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Abstract: A structured model of bioreactor for an activated sludge process was presented. The 
stability and bifurcation characteristics of the model are investigated, the bifurcation analysis of the 
model shows static and complex dynamic behavior (periodic and complex) over a wide range of the 
model parameters. The model exhibits a new interesting behavior (in some range of parameters) 
including four static limit points (turning points) and two Hopf points, that cause different kinds and 
rich of stability characteristics ranging from asymptotically stable and hysteresis to periodic and 
complex behavior.  
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INTRODUCTION 

 
 The heterogeneity and the complexity of activated 
sludge processes pose a continuous challenge to 
developing models that can incorporate all the 
necessary levels of information concerning the process 
and be accurate enough for the adequate control and 
safe operation of the bioreactor[1]. 
 The complete quantification of the microbiological 
system on the other requires the understanding of the 
complex biological and physicochemical interactions in 
the process and the measurement of a large number of 
reaction rates, which is often beyond the scope of 
reasonable measurement techniques. This task is 
particularly complicated when dynamic modeling is 
sought. While simple and often hand, unstructured, 
steady-state models are sufficient for the purpose of 
plant design, these models are generally inadequate for 
dynamic simulations and control of the process, since 
they often fail to predict accurately the effects of 
process disturbances[2,3]. Structured models on the other 
hand, with different degrees of complexity can 
supplement the inadequacies of unstructured models. 
Structured models take into account the inevitable 
changes in the cell population composition, since the 
model microbial kinetics are constructed on the basis of 
at least some of the knowledge accumulated in the vast 
repository of fundamental biochemistry and 
microbiology. Structured models, however, may 
sometimes suffer from over-detailed information that 
cannot be verified, making them inappropriate for 
practical use. A good structured model should have a 
reasonable number of parameters to provide it with 
some levels of flexibility[4,5]. 
 Besides predicting the effects of external 
disturbances, a good dynamic model should also be 

able to predict the different dynamic behaviors the 
autonomous process may exhibit. Activated sludge 
reactors have long been known to exhibit a variety of 
dynamic behavior depending on the process operating 
conditions[6] for instance, examined both theoretically 
and experimentally the occurrence of steady-state 
multiplicity and hysteresis in activated sludge reactors, 
confirming the experimental findings reported in earlier 
works[7,8]. Bertucoo et al.[9] on the other hand, examined 
the stability and bifurcation characteristics of the 
activated sludge reactors with solids recycle and 
showed the existence of steady-state multiplicity for 
some range of operating parameters. It is known that 
over 90% of municipal wastewater treatment plants rely 
on activated sludge systems for the core part of the 
treatment process. These systems encompass 
biodegradation and sedimentation processes which take 
place in the aeration and sedimentation tanks 
respectively the key feature of the biological 
degradimentation process is that microorganisms i.e., 
the so-called activated sludge, convert the incoming 
polluting organism while growing[10]. 
 The effects of substrate inhibited kinetics in 
activated sludge reactors, has been investigated by 
many authors[11]. It was clearly shown that substrate 
inhibition models are fundamental in predicting the 
results of wastewater containing toxic compounds. 
 The stability and the control of steady state 
multiplicity in the continuous stirred tank bioreactor 
(CSTBR) were also the subject of many investigations[6] 
and investigated the bifurcation and stability of 
a(CSTBR). Providing a general framework for the 
analysis of stability and bifurcation mechanisms in the 
CSTBR with cell recycle using the singularity theory 
has been investigated[12]. A model of 3-dimensional 
differential equations has been investigated for 
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periodicity and bifurcation in[1,13-15]. 
 In this work, the dynamic characteristics of a 
flexible model of activated sludge process with solids 
recycle are studied. The proposed model is a simplified 
version of a structured model used by Andrews et al.[1]. 
The model is structured upon substrate and intermediate 
component growth depending processes.  
 The model kinetics are based on the other hand, on 
substrate and intermediate product inhibitory effects. 
The investigation is based upon the principles of 
bifurcation theory coupled with continuation techniques 
which gives more deep analysis to the static and 
dynamic characteristics of the model. 
 
