
Journal of Mathematics and Statistics 2 (2): 395-400, 2006
ISSN 1549-3644
© 2006 Science Publications

Corresponding Author: Mo Zhi Wen, 1Center of Intelligent control and Development,Southwest Jiaotong University
395

Fuzzy Automata Induction using Construction Method

1,2Mo Zhi Wen and 2Wan Min

1Center of Intelligent Control and Development, Southwest Jiaotong University, China
2College of Mathematics and Software Science, Sichuan Normal University, China

Abstract: Recurrent neural networks have recently been demonstrated to have the ability to learn
simple grammars. In particular, networks using second-order units have been successfully at this task.
However, it is often difficult to predict the optimal neural network size to induce an unknown
automaton from examples. Instead of just adjusting the weights in a network of fixed topology, we
adopt the dynamic networks (i.e. the topology and weights can be simultaneously changed during
training) for this application. We apply the idea of maximizing correlation in the cascade-correlation
algorithm to the second-order single-layer recurrent neural network to generate a new construction
algorithm and use it to induce fuzzy finite state automata. The experiment indicates that such a
dynamic network performs well.

Key words: Fuzzy automation, construction method, dynamic network

INTRODUCTION

 Choosing an appropriate architecture for a learning
task is an important issue in training neural networks.
Because general methods for determining a “good”
network architecture prior to training are generally
lacking, algorithms that adapt the network architecture
during training have been developed.
 Constructive algorithm determines both the
architecture of the network in addition to the parameters
(weights, thresholds, etc) necessary for learning the
data. Compared to algorithms such as back propagation
they have the following potential advantages:
* They grow the architecture of the neural network in

addition to finding the parameters required.
* They can reduce the training to single-node

learning hence substantially simplifying and
accelerating the training process. Constructive
algorithms such as cascade correlation have at least
an order of magnitude improvement in learning
speed over back propagation.

* Some constructive algorithms are guaranteed to
converge unlike the back propagation algorithm,
for example.

* Algorithms such as back propagation can suffer
from catastrophic interference when learning new
data, that is, storage of new information seriously
disrupts the retrieval of previously stored data. The
incremental learning strategy of constructive
algorithms offers a possible solution to this
problem.

 Rather than growing neural networks destructive or
pruning[1] algorithms remove neurons or weights from
large and trained networks and retain the reduced

networks in an attempt to improve their generalization
performance. Approaches include removing the
smallest magnitude or insensitive weights or by
adding a penalty term to the energy function to
encourage weight decay. However, it is difficult to
“guess” the initial network which is bound to
solve the problem.
 Recurrent neural networks have been demonstrated
to have the ability to learn simple grammars[2-6].
However, the problem associated with recurrent
networks of fixed topology is apparent. We have to
empirically choose the number of hidden neurons, there
is no general methods for determining an appropriate
topology for specific application. Consequently, the
convergence can’t be guaranteed. Constructive or
destructive methods that add or subtract neurons, layers,
connections, etc. might offer a solution to this problem
though it is complementary. We propose a construction
algorithm for second-order single-layer recurrent neural
network which adds a second-order recurrent hidden
neuron at a time to adapt the topology of the network in
addition to the change of the weights and use it to learn
fuzzy finite state machines and experimentally find it
effective.

Fuzzy finite state automata: We begin by the class of
fuzzy automata which we are interested in learning:

Definition: A fuzzy finite-state automaton (FFA) is a
6-tuple =< Σ , Q, Z, q 0 ,δ ,ω > where Σ is a finite
input alphabet and Q is the set of states; Z is a finite
output alphabet, q 0 is an initial state, δ :
Σ × Q× [0,1] → Q is the fuzzy transition map and ω :
Q → Z is the output map.

J. Math. & Stat., 2 (2): 395-400, 2006

 396

 It should be noted that a finite fuzzy automaton is
reduced to a conventional (crisp) one when all the
transition degrees are equal to 1.
 The following result is the basis for mapping FFAs
into the corresponding deterministic recurrent neural
networks[7]:

Theorem: Given a FFA , there exists a deterministic
finite state automaton (DFA) M with output alphabet Z
⊆ { θ : θ is a production weight} ∪ {0} which
computes the membership function µ : Σ ∗ → [0,1] of
the language L (M). An example of FFA-to-DFA
transformation is shown in Fig. 1a and b[8].

