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Abstract: Owojori and Imoru [1] introduced some iteration methods and investigated its
convergence for pseudocontractive and accretive operators in arbitrary Banach spaces. In this work,
strong convergence results are established for fixed points of a general type of quasicontractive
mappings in arbitrary real Banach spaces. Our results here represent some improvements on the earlier
results of Owojori and Imeru [1], Naimpally and Singh [2], Chidume [3, 4], Qihou [5], Ganguly and
Bandyopahyay [6], Chidume and Osilike [7], Rhoades [8] and Osilike [9] for quasicentractive

operators in Banach spaces.

Key words: Quasicontractive Mappings, Arbitrary Real Banach Spaces, Iteration Methods

INTRODUCTION

Let K be a nonempty subset of an arbitrary real Banach
space X and T a selfmapping of K. An operator

T: K — K is called quasi-confractive, in the general
sense, if the following inequality:

Te-Ty €8 x-yv +8[ x-Ty
+ y-Ty T+ssl x-Ty + v-Ty ] {1.1}
holds for all x,v € K, where s, s, 83 are real constants
in [0,1] satisfying s) + 28, + 283 =1.

Several authors including the authors, Rheades [8],
Chidume [3, 4], Osilike [9], Chidume and Osilike [7],
Quhou [5] among others, have investigated the fixed
peints of quasi-contractive mappings by the Mann and
[shikawa  iteration  methods  {including  their
modifications) and fixed point results have been
established.

Recently, Owojori and Imoru [1] introduced a more
acceptable three-step iteraticn methed which contains
the previcus iteration methods of Mann and Ishikawa as
special cases. It is defined for arbitrary x, € K — a
closed beunded convex subset of a Banach space B, by:

Xnt1 = apXp + b Tyn + cSxp

Vo= a,x, +b Sz, +c,v, Snxl (1.2)

m=ax, +b, Sz +ec,w,
where, S,T are nonlinear uniformly continuous self-

mappings of K satisfying some contractive definitions
and {vp}, {wy} are bounded sequences in K. Also

{aa), {a,}, {a,}, {b,}, (b}, b, }, {c, ). {e, b,

{c; }, are real sequences in [0,1] satisfying:

95

{ag+by+cp=a, +b, +c,=a,+b, +c, =1,

(ii) Xbp = oo
Two special cases of (1.2} are given respectively by:

Xni1 = apXn + b Tyn + cnTxy

ya=a,x, +b Tz +c v, o2l (1.3)
m=ax, +b Tx +c w,

and

Xpe1 = pXn + by T¥n + Cally

ya=a,x, +b Tz, +c,v, nzl (1.4)

m=a,x, +b Tx +c w,

where, the parameters satisfy the same conditions as for
(1.2}.

We observed that the iteration schemes given by (1.2),
(1.3 and (1.4 are all well defined and are
generalizations of the Mann and Ishikawa ftitration
schemes {(with or without errors). Alse, (1.3) is a slight
generalization of (1.4}, Our purpose in this manuscript
is to establish the convergence of the iteration methods
(1.4}, (1.3} and (1.2} to the fixed peints and commen
fixed points of the general quasi-contractive operator
given by (1.1}, in arbitrary real Banach space.

RESULTS

In the sequel, we shall require the following result due
to Weng [10].

Lemma 2.1: Let {p, } be a ncnnegative sequence of
real numbers satisfying:
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pn+1£(1"5 n) pn+ G (2]-)

where &, [0,1], 28, =, and & ,=0(8,). Then
limpn = 0.

n—soo

Theorem 2.2: Let X be an arbitrary real Banach space
and K a clesed, convex, bounded subset of X. Suppose
T is a uniformly continucus selfmapping of K satisfying
the quasi-contractive definition (1.1). Define sequence
{x,} iteratively for arbitrary x,€ K by:

Xn4l = apXp + bnTYH + Cpllp
w=a,x, +b,1z, +c,v,

m=a,x, +b Tx +c w,

where {u,}, {v,} and {w,} are arbitrary sequences in K

and {a), {a,}. {a,). {b). {b,}. {b,).
{b; },{cn},{c;z},{c; }, are real sequences in [0,1]
satisfving:
(i)  ap+by+cp=a, +b +c_
=a;+b;+c; =1,
ity Zby=oo
(i) ay:=by+Cpgni=b +c Tyi= b, +c,
-,
and k£ ——
aﬁ.ﬁﬂyﬂ
5, — 8
vy —2<1
1-s,

Then, the sequence {x,} converges strongly to a fixed
point of T.