Process Model: The main processes of the model[1].  
Substrate (S)→ Particulate product (Xs) → Biomass 
(Xa), is structured upon two processes 
1. Formation of an intermediate particulate product 

(Xs) depending on substrate, 
2. Active biomass (Xa) synthesis. 
 The model is a simplified version of the original 
Andrews model for activated sludge process where the 
decay rate is being assumed negligible. This assumption 
is acceptable when operating at low cell residence time. 
 The substrate S is converted to a slowly 
biodegradable particulate product following the rate 

expression 
21
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where 1U  is the specific rate. This kinetic expression 
accounts for the well-known phenomenon of substrate 
inhibition. The Haldane expression has been used for 
this purpose. The equation requires only three 
parameters: the specific growth rate pm, the substrate 
saturation constant Ks and the substrate inhibition 
constant l/α . 
 The Haldane equation is accurate enough to be 
favored over more complicated inhibitory kinetics 
models[16]. Substrate inhibition has been extensively 
studied both in batch reactors and in chemostats and it 
was shown that substrate inhibition models are 
fundamental in predicting the stability characteristics in 
activated sludge reactors 
(with or without solids recycle), such as the occurrence 
of steady-state multiplicity and the hysteresis 
phenomenon[17,18]. 
 Besides the direct inhibitory effects due to the 
substrate, a delayed inhibitory effect caused by the 
intermediate product is also assumed. This inhibition 
effect is assumed to be noncompetitive, i.e., the growth 
of the intermediate product affects negatively the 
maximum growth rate mU , given by 

i
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where Ki is the inhibition constant. 
 The biomass growth rate on the other hand, 
depends on the intermediate product following the 

common Monod behavior: 

XsK
XsU

U
x

m

+
=2  (3) 

where 2U  is the specific growth rate and K x  is the half 
saturation constant for biomass synthesis. 
 The intermediate product inhibition affects then 
both the substrate uptake rate and the biomass growth 
rate through the term mU  This is in agreement with the 
observations made in[19] on the influence of particulate 
intermediate products on the performances of microbial 
cultures. Equations (l-3) form then the model kinetics. 
In the following section, the unsteady state component 
balance equations around the reactor-settler, are written 
for the different species 
* Substrate S. The substrate is consumed to produce 

the intermediate particulate product Xs. The 
unsteady state component balance yields  

1
f

U
QS QRS V

Yx / s
dSXa QWS Q(1 R W)S V
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+ −

= + + − +
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with Yx/s is the yield coefficient assumed constant. 
Equation (4) is also equivalent to 

Xa
sYx

U
SS

dt
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where 
Q
V

=θ  is the reactor residence time. 

* Particulate intermediate product X,. The particulate 
product X, is consumed to produce the biomass. A 
component balance yields, then 
f R 1 2QXs QRXs V(U U )Xa

dXsQWXs Q(1 R W)Xs V
dt

+ + −

= + + − +
 (6) 

 The assumed ideal conditions in the settler allows 
the following simple relation between the recycle Xs R  
and the effluent X, concentrations  

R
WRXsXsR

)1( −+
=  (7) 

Then equation (6) becomes 

)( 21 UUXaWXsXs
dt

dXs
f −+−= θθ  (8) 

* Active biomass Xa,. The component balance 
equation for biomass is 

f R 2QXa QRXa VU Xa
dXaQWXa Q(1 R W)Xa V
dt

+ +

= + + − +
 (9) 

 Similarly to the intermediate product (equation (7)), 
a simple relation links the recycle Xa R  and the effluent 
Xa, biomass concentrations 

R
WRXaXaR

)1( −+
=  (10) 
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which reduces equation (9) to 

XaUWXaXa
dt

dXa
f 2θθ +−=  (11) 

Then autonomous system of the model is 

Xa
sYx
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dt

dXs
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dt

dXa
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Using the formulas of 1U  and 2U  as in (1), (2) and (3), 
system (12) takes the form  
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where, S, Xs and Xa are variables, fS , 

αθ ,,,,,/,, 1 KxKsKiCusYxX f  and W are parameters 

with ff XXs 8.0=  and ff XXa 2.0= . 
 The three-dimensional model includes a large 
number (nine) of parameters. Besides the reactor 
operating parameters, i.e., feed conditions and purge 
fraction, the nominal values of the other model 
parameters are given in Table 1.  
  
