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Abstract: We established some sufficient conditions for the oscillation of the solutions of some
nonhomogenous nonlinear parabolic systems subject to Robin’s boundary condition.
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INTRODUCTION

We assume throughout this study that Q is a
bounded and smooth domain of R" with boundary
0Q . First, we derive some useful sufficient
conditions for oscillation of solutions of the
following nonlinear parabolic problem

u, = T, (08u(x,, (1) ~eb(DF (u(x, 5, (1))
—gc(t)], k(u(x,s))ds +d(x,t), V(x,t) e QxR" (1)
u +p(x,t)u =y(x,t), on OQxR". 2)
o

We assume that p(x,¢) and y(x,t) are real-
valued continuous function on 6Qx R* and p(x,?)

keeps a constant sign € =—1 or e =+1 on

dQ x R" . Actually, our results of oscillation are
not essentially based on the convexity of the
nonlinearities f(u) and k(u) as it is the case in the

works oft'*!,
Next, we extend the above ideas to systems of
nonlinear parabolic equations of the form

u, = $a, (DAu(x,0,(1) ~ b, (DF, (v(x.0, (1))
—&C (t)j(; k, (v(x,s))ds
+d, (x,1), V(x,t) e QxR",

v, = i a,,(H)Av(X,6,(t)) —&,b, (Df, (u(x,5,(t)))

—&,¢, (D) k, (u(x,s))ds
+d,(x,t), V(x,t) e QxR", 3)
subject to the boundary conditions

S ep(x.Du =y (50, on EOXR"
mn

?+ p,(x,t)hu =y, (x,t), on dQxR", 4)
n

to obtain similar criteria for which the solution (u,v) is

oscillatory in QxR™T.

Actually, these conditions are merely four functional
differential systems of inequalities of first order which must
not possess positive solutions. Finally, we give sufficient
conditions for the nonexistence of eventually positive
solutions of the latter systems.

Nonlinear parabolic equations: Before proceeding further
we set the following assumptions:

(H1) a;(¢)and b(¢) are nonnegative continuous functions

definedonR*,fori=1,...,n.

(H2) o,()

R* which satisfy lim o, (t) =+, for i=0,1,...,n.
t—>+0

are real-valued continuous defined on

(H3) f(y) and k(y) are odd, continuous in R and positive
in (0,0).

(H4) w(x,0)
functions on 0Qx R* and the latter has a constant sign &
on 6QxR" .

and p(x,t) are real-valued continuous

(HS) d(x,t) is real-valued continuous function defined

onQxRT.
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We first need to define what we exactly mean
by an oscillatory solution.

Definition 1: A solution u of (1) is said to be

oscillatory in QxR" if, for every ¢, > o, there

exists some (xg,f;)€Qx(f,o) such that
u(xg,ty) =0, that is, u has arbitrarily large zeros in
QxR*.

Next, we define the functions D(¢) and Y(¢)as
follows:

D(t) = [ d(x,t)dx and W(t) = [, v (x,1)dS ,

where |Q| = [1dx and dS is the Lebesgue measure
Q

on the boundary 0Q .
Our first result is the following.

Theorem 1: Under the assumptions (H1)-(HS) a
solution to the problem (1)-(2) is oscillatory in

QOxR*Y if both of the functional differential
inequalities (for & = £1)

8(% fou(x,t)dx + 53 a; ()Y (0;(1)+D(1))
i=1
+b(0)]g f (u(x, (0 (1)))dx
+c(O)y Jo k(u(x, s))dxds <0, (5)

have no eventually positive solution.

Proof: Suppose the contrary that problem (1)-(2)

has a nonoscillatory solution # in QxR™ . Suppose
first that u>0 in QxJ,,f, for some #, >0.

Integrating (1) over Q and using the divergence
theorem we get

d n
o Jqu(x,t)dx = —Zla i (D]zq Pu(x,0; (1)ds

+ éai (Do (x. 0, (0)dS

—eb(t)], f(u(x,00(1)))dx
—eac(t)fj [ k(u(x, s))dxds + [, d (x,1)dx,
from which we infer
_.[Q u(x, t)dx — Z a;(O)¥ (o, (1) - D(I)J
i=1
+ b(t)gj;f(u(x, oo (0))dx+ c(t)jé lo k(u(x, s))dxds

—ﬁzl 0 [ ol o, (D)

This clearly shows that (5) (ford = —1) has an eventually
positive solution « in Qx Jf,, o[, which is a contradiction.

Next, Qx]fo,oo[.
u(x,t) =-v(x,t), we get the following problem

v, = éa,(z)Av(x, 03 (1)) - &b(t) f (v(x, 7 (1))

suppose that u<0 in Setting

- c(t)jé k(v(x,s))ds —d(x,t), V(x,t)e QxR*

g_v+ p(x, 1)y =—w(x,1), on 0QxR*.
n

Reasoning as before we see that v is an eventually positive
solution to (5) in Qx |y, (fors = +1). This is once

again a contradiction which completes the proof of the
Theorem.