Proof: Since T is uniformly continuous on the closed
beunded convex set K, then, by Deimling [11], F{T} is
nonempty. Let x* € B(T}. Then, from our hypothesis.

apXn+by Tyy+ cnun-x*

{1-0 X=X )+l (Tyarx ')
+Co{Un-Tyn)

<{1-t) xn-x* +0ly Tyn-x*
+Cn Up-Tyn)

e
Xn+1-X

(2.2)

Since T is quasi-confractive in the sense of (1.1}, then

Tyax <81 yux* +8 yo-Tya

+ x*F-x*t 48[ vpex* o+ xF-Ty, ]

Therefore,

(1-s3) Tyn—x* < (s1+83) yn—x*
+8 Vo-Tya
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Therefore,
5, —§
Tyn - x* < Yn-X*
1-5,
Sy
+ V- T {(2.3)
1—s,
=k vox* +k v,-Ty,
5, — 45 5
where, k;= ! 3<1.amdk2: 2«1
-3 — 54

Continuity of T implies that there exists a real number
M, < oo such that:

Up-Tvy, £M;, and v -Tyy, < M,

Also  ¢p= oy . Substituting into (2.3}, we have

XX (10} XpX + ok YaX*,
+ O+ 13M, {(2.4)
We also have the following estimates:
VoX = apXn +b,Tzy + c'n v, - X*
< (Buex®) + Bul Tzext o (- Tz (25)

IA

(1P} Xg X% +Pn Tzpx* + ¢, vy-Tzy
By similar estimates as above, we also have:

Tz, —=x* <k; z,—-x* +ky z,-Tz, (2.6}
Continuity of T implies that there exists a real number
M, <o such that.

< M;and z,—-Tz,

Tz, - va < M,

Therefore, substituting {2.6} into {2.5), we have:

< (l'ﬁn) Xn')c(c + Bnkl
+ Pk Mo+ B M,

Yax* Zy-X*

2.7
Substitute (2.7} into (2.4}, we obtain:

KanX (-0 X+ ogky(1-By) xp- X
= Buks Zrx* +HP ok Mo+ BaM[+om(ke+1)M,

= [l'an(l'kl(l'ﬁn))] Xn- X* +aank1 Z'n'K)g
+ OpBnky(ko+ 1M+t (Ko +1)M,

(2.8)

We also have the following estimates:

2 S[1- Tk xpx* +Tko+ DM (2.9)
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where, M; < o is areal number such that

Xp-Tx%, €M; and Tx,-w, <M,

Substitute (2.9) into (2.8} we obtain:

< [1-0n(1-k(1Bu)] XX
+ OBk [(1-Yu(1ky) %p-x
+1{ko+ 1M; J+ouBok(ko+13M;
+on(ko+ 1M,
= {[1-on{1-ky{1- Pu})]
+0 k{1~ Yp(1 ki) %X
+ OBV iky(ko+13Ms + o Viko(ko+13M;
+ Ok + 1M,
= {1-0p+0in-Ki- 0Bk + onPnky

- u'nﬁnlen(l'kl)} Xn'X*
+0p{ko+ T Ba Y ko + Pk +11M,
={1-Op ks~ OwPukiYa(1ki)} XpX
+0{lp+ 1P X iy + Buley+11M,
= [1-0( 1k L+Ba Y1k}l XX

%
Xn+1-X

(2.8)

+0n(Ko+ DI BaY K1+ Bk +11My (2.10)
Let t = om(1-ka{(1+PaY 1ky),
Gp = u'n(kz"'l)[ﬁnTnkl"'Bnkl"'1]1\/[4
And  py = Xp-X. . Then (2.10) reduces to

pn+1 = (]-'tn)pn + Gn
From cur hypothesis, we observe that £,20 and k;<1
implies that:

tn = On(1-k){ 1+ k) <1,

Thus ¢ £ t,< 1. Observe further that >f, = =, since
>0 =00 and o, = ofty). Hence, by Lemma 2.1, p, —
0 as n— e ie,{Xx, } converges strongly to x*.
This completes the

Remark: Theorem 2.2 extends the results of
Naimpally and Singh [2], Chidume [3, 4], Chidume and
Osilike [7] Rhoades [8] and Osilike [9] to the
generalized Ishikawa type iteration procedure and also
to the more general quasi-contractive definition.