Fig. 1: Example of a transformation of a specific
FFA into its corresponding DFA. (a) A fuzzy
finite-state automaton with weighted state
transitions. State 1 is the automaton’s start
state; accepting states are drawn with double
circle. A transition from state q j to q i on
input symbol a k with weightθ is represented
as a direct arc from q j to q i labeled a k /θ .
(b) corresponding deterministic finite-state
automata which computes the membership
function strings. The accepting states are
labeled with the degree of membership.
Notice that all transitions in the DFA have
weight one

Second-order recurrent neural network used to
induce FFA: A second-order recurrent neural network
linked to an output layer is shown to be a good
technique to perform fuzzy automaton induction in[9], it
consists of three parts (Fig. 2): input layer, a
single

recurrent layer with N neurons and two output layers
both with M neurons, where M is determined by the
level of accuracy desired in the output. If r is the
accuracy required(r=0.1 if the accuracy is decimal,
r=0.01 if the accuracy is centesimal, etc.),
M=(10 log()r− +1).
 The hidden recurrent layer is activated by
both the input neurons and the recurrent
layer itself. The first output layer receives the values
of the recurrent neurons at time m, where m is the
length of the input string. The neurons in this layer then
compete to have a winner to determine the
output of the network. The dynamic of the neural
network is as follows:

 S 1t
i
+ =g(+Ξ) Ξ =

,

t t
ijk j k

j k

W S I� i=1,…N (1)

O p = g(pσ) pσ = m
i

1-N

0i
piSu�

=

 p=1,…M (2)

 out p = p 0 M-11 if O max{O ,..., O }

0 otherwise

=��
�
��

 (3)

Where g is a sigmoid discriminant function and b is
the bias associated with hidden recurrent state neurons
S . upi connected Si to the neuron Op of the first output
layer, Wijk is the second-order connection weight of the
recurrent layer and input layer. The membership degree
associated to the input string is determined by the last
output layer: µL(x)=i*r, where r is the desired accuracy,
i is the index of the non-zero neuron of the last output
layer. The weights are updated by the pseudo-gradient
decent algorithm:

The error of each output neuron is 2
i i i

1
E (T O)

2
= − ,

Where Ti is the expected value for the ith output neuron

and Oi is the provisional value given by equation (2).

The total error for the network is

 E=
M-1

i
i 0

E
=
� (4)

When E>�,modify the weights as follows:

iju∆ =- i

ij

E
u

α ∂
∂

 =∆ lonw -
lon

E
w

α ∂
∂

, Where�is the

error tolerance of the neural network, � is the learning

rate. Further step:

ij

i

u
E

∂
∂

=(T i -O i)×O i × 1-O i ×S m
j

J. Math. & Stat., 2 (2): 395-400, 2006

 397

Fig. 2: Neural network used for fuzzy graininar

inference

lon

E
w
∂

∂
=

m-1M-1 N-1 N-1 L-1 Sjm-1 m-1 m-1 m-1(T O)g'() u g'() S I w Ir r r rp p pl n pjk0 k wlon
r 0 p 0 j 0 k 0

σ θ δ
� �∂� 	− × +� 	∂� 	= = = =
 �

� � �� .

Initialize
0
j

lon

S

w

∂
∂

=0

Dynamic adaptation of recurrent neural network
architecture: Constructive algorithms dynamically
grow the structure during the network’s training.
Various types of network growing methods have been
proposed[10-14]. However, a few of them are for
recurrent networks. The approach we propose in this
paper is a constructive algorithm for second-order
single-layer recurrent neural networks.
 In the course of the induction of an unknown fuzzy
finite-finite state automata from training samples, our
algorithm topologically changes the network in addition
to adjusting the weights of the second-order recurrent
neural network. We utilize the idea of maximizing
correlation in cascade-correlation algorithm to get a
prior knowledge at each stage of the dynamic training
which is then used to initialize the new generated
network for the following learning.
 Before the description of the constructive learning, the
following criteria need to be kept in mind:
* When the network structure needs to change

* How to connect the newly created neuron to the
existing network

* How to assign initial values to the newly added
connection weights

 We initialize the network with only one hidden unit.
The size of the input and output layer are determined by
the I\O representation the experimenter has chosen.
 We present the whole training examples to the
recurrent neural network. When no significant error
reduction has occurred or the training epochs have
achieved a preset number, we measure the error over
the entire training set to get the residual error signal
according to (4). Here an epoch is defined as a training
cycle in which the network sees all training samples. If
the residual error is small enough, we stop; if not, we
attempt to add new hidden unit one by one to the single
hidden layer using the unit-creation algorithm to
maximize the magnitude of the correlation between the
residual error and the candidate unit’s output.
 For the second criterion, the newly added hidden
neuron receives second-order connection from the
inputs and pre-existing hidden units and then outputs to
the output layer and recurrent layer as shown in Fig. 3.
 Now, we turn to the unit-creation algorithm in our
method, it is different from the case of
cascade-correlation due to the different structure we use.
We define S as in[10]:

 S=� � −−))((, (5)

where Vp is the candidate unit’s output value when the
network processing the pth training example and Ep,o is
the residual error observed at output neuron o when the
network structure needs to change. and Ep are the
values of V and Ep averaged over the whole training
examples.
 During the maximization of S, all the pre-exiting
weights are frozen other than the input weights of the
candidate unit and its connection with the hidden units.
The following training algorithm updates the weights at
the end of the presentation of the whole training
examples. Suppose we are ready to add the hth neuron,
p denote the length of the pth example, then V =S ,
i.e. the output of the hth hidden neuron at time p .

=∆ hjkw
hjkw

S

∂
∂

β = β �
,

σ (E , -)

hjk

p

w

V

∂
∂

 j=1,…h, k=1,…| Σ | (6)

=∆ ihkw
ihkw

S

∂
∂

β = β �
,

σ (E , -)

J. Math. & Stat., 2 (2): 395-400, 2006

 398

Fig. 3: The network starts with neuron 1 and grows

incrementally to n neurons

ihk

p

w

V

∂
∂

 i=1,…h-1, k=1,…| Σ | (7)

where oσ is the sign of the correlation between the
candidate’s value and output o due to the modulus in
(5), β is the learning rate, w hjk are the trainable input
weights to the newly-added neuron h; w ihk connect h to
the pre-existing ith hidden unit and | Σ | is the number of
the input units. According to (1), we further induce:

Vp
whfm

∂

∂
=

lpSh
whfm

∂

∂
=g’xS 1− × I where f ≠ h

Vp
whhm

∂

∂
=

lpSh
whhm

∂

∂
=g’x(S 1− I

+ lpw Ihhk k
k
�

1lpSh
Whhm

−∂

∂
) where f=h (8)

lpSh
wfhm

∂

∂
=g’× [Whfk

k
� I × (g’x(S 2lp

h
− I 1lp

m
− + W ffk

k
�

I 1−
2lpS f

W fhm

−∂

∂
))]

Initialize
fhm

0
f

w

S

∂
∂ =0 (9)

Where g’ is the derivation for the pth example of the
pre-existing or candidate unit ’s activation function with
respect to the sum of its inputs,α is the learning rate.

Error

Epochs
Fig. 4: The evolution of the training process for 1

hidden neuron network

Error

Epochs
Fig. 5: The evolution of the training process for

current network

 We present the whole training examples to the
current network and train W and W according to
the update rules as described in (6)-(9) until we achieve
a pre-set number of training epochs or S stop
increasing.
 At this time, we fix the trained Whjk and Wjhk as the
initial weights of the newly-added neuron, its
connections to the output layer are set to zero or very
small random numbers so that they initially have little
or no effect on training. The old weights start with their
previously trained values. Compared with the
cascade-correlation in which only the output weights of
the new neuron is trainable, we allow all the weights
are trainable. In order to preserve as much knowledge
we’ve learned as possible, we set different learning rate
to update the weights we obtained and the output
weights of the new neuron connecting to the output
layer where the latter is larger than the former. Up to
now, the third criterion is resolved.
 Instead of a single candidate unit, a pool of
candidates is possibly used for the unit-creation
algorithm which are trained in parallel from different
random initial weights. They all receive the same input
signals and see the same residual error for each training
example. Whenever we decide that no further progress
of S is being made, we install the candidate whose

J. Math. & Stat., 2 (2): 395-400, 2006

 399

Fig. 6: The extracted automaton from learned network

correlation score is the best with the trained input
weights.

Simulation experiment: In this part, we have tested
the construction algorithm on fuzzy grammar inference
where the training examples are generated from the
fuzzy automaton shown in Fig. 1a. The experiment has
been designed in the same way as in[9].
1. Generation of examples: We start from a fuzzy

automaton M as shown in Fig. 1a, from which we
generate a set of 200 examples recognized by M.
Any example consist of a pair (Pi, µ i) where Pi is a
random sequence formed by symbols of the
alphabet σ ={a, b} and iµ is the membership degree
to fuzzy language L(M)[9] for detail. The samples
strings are ordered according to their length.