Next, we have the following result of oscillation which is
based on the convexity character of the function f(#) and

the kernel &(u).

Theorem 2: Let f and k be convex in ]O,oo[ and ¢ =-1.1If
both of the functional differential inequalities (foro = +1)

d
o< 2“) b0 (00 -5

| lZa ((D¥(o; (l)+ﬁD(f) (6)

have no eventually positive solution, then the solution of
problem (1)-(2) is oscillatory in QxR" .

Proof: Assume that u >0 in QxJ,, o[, for some 7, >0.
Putting

u(t)= ﬁ lou(x,t)dx and applying Jensen’s
o

Inequality we obtain

ol Jf(u(x oo (N)dx 2 fu(oy (1))

, we get

0< _ﬁ i a; (1) [ (pu)x, 0 (1))ds
a1

diz(t)—b(t)f( (g (1)) - c(t)fj k(i (s))ds

—n Zla (¥ (o, () —HD(t)

The latter functional differential inequality has #/(¢) as an

eventually positive solution which contradicts the given
assumption.
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Next, suppose that u=-v<0 in Qx]t,,o0[, for

some t, >0 and (,(t)zi! v(x,t)dx > then
o™

0= S0 b (0,0 - Ok
+ﬁial(t)‘f’(q(t)) +ﬁD(t).
Thus, V(¢) is an eventually positive solution to the

functional differential equation (6) (corresponding
to 8=+1) which leads to a contradiction.
Therefore, the solution of problem (1)-(2) is

oscillatory inQx R ™.
Now we are going to extend the foregoing
results to systems of nonlinear parabolic equations.

Systems of nonlinear parabolic equations: In
order to establish similar oscillation criteria for
systems of nonlinear parabolic equations we set the
following assumptions:

(H’1) The functions b, (t),b,(t),c,(t),c,(t),a,(t)

and a,(t) are nonnegative and continuous inR",
for i=1..n.

(H’2) The functions d,(x,t) and d,(x,t)are real-
valued continuous in QxR™".

(H’3) The functions f,(y) and k,(y), for i=1,2,
are odd and continuous in R with

£(y)> 0 and k,(y) > 0, in(0,%0).

(H’4) The functions o;(¢) and 5;(t), for
i=0,1,...,n are real-valued continuous functions in

R with limo,(t) = lim, (t) =+ .

(H’5)p,(x,1) and y,(x,1) , for

valued continuous functions defined on 6QxR™
and p,(x,t) has a constant sign & €{-1,+1} with

i=12, are real-

g +¢,20.

Next, we shall use the following notations
D.(t)=[,d,(x,t)dx, ¥,(t) = [, w,(x,t)ds, i =12.

Yo = min{osmininfﬁi(t)}

0<i<n t>0

and 7, = min {0, mininf; (V)

0<i<n t=0

Before we state and prove our first result of oscillation
of solutions of problem (3)-(4) we would like to give this
definition.

Definition 2: A couple of functions (u(x,1?),v(x,t))such

that u and veCZ(Qx(yO,oo))mCl(5><(;70,oo)) is said to

be a solution to problem (3)-(4) if u and v satisfy equations
(3) and the boundary conditions (4).
A solution (u(x,?),v(x,t)) to problem (3)-(4) is said to

be oscillatory in QxRTif either of wu(x,f) or
v(x,t) oscillates in QxR*, in the sense that for every
to > 0 there exists a point (x;,7,)e Qx(¢,,) such that

u(x;,t,)=0 or v(x,¢,)=0.

Theorem 3: Let the assumptions (H’1)-(H’5) hold. If the 4
systems of functional differential inequalities corresponding

t0 (o, B) e {~ L+ x {~1+1}:
g (% [ U(x, t)dx + aéa“(t)‘{‘l (G,(t)
+aD,(t))+ afb,(t)[,f,(V(x,(c,(t))dx
+afe, () l.k (V(x,8)dxds <0 @)
B (S L VR + B, (01.(5,(1)
+BD, (1) + aBb,(t)[, £, (U(x, (S, (1))dx
+aBe, (O, k, (U(x,s))dxds <0,
have no eventually positive solution (U(x,?),V (x,¢)) then
the solution (u(x,?),v(x,t)) of the nonlinear parabolic

system (3)-(4) is oscillatory in QxR™.

Proof: To be clear, we say that a couple of functions
(U(x,t),V(x,1)) is an eventually positive solution to (7) if

there is ¢, >Osuch that U(x,?#)>0 and V(x,t)>0, for
everyxeQ and t>t,.