We now extend Theorem 2.2 above to the slightly more
general iteration method (1.3} above in the following:

Theorem 2.3: Let B, K, T be as in Theorem 2.3 above
and satisfying confractive definition {1.1). Define a
sequence {X,} iteratively for arbitrary x; € Kby :

Xnt1 = 8nXp + bp Ty + e Txp
¥n= a;;xn +b;zTZn + C;zvn

Ww=a,x, +b. Tx +c,w,
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where {v,}, {wn} are bounded sequences in K and {a,},

{a,}, {a, }, {ba},  {b,], {b, ),

"

{b; },{cn},{c'n},{cn }, are real sequences in [0, 1]
satisfying the fellowing conditions:

i) au+by+cy=a,  +b,_+c _=a, +b +c =1,

(i) b= [jmb, =limb.= limb,=0

n—peo Ao L=

(iii)%:zbn+cn’ﬁn:=bn+cn,rn:= b; +c,

5, — 5
1 3<1

{iv) 1=s,

Then { x,} converges strongly to the fixed point of T

Proof: Letp be afixed point of T. Then

AnXn + by Ty + o Txp - p
{(1-0){ Xy -p)+0n(Tyy-p)
+Cn{ TXp-T v}

L1-0y) Xep 40 Tyap
+on Txp-Tvy

Xn+1-P

(211

Since T satisfies the condition {1.1} above, we have:

Tyep (ki vor k voTw {(2.12)
where, ki, k; are the same as in Theorem 2.2 and by
continuity of T, there exists Mg< o

such that vy-Tyy, £ Mg and Ty,-Txy
Substituting into (2.12}, vields

<

M.

X P S (1-0p)(Xpp  +0nlky
+HeMeg 4+ oMe
={1-0y Ko p +opk;
+0(k2+13M;g

Yo P

Yo P
{(2.13)
We also have
¥n-P = apg¥, + b Tz, + C;I u, -p
< {1-Puxup)+ PulTzo-p)
+o, {uy Tz
(1B Xpp +PBn Tzpp
+o, Uy-Tz

(2.14)

Quasi-contractive condition on T implies that:

Tzrp =k zrp +k 7Tz (2.15)

Continuity of T implies that there exists a real number
M such that:
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u,-Tz, <M;and z,-Tz, <M,

Substituting (2.15} into (2.14), we obtain:

Yn'P < (l'ﬁn) Xn'p
+Puki zop + Prdko+1)M;
We also have:

Inp 17 X p % Txep + c; V- L Xy
and

(2.16)

Txpp £k Xp-p +ks %-Txy
Furthermore, continuity of T on the and bounded set K
implies that there exists Mg < oo
such that v,-Tx, €M; and x,-Tx, <M;. So that

In-p S(I'Yn) Xn-P +

'Ynkl Xn P +'Yn(k2+1)M8 {2.17}
Substitute (2.17) into (2.16}, we obtain:
Vob £ (1P Xpp +
ﬁnkl[l"Yn(l'kl) Xn‘p
+ Prkifalko+ 1)M; + Bulko+13M7 (2.18)
[1-Buf1-ky(1-To(1-k)})]
+Pnlko+ Dk Y Mg+ My)
Substituting {2.18} into (2.13) vields:
P € (1-0h) Xpp
+ Ok [1-Pu(1-ky(1-Yo( 1-k) D] xp-p
+ OLnkl Bn(k2+1)(kl 'YnMg + M']}
+ o (ks +1)Mg (2.19)
=[1-0t, +0k -0, Bk
+ OpPuk(1-Tn(1k D] Xop
+ op(ko+ 1Pl ok +P,+11M,
where, My = max[Ms, M;, Mg].
Since kl2 <k;, we have o,f3, 1‘:12 < 0Bk
Let o, = o,(k+ 1P, Tk, + By + 11M,.  Then (2.19)
reduces to
Xpap = [1-op+ogk -
OpPnlnki(1-k1}] Xpp +Cn
= [1- on(1-ka{1- BuYu(1-ki)}] (2.20)
Xp +0y,
Put

= O 1-ky{1- By Tu(1-kyy and  pp=  Xgp -

Then (2.20) becomes

Pn+ = (]-'tn)pn + On

Clearly, 0<t,<1 and XX, =o. Also g,=o0(,).

