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Abstract: We use multi-type branching processes to describe a general cell population model allowing 
for cell death. Unlike the case without cell death, the process can be subcritical, critical or 
supercritical. Since we are interested in the supercritical case where the process can escape extinction 
with positive probability,  we give conditions ensuring the supercriticality. In this context, we show the 
existence of the Malthusian parameter and the stable birth-type distribution which we get analytically 
under additional assumptions. 
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INTRODUCTION 

 
 For understanding the dynamics of cell 
populations, and responding to the problems concerning 
this field of study, there is a need for mathematical 
models.  Many such models have been proposed in the 
literature. Most of these are deterministic and 
formulated in terms of partial differential equations. 
 A recent, extensive list of references, and a nice 
collection of articles on different kinds of cell 
population models can be found  in Arino[3] and Arino 
et al.[4] and reference therein. In fact, we can not pass 
over without pointing out the paper of Bell and 
Anderson[5] which gave rise to the so-called Bell-
Anderson model. For a recent account of the stochastic 
approach, we refer to [9] and [1]. Taib[9] described a 
stochastic version of Bell-Anderson model and 
discussed the existence of the stable type distribution. 
He assumed equal cell division and disregarded cell 
death. In Alexandersson[1], a quite general model was 
presented assuming unequal cell division. Moreover, 
the stable type distribution was given explicitly by 
adding an extra assumption of a critical size that each 
cell has to pass before division, called the non-
overlapping case. One of the features of these works is 
that cells are not allowed to die. Since cell loss due to 
cell death is known to play an important role in cell 
kinetics, we propose to augment Alexandersson's model 
by adding cell death. 
 The main object of interest is to prove the existence 
of the Malthusian parameter such that the process is 
supercritical. Furthermore, we show the existence of the 
stable type distribution which plays an important role in 
the asymptotic composition of our model.  

 
MATERIALS AND METHODS 

 
 Let ( )ℑ,S be a measurable space with ℑ  countably 
generated and ),( dtdsr ×ν a non-negative kernel on  
 
 
( )ℜ×ℑ× + ,RS , where ℜ is the Borel −σ algebra on 

+R .  

The basis *ν  of  ν  is defined by: 
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Definition1. 
The Perron root of *ν , denoted by )( *νρ , is defined 
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It is asked under which conditions there exists a number 
α such that 1)( * =ανρ . 
Such a number α is called the Malthusian parameter. 
The process is subcritical, critical or supercritical 
according to 0<α , 0=α or 0>α . 
 
Definition2. 
The kernel )( *

ανρ  is called conservative if there exists a 

−σ finite non-zero measure m  on ( )ℑ,S  such that 
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Once the population is Malthusian and supercritical, 
this meaning that there is a number 0>α such that   

1)( * =ανρ and *
αν is conservative, we will be able to 

give an abstract version of the Perron-Frobenius 
Theorem[8]. 
 
Theorem1. 

When *
αν  is conservative in the above sense, it follows 

that there exists a −σ finite measureπ on ( )ℑ,S  and a 

positive, finite(π -a.e.), ℑ -measurable function h such 
that 

ℑ∈=� AAdxAx
S
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and *
αν isπ -conservative.  

The measure and the function are unique up to 
multiplicative constants. 
 
In the sequel these two objects are assumed to be 
normalized according to  

1)()( and 1)( == ��
SS

dsshds ππ  

A simple but crucial criterion for conservativity is 
presented in[9]. 
 
Lemma1. 

A sufficient condition for *
αν to be conservative is the 

existence of a −σ finite non-zero measure αm on ( )ℑ,S  

such that  ℑ∈∈∀≥   ,  ),(  ),(* ASrAmAr ααν  
 

 MATHEMATICAL MODEL 
 
The reproduction kernel 
 
 In this section we describe a quite general cell 
population model based on[1]. Our population consists 
of cells, which inherit types at birth, grow according to 
a cell-size determined intensity and split into two 
daughter cells or die without leaving any progeny. Here 
the type is the birth size of the cell (e.g. mass, volume, 
DNA-content etc). The Ulam-Harris set of all 
conceivable cells is denoted by  

{ } { }n
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where { }0 is the zeroth generation consisting of the 
founder cell. The type space is an interval ( )MS ,0=  

on the real line. A cell with birth size Sr ∈  chooses a 
life careerω from ( )A,Ω  using ,.),(rP the life law of 
cells of type r . We construct the population space 
( )II AS ×ℑΩ× , , and as explained in[6], there exists a 
unique probability measure rP  on the entire population 
process, where Sr ∈  is the type of the ancestor. 
At birth a cell has an initial size r , grows to reach the 
size ),( trm at age t . The cell growth is taken to be 
deterministic according to the growth equation 

)(mg
dt
dm = where g  is continuous and strictly positive 

on ( )M2,0 . When division occurs at a certain size 
dependant rate , ),( Sssb ∈  the cell divides into the 
fractions γγ −1  and , where γ is a random variable in 
( )1,0  with density function  )),,(( prmf λγ ,  

21 ppp ≤≤  where )1,0(1 12 ∈−= pp  depends on the 
size at cell division. We will assume that γ  is 

symmetrically distributed around 2/1 and that γf is 

unimodal, i.e. [ ] ,2/1=γrE for all Sr ∈  and  
).1,(),( pmfpmf −= γγ  

The basic assumption is that, besides the non-negative 
splitting intensity ),(sb  there is a non-negative death 
intensity ).(sd  The time to division or to death are 
denoted by 1λ and 2λ  respectively, and 
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It follows that the probability that a cell with type r  
splits during an infinitesimally small interval is 
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)()( rTxT − is the time it takes for a cell to grow from 

size r at birth to size x .  
To see this we make a change of variable ),( trmy =  in 

dy
yg

rTxT
x

r

 
)(

)()( �=− 1
 we will get 
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 where u  is the time it 

takes for a cell to grow from size r  at birth to size x , 
thus )()( rTxT −  is precisely this time. 
The basic parameter of the process is the so-called the 
reproduction kernel ),( dtdsr ×µ  which gives the 
expected number of children with birth sizes in ds born 
to a cell of type r  in the age interval dt : 
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In the sequel we will be assumed that a cell has to 
divide or die before reaching size M2 . 
 