Table 1: Nominal values of model parameters 
Parameter Value 
Ki(mg/l) 10 
Ks(mg/l) 10 
Kx(mg/l) 500 

S f (mg/l) 500 

W 0.1 

X f (mg/l) 100 

Yx/s or Yx 0.5 
α (l/mg) 0.11 

Cu1(1/hr) 3 
 
 These nominal values (as shown in the table) are 
taken from realistic ranges given in literature. Among 
all the model parameters the residence time θ  is the 
easiest parameter to vary and is chosen as the 
bifurcation parameter. The bifurcation analysis consists 
in studying the branching phenomena in the model 
when its parameters (or a subset of them) are varied 
around the nominal values. 
 
Numerical tools and presentation techniques: The 
methodology for static and dynamic bifurcation consists 

in the numerical continuation techniques, coupled with 
the principles of bifurcation theory.  
 The bifurcation diagrams are obtained using the 
software AUTO of Doedel and Kernevez[20]. This 
package is able to perform both steady state (static) and 
dynamic bifurcation analysis, including the 
determination of the entire periodic solution branches. 
AUTO also computes the Floquet multipliers along 
periodic solution branches and therefore, determines the 
stability of the periodic orbits. A periodic orbit loses its 
stability by a number of mechanisms. The most 
common of them are period doubling bifurcation and 
saddle node tangent bifurcation. 
 Because of periodicity there is always a Floquet 
multiplier equal to +l.When Floquet multipliers lie 
inside the unit circle, the periodic solution is 
asymptotically stable. A Floquet multiplier leaving the 
unit circle through -1 indicates period doubling 
bifurcation. Passage of complex Floquet multipliers out 
of the unit circle indicates that the periodic orbit 
bifurcates to an invariant torus. 
 Periodic solutions can also lose their stability to 
chaotic attractors. Chaotic attractors show extreme 
sensitivity to initial conditions and nearby trajectories 
diverge.  
 A chaotic attractor is best characterized by its 
Lyapunov exponents, it has at least one positive 
Lyapunov exponent. The technique and the algorithm 
of Wolf et al.[21] are used to efficiently compute these 
exponents. The DGEAR subroutine[22] with automatic 
step-size to ensure accuracy for stiff differential 
equations is used for numerical simulation of periodic 
as well as chaotic attractors. 
 

RESULTS AND DISCUSSION 
 
 The continuity diagram (substrate concentration S 
vs. residence time θ ) is shown in Fig. 1a for the 
parameters values shown in Table 1. The continuation 
diagram in Fig. 1b shows four stable part branches 
(solid lines) connected to three unstable part branches 
(dashed lines).  
 

 
Fig. 1a: Continuity diagram (substrate concentration S 

vs. residence time θ ) 
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Fig. 1b: Continuity diagram (substrate concentration S 

vs. residence time θ ) 
 
 Figure 2 shows the existence and the loci of four 
static limit points SLP (turning points) and two Hopf 
points (HB), the continuity diagram also shows the 
periodic solutions birth at HB points as in Fig. 3, as 
follows 
 

 
 
Fig. 2: Continuity diagram (S,θ ) 
 

 
Fig. 3: Periodic solutions appear at HB points  
  
 Return to the continuity diagram represent periodic 
and non periodic branches above we determine four 
important parts (sub branches) around the limit points 
and the Hopf points as shown in Fig. 4-7.  

 
Fig. 4: The vicinity of LP1 
 

 
Fig. 5: The vicinity of LP2 and HB1 
 

 
Fig. 6: The vicinity of HB2 and LP3 
 

 
Fig. 7: The vicinity of HB2 and LP3  
  
 The existence of Hopf points indicates necessarily 
the occurrence of an oscillatory behavior in the system. 
A Hopf point arise when a pair of complex eigenvalues 
of the Jacobean of the model crosses the imaginary axis 
transversally. The existence of static limit points and  
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Hopf points in the continuation diagram indicates a 
potential richness in the stability characteristics of the 
model. It is known from bifurcation theory[23,24] that 
interactions between a SLP and HB point may lead to a 
variety of behavior ranging from simple periodicity to 
complex periodic behavior.  
 In this analysis, it is helpful to build an overall 
picture of the possible bifurcation mechanisms that the 
model may exhibit. This task is best achieved by 
showing both the loci of the static limit points and the 
Hopf points in a two-parameter continuation diagram. 
There are nine figures (two-parameter continuation 
diagrams) that show the SLP curves and the HB curves 
as follows 
 

 
Fig. 8: (θ ,Xf) 
 

 
Fig. 9: (θ ,Ki) 
   
 The above figures of two-parameter continuation 
showing the loci of the static limit points SLP and the 
Hopf points HB, solid line is a static limit point, dashed 
line is a Hopf point and solid-dashed lines is both static 
limit point and Hopf point. 
 In the next figures we sketch the other two-
parameter continuation of Ks, Kx, Sf, W, Cu1,Yx and 
alfa. 