Hence, by Lemma 2.1, p, = 0 as n—eo. This implies

that {x,} converges strongly to p. The proof is
complete.
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Remark: Theorem 2.3 is an improvement on Theorem
2.2. Hence, it also generalizes the results of Chidume
[4], Chidume and Osilike [7], Rhoades [8] and
Osilike [9].

We now consider the general iteration method (1.2}
above and establish its convergence to the fixed point
of operator satisfying {1.1) in the following,.

Theorem 2.4: Let K be a nonempty closed bounded
convex subset of a Banach space B. Suppose T and S
are uniformly continucus selfmappings of K and T
satisfies the quasi-contractive definition (1.1). Define
sequence iteratively for arbitrary by:

Xp+1 = ApXg + bnTYn +0aS%,
o =a,x, +b,5z, +c,v,

m =ax, +bTx, +c,w,

where,{vp},{ Wy} are arbitrary sequences in K and {a,},
fa ). da,h fwl {b ) by,
{b:i },{cn},{c'n},{c:1 }, are real sequences in [0,1]
satisfving

(i) ag+by+cy=a, +b, +c, =a,+b, +c, =1,

(i) Thy=o. ljm&, =limb.= limb.=0

FI—>0a FI—o0 fl—»e0

(i} Op =Dy +cofni=a, +b, +c, Yai= b, +c, +

5, — 8 1
1 3o o

(iv) k; = 5

_S3

Then the sequence { x,} converges stroengly (o a fixed
point of T

Proof: Letp be afixed peint of T. Then

apXn+bn Tynt+ cnSxyp
(1-00) (X p)+ 0y (Tynp)
Co{ SXp-T'yn)

{(1-ttn) Xgp +0y Tysp
Cn Sxp-Tyn)

{(1-ttn) Xgp +0y Tysp
+ & S5pp Tynp) |

= (1-00) XD +200 Typp
+ O Sxp-Tvy}

Xni1 -P

(2.21)

A+ A+ 1l

Now, by quasi-contractive property of T, we have:
Tvep <ki vaop +ks vo-lva

By centinuity of T and S on K, there exists a real
number M; < oo such that  y-Ty, £M; and Sxp-
P =M Substitute into (2.21), we have:
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<{l-oy) Xpp +20u(k; vup
+ kM) + oM,y
<{l-oy) Xp 20K v D
+ O (1+2k M,

Xp+1-P

(2.22)

From ocur hypothesis and applying similar procedure

as above, we have:

Vo-P =(1-Bn) Xop +Ba Szpp
+Bu Szp-wa (2.23)

since c'n <B,. Continuvity of S on K implies that there

exists a real number M, <ee such that:  Sz,p <M,

and  Szpv, < M, Substituting into (2.23), we
have:
Yn'P = (1' Bn) Xn'p + 2 Bn M2 (224)
substituting (2.24) and (2.22) vields
Xpe1-p {10} xpp +20k{l-ny xpp
+ 4 o B kM + oy (1+2k;)M;
< [1-on(1-2ky(1-By 1] Xa-p (2.25)
+o{ Bk, +2k,+ 1M

where, M = max{M;,M,}. Now, put

= Oy(1-2Ky(1- ), and  op = owl(P ki+2k; +13M

andlet pp= X,-p , then {2.25) becomes

Pn+1 = (]-' tn) + Gp

Clearly t, € [0,1] since k; < 1
2

Also, sigma, = ofty). Therefore, by Lemma 2.1, py

— 0, as n—oo. This implies that {x,} converges

strongly to p — the fixed point of T. The proof is

complete.

and on, Py e [0,1].