2. Forgetting M and train a dynamic network to
induce an unknown automaton which recognizes
the training examples:

 The initial recurrent neural network is composed of
1 recurrent hidden neuron and 11 neurons in the output
layer, i.e., a decimal accuracy is required. The
parameters for the network learning are: learning
rateα =0.3, error tolerance ε =2.5x10-5. Figure 4 shows
the evolution of the training process for 1-hidden unite
network. After 285 epochs, no significant error
reduction has occurred and the residual error signal is
77.3695. It’s much larger than ε . So we add a neuron to
the hidden layer.
 We use 8 candidate units, each with a different set
of random initial weights. Learning rate β is set to 0.3.
According to (5)-(9) to maximize S in parallel until a

preset number of epochs are achieved or S stop
increasing, we install the candidate whose correlation
score is the best. After 225 epochs, no significant
increasing of S has appeared. Initial the new network as
described earlier and train it with learning rate 0.15 for
the weights connecting the newly-added neuron to the
output layer and 0.08 for the rest respectively. The
neural network learned all the examples in epochs 348.
Figure 5 shows the evolution of the error on the training
process. We adopt extraction algorithm 1
in[8]-partitioning of the output space—to extract fuzzy
finite automaton from learned network:

CONCLUSION

 An appropriate topology made up of a
second-order recurrent neural network linked to an
output layer is proposed in[8] to perform fuzzy
grammatical inference. However, an appropriate
number of the hidden unites is difficult to be predicted.
Instead of just adjusting the weights in a network of
fixed topology, we adopt the construction method for
this application. We apply the idea of maximizing
correlation of the cascade-correlation algorithm to the
second-order recurrent neural network to generate a
new construction method and use it to infer fuzzy
grammar from examples. At every stage of dynamical
training, we obtain a prior knowledge to initialize a
newly generated network and train it until no further
decrease of the error being made. It recovers the
absence of the empiric in the case of the fixed-topology
network and generates an optimal topology

J. Math. & Stat., 2 (2): 395-400, 2006

 400

automatically. An experiment shows that this algorithm
is practical.

REFERENCES

1. Mozer, M.C. and P. Smolensky, 1989.

Skeletonization: A technique for trimming the fat
from a network via relevance assessment.
Connection Sci., 11: 3-26.

2. Giles, C.L., C.B. Miller, D. Chen, H.H. Chen, G.Z.
Sun and Y.C. Lee, 1992. Learning and extracting
finite state automata with second-order recurrent
neural networks. Neural Computation, 4: 393-405.

3. Zeng, Z., R. Goodman and P. Smyth, 1993.
Learning finite state machines with self-clustering
recurrent networks. Neural Computation, 5:
976-990.

4. Elman, J.L., 1991. Distributed representations,
simple recurrent networks and grammatical
structure. Machine Learning, 7: 195-225.

5. Cleeremans, A., D. Servan-Schreiber and J.L.
McClelland, 1989. Finite state automata and simple
recurrent networks. Neural Computation, 1:
372-381.

6. Williams, R.J. and D. Zipser, 1989. A learning
algorithm for continually running fully recurrent
neural networks. Neural Computation, 1: 270-280.

7. Thomason, M. and P. Marinos, 1974. Deterministic

acceptors of regular fuzzy languages. IEEE Trans.
Systems, Man and Cybernetics, 3: 228-230.

8. Christian, W.O., K.K. Thornber and C.L. Giles,
1998. Fuzzy finite-state automata can be
deterministically encoded into recurrent neural
networks. IEEE Trans. Fuzzy Systems, 6: 1.

9. Blanco, A., M. Delgado and M.C. Pegalajar, 2001.
Fuzzy automaton induction using neural network.
Intl. J. Approximate Reasoning, 27: 1-26.

10. S. Fahlman, “the cascade-correlation learning
architecture”, in advances in neural information
processing systems 2(D. Touretzky, ed.),(San
Mateo, CA), pp. 524-532, Morgan Kaufmann
Publishers, 1990.

11. Ash, T., 1989. Dynamic node creation in
back-propagation networks. Connection Sci., 1:
365-375.

12. Frean, M., 1990. The upstart algorithm: a method
for constructing and training feedforward neural
networks. Neural Computation, 2: 198.

13. Gallant, S.I., 1986. Three constructive algorithms
for network learning. Proc. 8th Ann. Conf.
Cognitive Science Society, pp: 652-660.

14. Hirose, Y., K. Yamashita and S. Hijiya, 1991.
Back-propagation algorithm which varies the
number if hidden units. Neural Networks, 4: 61-66.

