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Abstract: We examine steady incompressible flow of viscous liquids between parallel heated walls of 
plane Couette device. The temperature of the upper and lower walls of the device are maintained at T = 
Tb and T = T0 respectively. Of a particular interest are exact analytical solutions of the coupled non-
linear differential equations resulting from plane Couette flow obtained for the temperature and 
velocity distributions respectively. The criterion for which the solutions are valid was determined by 
the temperature difference, α, between the upper and lower walls. The analysis reveals that the shear 
stress obtained at the walls exists when the temperature difference α > 0. 
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INTRODUCTION 
 
 The study of flow of viscous fluid with temperature 
dependent properties is of great importance in 
lubrication and tribology, food processing, 
instrumentation and viscometry. However, viscous 
heating is always a possible and frequently significant, 
source of error in viscometric measurement at high 
shear rates in instrumentation and viscometry. Bird et 
al.[1], Turian and Bird[2] and Turian[3] have presented a 
methodology for obtaining approximate analytical 
solutions to the problem of combine flow and heat 
transfer in planar Couette flow when both the viscosity 
and thermal conductivity are polynomial functions of 
temperature. Papathanasiou[4] developed second-order 
series solution for flow in circular Couette with walls 
maintained at constant temperature, for material whose 
viscosity and thermal conductivity can be expressed as 
polynomial functions of temperature with arbitrary 
coefficients. Davis et al.[5] studied steady parallel flows 
of Newtonian liquids that have temperature dependent 
viscosities and substantial viscous heat generation. 
They presented shear stress versus shear rate 
characteristics and found that activation energy 
parameter affects the results considerably. They 
observed that shear-stress rate graphs are either 
monotonic or there exists large jump in shear rate and 
heat transfer at the walls. Adler[6] investigated the 
thermal stability of a reactive viscous flow. He 
considered the steady developed flow between 
symmetrically parallel heated walls and used a power 
series in a defined viscous heating parameter to obtain 
an expression for critical Frank-Kamenetskii parameter 
in series form. Johns and Narayanan[7] considered 
frictional heating in plane Couette flow. There result 

was this: if the wall speed is the control variable there 
are no points of neutral stability; if the wall speed is the 
control variable the nose of the curve is a point of 
neutral stability. This supports their conviction that in a 
physical experiment the wall speed must be the control 
variable, it cannot be the wall stress. Because the wall 
stress plays the same role here as does the Frank-
Kamenetskii number in thermal ignition they concluded 
that thermal ignition is not a good model of fluid 
frictional heating. If the viscosity of a fluid in plane 
Couette flow decreases exponentially as its temperature 
increases, the curve of wall speed versus wall stress has 
two branches, separated by a turning point. 
Subrahmaniam et al.[8] demonstrated that the upper 
branch of this curve is stable to zero wave number 
disturbances in case the power supplied to move the 
wall is the input variable and held fixed. Yürüsoy and 
Pakdemiril[9] considered the flow of a third-grade fluid 
in a pipe with heat transfer. Constant viscosity, 
Reynold’s model viscosity and Vogel’s model viscosity 
cases are treated separately. Approximate analytical 
solutions are presented for each case using 
perturbations. The criteria for which the solutions are 
valid are determined for the dimensionless parameters 
involved. The analytical solutions are contrasted with 
the finite difference solutions given in Massoudi and 
Christie[10]. Recently, Adegbie and Alao[11] studies 
steady-state flow of Newtonian viscous liquid with 
exponential temperature-dependent viscosity and 
substantial viscous heat generation in a symmetrically 
heated channel. The coupled non-linear momentum and 
energy equations arising in planar Poiseuille flow are 
solved numerically using finite difference scheme 
techniques. The effects of flow controlling parameters, 
such as, viscous heating parameter, temperature 
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difference and pressure-gradient parameter on the 
velocity and temperature profiles are analysed. The 
present contribution studies steady-state flow of 
Newtonian liquid with exponential temperature-
dependent viscosity and substantial viscous heat 
generation between symmetrically parallel heated walls 
with walls at different temperatures. Exact analytical 
solutions for temperature and velocity profiles in the 
plane Couette device are obtained. The analysis reveals 
that the criterion for which the solutions exist depends 
on the temperature difference between the upper and 
lower walls of the Couette device, that is, α > 0. The 
shear stress obtained at the wall also depends on the 
temperature difference, α. 
 