Suppose the contrary that systems (3)-(4) possesses a
nonoscillatory solution (u,v).

Suppose first that ¥ >0 and v>0 in Qx]to,oo[, for
somet, >0. Using the divergence theorem in the first
equation of (3) we get

ShuCe0dx = Fa, (O, (0,(0)

iilalia£(upl)(X,Gi(t))ds

_albl (t).[Q f] (V(X, (Go (t)))dX
—&.0,(DfL,k, (v(x.5))dxds + D, (0).
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Hence
d n
& ;Igu(x, t)dx — Ea“ )Y, (o, (1)) - D, (t)]

+ by (D], f1 ((x. (07 (1))l
+ e (O o by (v(x, 5))dedis

— S, | (o)), 0,(0)dS <0,
=l oQ

Likewise we find that
P % gj)v(x,t)dx—éazi(t)‘l’z(Si(t))—Dz (t)
+b, (t)gj;fz (u(x, (5, (1)))dx

+e, 0]y gj} ky (u(x, s))dxds

n
=-Yay | (Ofp, (.G, (0)ds <o.
=l ~ o

Thus, the system (7), for (a, f)=(-1,-1), has a
positive solution (u,v) in Qx Jr,,oc[, which is
contradiction.

Next, if we suppose that u(x,t) = —¢p(x,1) <0
and  v(x,7)=-&(x,0) <0 in QxJy,00f, for
somet, >0, then (@,&)satisfies the nonlinear
parabolic system

0, = Sy (Dp(x,0,(0) = £1by (1, (37 1)
—&101 (O] ki (E(x, 8))ds —d (x,0),¥(x,1) € QxR
& = L (00E(x.0,0) =202 ()3 (9. 5 (1)
— &3¢, (O} oy ((x, 5))ds —d (x,1), V(x,1) € QxR

0
§+pl(x,r)co=—u/1<x,t>, on 0Qx g, 0]

%+p2 (x, )¢ ==y, (x,1), on 8Q><]z‘0,oo[

on
Reasoning as before one gets

d 0
& EIQ o(x,t)dx + Eali ()Y, (o, (1)) + D, (1)

+ b, ()], f1(ECx, 0 (1)))dx
+ ey (O o by (£Cx, 5))dxds

AN
o

and

d n
£, {ZIQ E(x,t)dx + Z:lazi (Y, (G, (1) + D, (1)

+by ()] [2(9(x, 5o (1)))dx

+ ey (O [ r (@(x, 5))dxds < 0.
Whence (¢,&)is a positive solution to the functional
differential system of inequalities (7) in Qx J,, ], for
(e, p)=(1,1), this is once again a contradiction.

Finally, if u(x,t) = —@(x,t) < 0and
v(x,t) =&(x,t) >0 (resp. u(x,t) = p(x,t) > 0 and
v(x,t) =—=&(x,t) <0 in Qx]to,oo[, for some?, >0, then
(@, &) satisfies  the
differential system of inequalities (7) in Qx J,,o0f, for
(a, ) =(1,~1) (resp. (a,f)=(-L1)). This is a
contradiction and the proof of the Theorem is complete.

the positive solution functional

Proposition 1: Suppose that assumptions (H’1)-(H’2) hold
and either of

t t
lim sup J: D, (s)ds =—liminf J: D, (s)ds
0 0

>+ t—+o0

=+w, when g =+1, (8)
or
t t
lim sup I D, (s)ds =— liminf I D, (s)ds
t—>+0 M0 (=40 Y0
=+, When ¢, =+1, (9)

(for sufficiently large ¢, ). Then every solution of (3)-(4) is
oscillatory in Q2 x ]to , oo[ )

Proof: Suppose that systems (7) have an eventually positive
solution (U(x,?),V(x,t)) in Qx ]tl , oo[, for some ¢, >t¢,.
Suppose that (8), then in particular fora = f =1, (7) yields
d n

E.[Q U(x,t)dx + Zlau Oy, (o (1)

+b (D)o [1(V (x, (0 (1))dx
+e1 (Ol ki (V (x,8))dxds < —D(2).
Hence

d
EIQU(x,t)dxs =Di(t), t>t,,
t
from which we get by integration from ¢, to ¢

[ U(x,0)dx < [, U (x, 1 )dx — Jtto D, (s)ds, t > t,.

Therefore,
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0 < [ lim inf U(x,#)dx < liminf [, U(x,t)dx

t—+% t—>+0

< —limsup Lt D (s)ds = —©
t—+0 0
This is a contradiction and so systems (7) have no

eventually positive solutions in QxR*. We
conclude by Theorem 5 that problem (3)-(4) has an

oscillatory solution (u,v) inQxR™.
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