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Abstract: In this study we showed the existence of weak solutions of equations that represent flows of
a non-homogeneous viscous incompressible fluids in a non cylindrical domain in R®. The classical
Navier-stokes equation is a particular case of the equations here considered.
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INTRODUCTION

Let T > 0 be a real number and { }y , ra family of
bounded open subsets of R" with boundary ¢ = .
Let us consider the non cylindrical domain

G- | @xth whose lateral boundary ¢_ U (T,x{t) 18

Q=t=T 0<i<T

assumed to be regular. Consider the flows of viscous,
incompressible and nonhomogenecus fluids in Q. The

non homogeneity of the fluids means that the density is

a non constant function x.0.x.t) € ( ( x{t}.
These flows are governed by the following system of
Navier-stokes types equations.

9 towr S0 pu)—Au —pf _vpitl Q (1)
c}t(pu}+§axj (upu)—pAu=pf -Vp

divu==0in § 2)
op oA

L +{u.V)p=0in Q 3
ot

u=0on & 4

wx,0) =u(xjin o {5)
X0 = ox)in o (6)

where, u(x,t) = {n(x,1), ..., u{x.0)} is the velocity, u=

( up, ..., un)s

Vu = {(Vu,,...., Vuy, 0V} = udp (with the

ox

1

summation convention}, U is a positive constants, p(x,t)
is the pressure and it is a real valued function, (x, t}
density of the fluid at peoint (x,t} € { (x {t}) and f =
1(x,t} is the external force vector field. In this study we
will consider weak sclutions of the system(1-6) on
certain non cylindrical demains under standard

78

hypothesis on f and u, in the dimensions n=3, we alsc
assume that

0<

ofX) <

N

To define these domains les us consider K{t} a matrix
valued function

01 R”
t = K@),
and < R" a bounded domain with smooth boundary

and containing the origin. Let us define the family of
sets

={x=Kityy,ve }

and the respective non cylindrical
domains Q= | ] (9x{t}). Global existence results for

such nonhomogeneous, incompressible Navier-stokes
equation were first obtained by Kazhikov [1], Kazhikov
and Smagulev [2], Antonzev and Kajikov [3],
Antonzev, ef al. [4] and Lions [5, 6] — in the case 0 <
ofx) < ,thatis  has a lower bound positive
and in context of cylindrical domains. These results
were extended by various authors and in particular by
Simon [7-9] allowing 4 to vanish. We also observe that
Kim [10] has studied problem (1-6} for cylindrical
domains under moere regularity assumptions on the data
{ug, I}, thus obtaining considerably moere regular
sclutions. In the bi-dimensional case and still for
cylindrical demains the existence and uniqueness of
classical solutions, assuming sufficiently regular initial
data, were obtained by Ladyshenkaya [11]. The first
result for the system (1-6) in non cylindrical demains
were obtained by Limaco [12]. Here we are considering
the same equations as described by Limacc [12],
however, in more general non cylindrical domains. By a
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suitable change of variable, we ftransform the non
cylindrical problem {1-6} into a problem defined in the
cylinder @ = x (0, T). In Q we follow the ideas of
Lions [5, 6].

NOTATION AND MAIN RESULTS

To show cur main result we assume the following
hypothesis in K(t}.

(H13 K(t) = k(ty M, where k: [0,T] IR ke CY[0,TT,
k(t) > 0 and M is an invertible n by n matrix whose
entries are real constants.

Consider the notation

Kt = ( () and K (1) = ( 0.

By C we represent several pesitive constants. [n order
to transform the nen cylindrical preblem (1-6) inte a
new problem in the cylindrical domain Q, we introduce
the functions

u(x,6 = v(K Ox,0, fix,ty = g(K {ox,0
p(x,0) = (K (ox,t, x0= (K'0x0
Ue(x) = v K HOX), o= oK HO)x).

We have the following identity

2= h4¥p V= w¥e and ByI Blr r’
dy
1 Blr I'JYJ
Since _y; - 5, we obtain
5]
ou, ov,
= D =Py =0 ®)
o dy,
Also
a 2
Pe——=—(y, 1)
T gy, 3Y
Consequently
3y
Aui(x’t) ﬁ]kﬁrk & 81 (y t)
We have also
®_%g
ox, ByJ
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o _do dpg
ot at oy, b
and

dpu) _dgv)
ot ot

a(pv)
9y,

(v, 0+ ﬁ]IaIkYk

Remark 1: [f we have o{x) = ;= constant say =1,

then =1 satisfies (3,4 and 6) and the problem reduces
to the classical Navier-stokes situations in the
cylindrical domain.
Remark 2: since div u = 0, (3) in equivalent to dp +
ot

div( uy=0.
Then, from {1-6} it follows that
3gu) 9 { avJ 3 (pv)
— | a () —— [+ eviP, + ﬁ

dt ay,| " dy, ) oy, ’ 2

t

—on_| 54 oS4, | inQ 9}
diviM ¥ =0 in Q (10}
oQ  d(pv, o =01

aT (8(; }E’ aLPB_]I e Y =0inQ ()
v=0onX (123
v{y,0) = voly} on (13}

{(y,0)= ofy)on (14}

ik k and v'is the transposed of the row
viyand Q= x(0,T), x (0, T).