Mathematical formulation: We consider steady flow 
of Newtonian viscous liquids characterized by 
temperature dependent viscosity and viscous dissipation 
due to a high velocity gradient of the flow between the 
walls. The main physical assumptions of the suggested 
problem are the following. The flow is incompressible 
and fully developed. The body forces and pressure 
changes influence are negligible. We presuppose there 
is no-slip at the boundary. The dependence of thermal 
conductivity on temperature is neglected. The upper 
wall temperature is higher than the lower wall 
temperature, which is assumed to be the initial 
temperature of the fluid. The viscosity depends on 
temperature in an exponential manner, Reynold’s 
Model Viscosity, 

( )T−= exp0µµ  (2.1) 
    

 
Fig. 2.1: Schematic description of physical model 
 
 Under these assumptions, the system of governing 
dimensionless momentum balance and energy balance 
equations takes the following form 
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subject to the following boundary conditions: 









==−

==−

       ,

u  ,u

0)1(0)1(

1)1(0)1(

θθ

. (2.4) 

The above coupled non-linear flow governing equations 
were made dimensionless using 
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 The dimensionless parameters involve in equations 
(2.2) – (2.3) are  
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where rmB  is the modified Brinkman 

number, ( )αλµ 2
00UBr =  is Brinkman number, 

which is a measure of heat generated by viscous heating 
as compare to the heat conducted from the impressed 
temperature difference α  between the upper and lower 
walls respectively through the viscous liquid. λ  is the 
thermal conductivity, θ  is the dimensionless 
temperature, u  is the velocity parallel to the planes, 

0U  is the constant velocity at moving surface and 

0µ is the viscosity at 0T .  
 
Method of solution: Here, we consider the solutions of 
flow of viscous liquid with a high velocity gradient 
between the walls of plane Couette device at different 
temperature when its viscosity is an exponential 
function of temperature.  
 
Integrating (2.2) with respect to r  yields 

)exp(αθa
dr
du

=  (3.1) 

where a is constant of integration. 
Substituting (3.1) into (2.3), we obtain 
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Where rmBa2=σ . 
 From symmetry consideration, we need only solve 
the equation (3.2) with the combined boundary 
conditions: 

0=θ  at 1=r , 0=
dr
dθ

 at 0=r . (3.3) 

 In order to find the criterion, which satisfies the 
boundary conditions, we use the temperature at the 
middle of the device mθ (at this point mθ is unknown) 
as a parameter and solve the (3.2) subject to the 
conditions: 

mθθ =  and 0=
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 at 0=r . (3.4) 

Multiplying both sides of (3.2) by ( )drdθ2  and 
integrating yields  
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where 2
0

2
00

2 )exp( αλµδ TUa −= . 
Taking the square root of (3.5) and integrating again, 
we get  

[ ] )(cosh)exp()(exp 2 r br m βαθαθ ±=  (3.6) 

where 
2

)exp( mαθδαβ =  and b is constant of 

integration.  
 Employing the condition of symmetry 

0=drdθ  at 0=r  in (3.3), constant b must be 
equal to zero and thus we have 

[ ] )(cosh)exp()(exp 2 r r m βαθαθ =  (3.7) 

Applying the boundary condition 0=θ  at 1=r  in 
(3.7) gives 

αβθ )cosh(ln2=m  (3.8) 
Substituting (3.8) into (3.7) and taking the natural 
logarithm of both sides, we obtain 
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Applying the boundary conditions 0)1( =±θ , we 
have  
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Now, substitution of θ  from (3.9) into (3.1) follows by 
integration gives 
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upon using the boundary conditions 0)1( =−u  and 
1)1( =u (which follow from (2.3 )).  

 For the purpose of analysis, the criterion for which 
the solutions in (3.9), (3.10) and (3.11) exist depends on 
the temperature difference between the outer and inner 
surfaces of the channel, that is, 0>α . The 
dimensionless shear stress wτ  at the wall is obtained as  
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This shows that wτ vanishes when α = 0. But this can 
never occur since the validity of the model is based on 
the tacit assumption that α > 0.   
 

CONCLUSION 
 
 Steady flow of Newtonian fluid with exponential 
temperature dependent viscosity and viscous dissipation 
in symmetrically parallel-heated walls is investigated. 
The exact analytical solutions for temperature and 
velocity   profiles   in   the   plane   Couette   device are  
obtained. The analysis reveals that the criterion for 
which the solutions exist depends on the temperature 
difference between the upper and lower walls of the 
Couette device, that is, 0>α . The shear stress 

obtained at the wall also depends on the temperature 
difference,α . It is found that the behaviour of the 
solutions is replica of some of the problems in 
lubrication, viscometry and engineering flows such as 
pumping of oil in pipes, flow of liquids in open 
channels and extrusion of plastics through dies.  
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