2.4) such that either 1( )C  or 

2( )C  is satisfied. Then 2{ }n n ky ∞
=−  oscillates about the 

positive equilibrium point 1 1k ly γ− += −  with 
semicycles of length one. 
 
Proof: The proof follows directly from the previous 
theorem. 
 
Existence of unbounded solutions: Finally we show 
that, under certain initial conditions, unbounded 
solution will be obtained. 
 
Theorem 7.1: Assume that γ > 1. Let 2{ }n n ky ∞

=−  be a 

solution of equation (2.4) and 1 1k ly γ− += − , the 
positive equilibrium point. Then the following 
statements are true: 
1. If 0222 ,...,, yyy kk +−− > y  and 

13212 ,...,, −+−+− yyy kk < y , then 2{ }n n ky ∞
=−  

increases to ∞ and 2 1{ }n n ky ∞
+ =−  decreases to 0. 
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2. If 2 2 2 0, ,...,k ky y y− − +  < y  and 

2 1 2 3 1, ,...,k ky y y− + − + − > y , then 2{ }n n ky ∞
=−  decreases to 0 

and 2 1{ }n n ky ∞
+ =− increases to ∞. 

 
Proof 
1. Let 2{ }n n ky ∞

=−  be a solution of equation (2.4) with 
initial conditions, 2 2 2 0, ,...,k ky y y− − + > y  and 

2 1 2 3 1, ,...,k ky y y− + − + − < y . Then 
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 So 2{ }n n ky ∞
=−  increases to ∞ and 2 1{ }n n ky ∞

+ =−  
decreases to 0. 
2. The proof is similar and will be omitted. 
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