The stable type distribution. 
 
 In this section we will prove the existence of the 
stable type distribution. We will first start by giving an 
example to give an idea how this framework can be 
used: 
Example1. 
Assume that .)(  and  )( ,)( , gsgdsdbsbs ===∀  We 
can show easily that: 

 2),( * =Srµ  

α
µα ++

=
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The solution of the equation 1)( * =αµρ  is .db −=α  
To ensure the supercriticality, we need the condition 

.db >  
 
Let us turn to the general case. We give our main result. 
 
Theorem2. 
Under the assumptions stated on our reproduction 
kernel µ , the Malthusian parameter α exists and *

αµ  
is conservative. 
Proof. 
By the continuity of the Laplace transform and that of 

Perron roots as demonstrated in[1] and which we apply 
here,  we have +∞→)( *

αµρ  as   −∞→α and  

 0)( * →αµρ as . +∞→α . The mean value theorem 

implies that there exists an α such that 1)( * =αµρ . 
Hence the Malthusian parameter exists and it can take 
any value in R . 
Unlike the case without cell death, our model can be 
subcritical, critical or supercritical depending on the 
sign of α , and then on how b and d interact. Since we 
are interested in the supercritical case, we need to find a 
condition ensuring the supercriticality. For this, notice 
that in the case where )()( sdsb =  we have: 
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then 1)( * =µρ  and *µ must be critical. We thus see 
that the process is supercritical if for example  
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 Conservativity is all that is needed to guarantee the 
existence of a stable size distribution. In our case, using 
lemma1, it is enough to exhibit a candidate which can 
play the role of the measure cited above. It turns out 
that it is possible to take: 
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 The nonoverlapping case 
 
 This section is concerned with the explicit 
expression of the stable type distribution. Once we have 
established the existence of the Malthusian parameter 
α such that *

αµ is conservative, we know from 
Theorem1 that there exist a function h and a measure 
π . The problem is then to solve the following 
equations  

Srshdsrrh
S
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This can be done by using some suitable numerical 
methods. In some special cases, for example the case 
treated in Example1, the solutions can be obtained 
explicitly. However, in order to keep our model more 
general and without having to assume specific 
distributions and linear growth, we will add the 
assumption of a critical size to our cell model. We 
assume that there is a critical size 0m  such that a new 
born cell always has size less than 0m , and then it 
grows passed 0m  before it divides. The type space 
becomes ),0( 0mS = and the hazard rate function b is 
defined on )2,( 00 mm . 
The kernel becomes 
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By iterating  we get 
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Note that this iteration does not hold without the above 
assumption. 
We search α such that the Perron root is 1  for *

αµ . 
Since I  is a non-negative, non-increasing continuous 
function of α and 0)( →αI as +∞→α , we can 
choose α such that 1)( =αI . 
For 0≥λ  we have 
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This sum converges for 1<λ  and diverges for 1≥λ  
and then the Perron root is 1  and α is the Malthusian 
parameter.  
Let us turn to prove the conservativity of the kernel *

αµ . 
 
Theorem3. 
The kernel *

αµ  is conservative. 
Proof. We have 
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and this sum is infinite whenever  .0),(* >Arαµ  
Thus this kernel is conservative since for all Sr ∈  

0),(      0)( * >
> ArAm αα µ . 
We are now able to apply Theorem1. It follows that 
there exist a −σ finite measure π  and a non-negative 

..ea−π  finite function h such that 
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From the same theorem we also know that these 
equations determine h  and π  uniquely up to 
multiplicative constants, but we want h and π to satisfy 
the conditions 
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Solving these equations we get 
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To determine 1c and 2c  we use conditions stated in 
equation 1 and it is nor difficult to verify that 
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ASYMPTOTIC COMPOSITION 
 
  Once the existence of the Malthusian parameter is 
proved and the expression of the stable type distribution 
is given, we will be able to derive various other 
asymptotic distributions concerning cell populations 
using the framework of branching processes counted by 
random characteristics [7] with respect to some property. 
Examples of such distributions are the curve-α , the 
proportion of cells in a particular phases etc. For the 
illustration, we give the expression of the curve-α .  
 
The  curve-αααα  
  
 The curve-α  is the graph of the function )(tα  
describing the proportion of cells still undivided at age 
t  as a function of t . An alternative interpretation [7] is 
that )(tα  is the probability that the age at death or 
division of a sampled cell at random, called ego, is 
larger than t . Using an appropriate random 
characteristic with simple manipulations, that is  
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DISCUSSION 
 

  In this paper, we proposed a quite general model 
dealing with cell death. We showed the existence of the 
Malthusian parameter and gave an explicit expression 
of the stable type distribution. Once these objects were 
settled, one could study various asymptotic properties 
of the model. In addition, it will be a considerable gain 
if we find some experimental data to validate our model 
and calibrate the parameters. This is one of the options 
of future research. Another option is to deal with the 
stochastic growth. On the other hand, our goal was to 
propose a quite general model by adding cell death to 
cover a large class of cell populations. Nevertheless, 
some models which take quiescence into account are 
not covered by our model. This problem was treated in 
[2] in some special cases. 
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