Remark: Theorem 2.4 generalizes both Theorem 2.2
and Theorem 2.3 above, hence it is a generalization of
the results of Rhoades [8], Chidume [3, 4], Chidume
and Osilike [7] and Osilike [9].

Theorem 2.5: Let K be a nonempty closed bounded
convex subset of an arbifrary real Banach space B.
Suppose S and T are uniformly ceonfinuous quasi-
contractive selfmappings of K satisfying (1.1). Define
sequence {x,)iteratively by (1.2} above, where, {a,},

{a,},  {a, % dwh o ib,) (b, ),
{b;1 },{cn},{c;z},{c:i }, are real sequences in [0,1]
satisfying the following conditions:

(i} an+bn+cn:a;,;E +b'n+c'n:a;+b‘;l+c;_1,
(i) Tha==1imb, =1im®.= limb.=0

o0 o0 —ro0
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(i) ag ;= by +Cpn=b +c_Ty:= b, +c,

) k< 1-a,
iwv) kg€ ——
a,B,7,
(v) kl:Sl_S%l
1-3s,

Suppose S, T have a commen fixed point in K. Then
{Xq} converges strongly (e the commen fixed point of S
and T.

Proof: Let p be the common fixed point of S and T.
Then

= apXptbp Tynt cnSxpp
{1-0tn )} xp-p i+t {Tynp)
+Cu{Sxn-Tvn)

<(1-0p) Xpp +0 Tyep
+¢y Sxp-Tyn)

<(1-0p) Xpp +0 Tyep
+ ¢l Sxpp Tywpr |
<(1-op) Xpp +204 Tyep
+ O SXyp)

Xni1 -P

(2.26)

By quasi-contractive property of T, S, we have:
Tynp ki yop +ko yo-Tyn

and
Sxpp <k xp +ks xp-Sxy

By continuity of S and T on the bounded set K, there
exists a real number M1 < oo such that  yp-Ty, <M,
and  x,-Sx, = M; . Substituting into (2.26), we have:

S(l-0n) Xpp

+20pk; va-p +20pko My
+ Ok Xpp 4 opkoM)
=(1- o 1-k1})  Xpp
+20 k; vep
+30Lnk2M1

Xn+1-P

(2.27)

Frem our hypothesis,
o-P £ {1-B) Xop +Pa Szp + ¢y Szewa

Since S satisfies (1.1}, we have:
Szarp £ ki zop tk 7Sz

Therefore,
Vop =(I-Pn) Xpp +PBKy Zp
+ BnkQ Zn'SZn + ﬁn SZn'Vn

Continuity of S,T on K implies that there exists a real
number M2<eo< such that z,-Sz, <M, and Sz,-
vy, < M,. Therefore:
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Y P = (]-' Bn) p + ﬁnkl Zy-p
+ ( Palkot DM, (2.28)
We also have the following estimates.
I p = (1' ’Yn) 2P +hh Txn'p
+ ¢y Txp-wy
< (1) %D+l XD (2.29)
+ky x T, T+7 Txpwy
=[1- v (1-kp)] %pp + Yo (ot 1HM;
where, Ms<e is a real number such that:
Xp-Tx%, £ M; and Txp-w, <M;s9.
Substitute (2.29) into (2.28), we obtain:
Y P = (]-' Bn) X0 P
+ ﬁnkll:[l' ’Yn (1'k1)] X p
TukoMs + ¢ Msl+ Brlko+13M,
=[1- Bu(1-Iy(1- v(1-kpN]  Xup
+ Bt kikoMs (2.30)
+ B Yo KiMs+ Bk +13M;

Now, let M = max[M;, M;, M;] and then substitute
(2.30)into (2.27). We have

S{l-oh(1-k1)y xpp +

205k, [1- Br(l-k1(1- m(l-k1))]
5P 20 Bkl kike+

Yo ki ko +1IM+3 0, kM

=[1-0{1k1) +

200k (1- Pol1dky{1- v, (1-KDD] - X4p

+2ay, Bk v, kikst 1o Kitlo+1IM+30, kM

Xn+1-P

(2.31)