 
Fig. 10: (θ ,Ks ) 

 
Fig. 11: (θ ,Kx ) 
 

 
Fig. 12: (θ ,Cu1) 
 

 
Fig. 13: (θ ,α ) 
 

 
Fig. 14: (θ , Sf) 
 

 
Fig. 15: (θ ,W) 
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Fig. 16: (θ ,Yx) 
 
 After that we will investigate one of them in more 
details i.e. we make partitions in the figure depending 
on the regions of parameters values that exhibit 
different behaviors and rest points. 
  Let we investigate the case of (θ ,Sf) space i.e. Fig. 14 
is divided into many regions as shown in Fig. 17 below 
 

 
Fig. 17: Partition of two parameter space (θ ,Sf) 
 
 Figure 17 shows the SLP curves and the HB curves 
in the parameter space (θ ,Sf).. It can be seen from this 
figure that the loci of the HB points (dashed lines) 
consist of two lines that form a minimum at point 
(Sf=72.1235). An oscillatory behavior should be 
expected then in the model for any value of the 
substrate feed concentration larger than the one 
corresponding to point (Sf=72.1235). 
 The loci of the SLP points (solid lines) consist of 
four lines that form a minimum at point (Sf=150), At 
that point two of the SLP lines meet each other, that 
form a cusp. Static limit points are then expected in the 
model for any values of feed concentrations higher than 
the one corresponding to point (Sf=150). Now before 
we divide the (θ ,Sf) diagram into many significant 
parts we give the following notes about that 
diagram[23,24].  
1. The points which is the LP or HB curves form a 

minimum are special points since they are 
considered as degenerate points. 

2. Interaction between the LP and the HB give a rich 
characterization in behavior ranging from stable, 
periodic, non periodic and quasiperiodic to strange 
attractors and complex. 

3. The points of intersections of HB curves with LP 
curves are also degenerate points, they create the 
so-called 1F  degeneracy. 

4. The two curves can also be seen to collapse in one 
line along the right branch of the diagram, this 
gives birth to an other kind of degeneracy,i.e., the 
so-called 2F  degeneracy. 

The diagram can be divided into many regions:  
Region 1: Simple behavior: This region extended 
below the value of Sf that corresponds to the minimum 
of HB curves at Sf= 72.1235. 
 This region is characterized by the absence of any 
limit or Hopf points. A simple behavior(stable solution) 
is then expected in this region, as showing below. 
 

 
Fig. 18: Continuity diagram (θ ,S) 
 

 
Fig. 19: Phase plane (S,Xs) 
 
Region 2: Periodic behavior: This region extends 
below the value of Sf that corresponds to the cusp 
formed by the LP curve at Sf=150 and above the point 
Sf= 72.1235 mentioned in region1, which can exhibit 
periodic solutions, Region 2 is characterized by the 
appearing of two Hopf points. 
 

Region 3: appearing of hysteresis: This region is 
setting above region 2 and extends from the cusp 

formed by the LP , s Curves just below the line Sf=410, 
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Fig. 20: Continuity diagram, periodic solution (Sf=110) 
 

 
Fig. 21: Time trace (t,Xa), (Sf=110) 
 

 
Fig. 22: Phase plane (S,Xs), (Sf=110) 
 

 
Fig. 23: Continuity diagram: The hysteresis (Sf=150) 
 
which is the beginning of the complex(rich) region that 
contains many features. Region 3 is characterized by 
the appearing of two Hopf points and two limit 
points(turning points). 

 
Fig. 24: The hysteresis and periodic solution(Sf=150) 
 
Region 4: Periodic, quasiperiodic and complex: This 
region is the main in this study since it can be divided 
itself into many subparts, in this region we have many 
different characterization of stability, arising from the 
intersections of LP lines with HB lines(denoted by 
dashed-dot lines), the presences respectively and the 
order LP point, LP point, HB point, HB point, LP point 
and LP point, which is a new result we get in this study         
than that in[1]. 
 As a complete picture of the continuity diagram, it 
can be seen as two hysteresis connecting together at any 
point between HB1 and HB2, this gives a contraction 
between that regions. 
 