Here a; =
vector v = {vy,...,

Remarks 3: [t follows of {8) that

du, v, i fixed
i ,t. = . i ,t 5 -
o (x,0) gﬁj,—ay (v,

]

Therefore, div u(xt) = J1_(y,t}
i
=K(OM. ThenK 'ty=_1 M ",
k(t)

On the other hand K{t)
Therefore

ij :%ﬂu where, M 1= { i) Thus,

divu(x,ty= _1 diviM ' vi{y,t)
k(t)
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and by (2}, (10} follows.

Remark 4: Let A(t} be the operator

A{t)v__i}yi[aﬁ{t)

v

il (15)
9,

} ve (Hy ()"

We showed in the Lemma 1 that A(t) is vniformly
elliptic in [0, T].
To state the main result we introduce some space. Let

; be the space

c={ (D »hdiv

0}

and V{ .} be the closure of , in the space (H%( 3"
where, s is a nonnegative real number. We use the
particular notaticn

Vil ¢=V( dand Vo{ g =H( o

The inner product of this spaces are denoted,
respectively by {u,z}u¢ o and ({u,z)}v o Then for u =
(uy,-..uy} and z = z{z;.....7,) we have

(u’Z)H(Qtj = jﬂc 0 (x)z; (x)dx»

gu, . dz,
ox (x) ox

i i

(@, 20wy =, (x)dx.

Note that Vs{ ) is
(H.(©, ) "for s 2 n/2 and

continuously embedded in

V{ o={ue{H)(Q,)";diva=0).

For these results by Licns [13]. In similar way we
introduce the space Vs( ). In this case has the form

={oe (D{ N diviM oY) =0},

We consider the particular notations Vi{ } =V, Vo{ }
=H and {v,wig = {v,w}, {{u,v})v = {{v,w}}, Ivlg = Ivl and
[vlly = livll.

The spaces L0, T, ¥V{ ) are defined in Appendix.
Following the ideas of Lions [5,6], we define the notion
of weak solutions {for n=3) of problem (1-6) and
(9-14).

Non cylindrical Case: Find u(x,t) and (x,t) such that
we L0, T,V( 3 LA0,TH( ) <L"(Q)

o,
ox ;

a 3
,J'qu% dxdt fuJ.QVth];dx -3 J.Qujpul

i1

dx dt = (16}

= jprq)dxdt + jﬂopﬂuﬂq)(mdx
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g . g _ 17
fjﬁpgdxdtfg’[ﬁpuia—}(idxdtfjgnpuﬁ([}}dx a7n

for all o, Ee [CY (_2 J° with compact support contained
in Q U{ ;x{0}} and dive = 0.

Cylindrical Case: Find and
e X0, T.V) L0, T,H),

such that
e L™ x{(0,Ty

oy v oy oy
_ J'Q(pvgdydt+uIQaIl(t)a—yja—yldydtJerﬁjivjtpv—dydtJr

oy, (18}

| By | powdydt=[ oy vioidy

I e =
9y,

for all IS [CI(S_ZX [G,T])]3 with compact support
containedin X (0,T) and div{iM ! “=0.

99,9@V)g 99 4 =0 inQ (19)
ot gy, oy,
(0y= ofx)in (20)

Next we shall state the main results of this study.
LetQand i be asin the section and n = 3. We have

Theorem 1: Assume that hypothesis {H1} is satisfied
and that ° satisfies (7).

Iffe L%0, T,H{ ), “e L?( o) anduge H( o), then
there exists a weak solution of the problem {1-6}.

The theorem 1 is consequence of the following two
results:

Theorem 2: If ge L0, T,H), voe Hand e L7( )
then there exists a weak solution of the preblem {9-14).

Theorem 3: Problems (1-6) and {9-14) are equivalent.

Remark 5: Uniqueness is an open question. It is still
open in the particular case ofx) = o with a constant
and in context of cylindrical or noncylindrical domain.