Let

G, = +20, Pkl vkik+ 1ok +ko+1IMA+300 kM
and
ty = og{1-ky)-2ogk (1- Bo(1-ky(1- v(1-k1})))
= O [(1-Ky 2K {1- Bof 1-ky(1- v (1-K1)]
= 0 [(1-3ky -2k (1- B 1k (1- (1-k1))))]
=0

Since, k; < l
3

Observe that k< l implies that kj ¢ L and using the
3 2

fact that 1-k; < 1, we have:
ty < Ol 1-2K (1~ B 1Ky (1- Yl 1-k 3 )}

Clearly,
L Bu(1-ky(1-f 1k))p < 1

Therefore,

2ky(1- Bu{1-ky (1- i 1k < 1

Hence
b = 0l 1-2ky{(1- Bl 1-ky(1- yu(1-ka ] < 1
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Thus 0 <t, < 1. Observe that since >0, = =, then
2t == Alse, 6, =0t}

Put p,= x,p . Then (2.31)reduces to

pn+1 = (1' n) pn + Gy

Hence, by Lemma 2.1, p, — 0, as n — oo, This implies
that {x,} converges strongly to the commen fixed point
of S and T. The proof is complete.

Remark: Theorem 2.5 is an improvement on the result
of Owojori and Imoru [11] which itself is an extension
of the previous results of Rhoades [8], Qihou [5] and
Osilike [9] to the generalized Ishikawa type iteration
method and to the commeon fixed point of the operators
invelved.

We now consider the situation when the two nonlinear
operators in the iteration scheme satisfy different
contractive definiticns. In particular, we investigate the
commen fixed point of § and T when T is a uniformly
continucus quasi-centractive operator in the sense of
(1.1 and S is a k-contractive operator, where k e (0,1}
, in an arbitrary real Banach space. Our result is the
following.

Theorem 2.6: Let T, K, B and {x,} be as defined in
Theorem 2.5 above. Suppose S: K— K is k —
contractive, k € (0,1} and the condition {iv} on
the parameters in Theorem 2.5, is replaced with
ki< 1 (1-k) and all other conditions in Theorem 2.5 are
2

satisfied. Suppose S, T have a commen fixed point in
K. Then, {x,} converges strongly to the commeon fixed
point of S and T, if it exists.

Proof: Let p be the common fixed point of S and T.
By similar procedure as in the proof of Theorem 2.5,
we have the following estimates:

XonPp S(1-0) Xpp + 0 Typ
+¢y Typ-Szy
S(1'0"'11) X P +05nk1 Yo P
+0(nk2 yn'TYn
+ap Tvgp +0, Sxpp {(2.32)
1-0n) Xep +20mky Yop
+ 205k vo-Tvy
+ogk  xp-p
= (l-op(1-k))  Xp-p + 204k yp-p
+ 205k vp-Tvy
We also have the following estimates:
¥oP S(1-Pn} Xop  +PBn Szap
+c, Szpvy (2.33)

< (1' ﬁn) X0 P + ﬁnk Zyp
+ Pn Szp-vy

{since S is k-contractive)
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By similar method as above, we have:

Inp 1V %P +% Txap c; Tx,-wn
S %P +Kith XoP

+kom xoTxn ¢, TxpWa (2.34)

B

Hl%m (k) X%p +kt
+ % Txp-wy

Xo-TXp

Substitute (2.34) into (2.33) and observe that the
continuity of ST on bounded set K implies that there
exists a positive real number Ni< oo such that:

Xp-T%, <Ny,

Txp-wn €Njand Sxp-vn €Ny

we have:
X P =P Xep  +Pull{l-fa{l-ki)) Xpp
+ [ﬁnka’Yn + Bnk h + ﬁn]Nl
S[1-Pn + Pukil-1 (T-k D] XD
+ [Buvn kikot+1) + ol Ny

(2.35)

Substitute {2.35) into {2.32) and cbserve that continuity
of T on K implies that there exists a positive real
number Nj;<eo suchthat yn-Ty, =< N,, we have:

Xp P = [1-op(1-k)]+200k [1-B,
ek (1-va{1-ki )]} Xop
+ [200K; By ko +1)+Py
+ Z%klﬁn]N1+2(Xnk2N2
= [1-on(1-k)
+ 200k (1-Pof 1-k(1-v, (l'kl))))] Xn P
+ [200k: fovn kko+1)
+ But20mk; Bl N1+20pkoNo