 
Fig. 25: Continuity diagram, (Sf=500)  
 
 The following figures show some behaviors of the 
model in this region in the order LP point, LP point, HB 
point, HB point, LP point and LP point, in these figures 
the behavior is not periodic nor quasi periodic, it is 
complex 
 

 
Fig. 26a 
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Fig. 26b 
 

 
Fig. 26c 
 

 
Fig. 26d 
 

 
Fig. 26e 
 

 
Fig. 26g 
yx=0.5,ks=10,kx=500,cu1=3,w=0.1,ki=10,alpha=0.11,Sf=500,Xf=10
0,theta=1.65 
Fig. 26: Time trace and phase plane for non periodic 

(complex) attractor initiating at LP3 (9.326137, 
233.5294, 3219.84) 

 
 We can give a clear picture of the behavior shown 
in Fig. 26e as follows 
 

 
Fig. 27: Enlargement of Fig. 26e 
 
 Other picture of this behavior (complex) can be 
seen with Sf=500.45 and the same values of the other 
parameters as follows 
 

 
Fig. 28: Time trace for non periodic (complex) 

behavior  
 
 Finally we introduce enlargements for the above 
diagrams in Fig. 26, first using about 500 iterations as 
in Fig. 29-32 below 
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Fig. 29: Enlargement of Fig. 26a 
 

 
Fig. 30: Enlargement of Fig. 26c  
 

 
Fig. 31: Enlargement of Fig. 26e 
 

 
Fig. 32: Enlargement of Fig. 26b 

 Second, using about 1000 iterations as in Fig. 33-
36 below 
   

 
Fig. 33: Enlargement of Fig. 26a 
 

 
Fig. 34: Enlargement of Fig. 26c 
 

 
Fig. 35: Enlargement of Fig. 26e 
 

 
Fig. 36: Enlargement of Fig. 26b 
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 Third, using about 2000 iterations as in Fig. 37-40 
below 

 
Fig. 37: Enlargement of Fig. 26a 
 

 
Fig. 38: Enlargement of Fig. 26c 
 

 
Fig. 39: Enlargement of Fig. 26e 
 

 
Fig. 40: Enlargement of Fig. 26b 

Region 5: Complex behavior: This region is 
characterized by the appearance of the critical points 
with the order LP1, HB1, LP2, HB2, LP3, HB2, LP3, 
LP4 (with Sf=800) as shown in Fig. 41.  
 

 
Fig. 41: Continuity diagram, (Sf=800) 
 

CONCLUSION 
 
 In this study, a model for bioreactor of activated 
sludge process is proposed. 
 This model is represented by an autonomous 
system of three non linear first order ordinary 
differential equations with a set of parameters(ten) and 
an investigation of the static and dynamic bifurcation of 
a model was carried out. 
 This work is a new study for the model with 
different choosing of the system's parameters, choosing 
values of parameters as in table 1 gives a new feature of 
behavior and new stability characteristics, the new 
region (appearing) is characterized by the presences 
respectively in the order LP point, LP point, HB point, 
HB point, LP point and LP point, which is discussed in 
region 4. 
 Other choosing for the parameter values gives 
different order in appearing of the critical points as in 
region 5. 
 Since the methodology for static and dynamic 
bifurcation consists of the numerical continuation 
techniques, coupled with the principles of bifurcation 
theory, we used a numerical continuation techniques 
and apply the bifurcation theory to show that the model 
exhibits a rich stability characteristics ranging from 
simple Monod-like behavior and hysteresis, to periodic, 
quasiperiodic and complex behavior.  
 
Nomenclature 
K i  intermediate product inhibition constant (mg/l) 
Ks substrate saturation constant (mg/l) 
Kx saturation constant for biomass growth rate (mg/l) 
Q volumetric flow rate (l/h) 
S substrate concentration (mg/l) 
V reactor volume (1) 
W sludge withdrawal fraction 
Xa biomass concentration (mg/l) 
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Xs intermediate particulate product concentration (mg/l) 
 
Greek symbols 
α  inverse of substrate inhibition constant (l/mg) 
θ  reactor residence time (hr) 

1U  specific rate for conversion of substrate to 
intermediate product (hr-1) 

2U  specific rate for conversion of intermediate product 
to active biomass (hr-1) 

mU  maximum specific rate (hr-1) 
 
Subscripts 
f feed stream 
R recycle stream 
 
Abbreviations 
HB Hopf bifurcation point 
SLP static limit point  
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