(2.36)

Let

Gy = [206k0 B k(ko+ DB+ 200k, By N1+ 2060k, N,
and

tn = On[(1-k(-2Kk;(1- Bn(1-k(1-y (1-Ki})))]
Also,let pp= Xpp  then (2.36) reduces to

pn+1 < (]-'tn) pn + Gp

Now, 0 <k <1 implies that 0 <1 —k < 1. Therefore,

tn < Ol 1-2ky (1B 1-k( 1y (1-ka))3]

Observe that, (1-py(1-k{l-y, {(I-ky £ 1 and from

hypothesis k; < l (1-k} implies that k; ¢ l
2 2

Thus, 2k (1B 1-k(1-3, (1)) < 1

and

1-2k, (1P 1-k( Ly, (1-kphy =11

But o, <1, therefore,

ty < O [1-2K(1-Brf 1k 1, (1-ky )y < 1

We can also write
ty = opl{1-k) -2k (1- Bo(1-k( 1y, (1-kpn)]
= O[(1-k -2Ky) +2K; 3, (1-K)+2KK, By, (1-Ky)]

Sothatt, =20, Thus 0 =t, <1, foralln — . . Itis
also clear that >t =« and o, =o{t).

Therefore, by Lemma 2.1, p, p— 0 asn — s . This
implies that {x,} converges strongly to p- the common
fixed point of S and T. This completes the proof.

Remark: a generalized Mann type iteration method is
defined for arbitrary x; in K by

Xps1 = ApXp + b TXp + CnSXn

where, S,T are nonlinear self-mappings of nonempty
compact convex subset of an arbitrary Banach space
Band {ap}, {bn}, {cn} are real sequences in [C,1]
satisfying

() ap+bp+cy=1, (i} by = oo,

We now investigate the commoen fixed peints of § and
T for the generalized Mann type iteration methed. Our
result is the following.

Theorem 2.7: Let S, T, K, X be as in Theorem 2.5.
Define sequence {x,} for arbitrary x;in K by
Xpel = ApXy + b Tx, + CSX,

where, {ap} , {bn}, {cn} are sequences in [G,1]
satisfying

i) a+bi+cen=1,

{ii} Xby =0,

(i) 0y ;= by +cp = 1
S, — 8

vy (i) ky= L2 1
I-5, 3

Suppose S, T have a commeon fixed point in K. Then
the sequence {x,} converges strongly to the common
fixed point of T and 5.

Proof: Let p be a commen fixed point of S and T.
Then, from the hypothesis, we have:

Xna1P = {(2gXy + by Ty + CnSXn'p
= (l-on) Xap
+op Txpp 4oy Sxp-Txy

< (1' an) %P +0ty, Txn'p

+o, Sxp-TXp

S(l-on) Xpp +on TXpp

+ 0l Sxpp + Txpp | (2.37)
S(l-0n) Xep +20, Txep

+ 0y Sxpp

<{(1-tp) Xpp +20n Txpp

+ 2ok x,-Tx, +ouky Xp

+ Oks  Xp-SXq

=[1- ouf1-3ky)]  Xu-p  + 30koNs

are the constants in the
definition (1.1}, with

where, s;, s; and s
general  quasi-contractive
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ky =
’ 1-s,

is a real number such

<1 and N3y < o0

that
Xp-TXy N3 and  x,-Sx, =< N;
(by uniform continuity of S and T on the bounded

set K).

Now, let €= o4{1-3k;). Then from hypothesis,
O<ty<1 and Xt, = co. Let o, = 30,k;N3 Then
O = 0{t).

Put pp= x%,-p . Then (2.14} becomes

Pni1 = (l'tn)pn + Gy
Therefore, by Lemma 2.1, limp. =0- This implies that

{Xnp}converges strongly to p.
The proof is complete.

Remark: Theorem 2.7 is an extension of the results of
Ganguly and Bandyopadhyay [6], Rhoades [8] to the
general quasi-contractive definition (1.1} and to the
common fixed point of the two operators involved in
the generalized Mann type iteration procedure.
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