PROOF OF RESULTS

Proof of Theorem 2: We use Semi-Galerkin method.
We consider as approximation of {9-14) which is of the
Galerkin’s type in v and where in {11) we replace v by
its approximation (hence the ferminclogy of Semi-
Galerkin). For this, we may consider a family of
internal appreximation V, < V such that V,, is a
subspace of V dimension m,

Vv e V, there exist a sequence vy, € V such that vy,
vin Vasm
We also may

[e

assume that all compoenents of
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functions v € V,, belong to Cl(.f_l ). Because this, we
can consider a basis (Wi) of V such that w' e (Cl( Q ))3.
Note that the embedding CI(Q) V < V is dense,

confinuous and Cl(g_!) V is separable. Then there
exists {w').

—_— 1 m . 1
Let Vm - [W B oaop W]n]svm _ Zgim (t)wi Wlth Vm € C
([0,Tl, Vi and

me CHI0,Tw], CL(Q )} satisfying

) k} 3 OW J {i kJ 1)
[atwmvmxw [ ,1(> oy [Py BB [
{a(“’f;"m) B0, W J: (©, g, %5, k=1,..m
o{® v
E};ptm ALY B+ aacpm Boty, =0 (22)
dy, Y

Vil0Y=vom  Voin V (23)
VO = oly)  ofy) inL¥ ), (24)

where, | <q <4, < p<

Local Existence of vy, and : Assuming uy (o be
known, we can express the solution {t,y} of (22}, (24)
as follows:

III(LY) = Om(xm(O,LY ))

where,
X, (8,4, y) = (X, (8.6, ¥}, x5, (8.1, y), X, (8,t,y))is the
solution of

dx! p
“EB0,) = By Vo, (5 (B, 918) B K (B )

dxg‘ ’
C]Sm 8,6, y)=p, Vi, (X (8,1, y),8) + 00 Xl:n 8,1,y

(:1.){.’3 ’
G =BV xa (B L1).8) By x5 (8,6, y)
Xn(tLy) = .

We multiply (22) by v,,w* and we integrate over  and

we add the result to (21), we cobtain

a’Vm s k
a_yjﬁjloclsyg wodx + (25)

81

Since vp{t) = xthen (25) has a form

i{grm (Ow

{26)

Qrk{(pm) +Pr(glm’ ’gmm) 0

where, Qud m) = jg(pm{y,t)wrwkdy, wf¥.0 = om
En(0Gy)and 0 < < gy, <

We have that fp w' are linearly independent. Indeed, if
ili fow —¢ then iliwi —q and hence 2; = 0,1 =
=t =]

1,..., m. Thus Qu w) = ( oW, Jo Wk]is nen
singular. Then (26} is equivalent to

d _
%z—Qrﬁ(cpm)Pf(Qm’-“’gmm)'

27)
Where, P, Qr_k1 are differentiable centinucus. Then the

system of nonlinear differential equation {27} has a
local solution, i.e., vy, and |, are solutions of (21-24).
The standard a pricri estimates, which follow prove the
global existence of the selution vy, . The extention of
the solutien to the whele interval [0,T] is consequence
of the estimates which follows.

Estimate I: If we take w* = 2vp in {(21) and if we
multiply (22} by—Iv, I,

usual the norm in R, n = 3}, we obtain after adding up
9Py ¥ Oy
1a N? ‘i"j*”

a APV, ) 2
2[a_y1(vmlq)mvm)ﬁﬁ=vm}7[ ayj - ﬁp"vm ‘Rn]7
J

[ g;m) B, ool Vi e ]+2[

7

{wherel| . |;n denote the

2

- vy,
i
3

i

+

{28)

(@n¥n) g
ay

7

50 Vi mJ 2(9,.0,v,)-

Direct calculation shows that:

Py, 2 : 29)
,Vm] (B_ j —.[ @ 1V, [ dy

0
P, ¥y, ) Via
= ﬁ,.lm;n]ﬁ{v o g m}_
v, Qn}—
.|

NPV )
[ ayJ ﬁjn Iv m ;n]*’[v (Pmﬁ_u

0
].na—yj(Vm}Pm 1v,, F3pdy :j‘n(vmi[iﬁcpm lv,, Fyn,dy =0

2[B(tpmvm}
at

(‘Pm o,

(30)
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by Gauss Theorem and by virtue of div vy = 0 (we

denoteof ={ ..., y)the unit outward normal vector
to ). Also,
a(P ’ 2 a((P Vi)
L=—] B, ¥.lv, L. |+2 mmﬁay =
1 [ayj 1MEX K R ] [ Byj ISk

%0 30 (31)
& S
; d d ;
[(Pmﬁjlalkyk’ g‘ Vi |:.. ] = [W (P, vy, |:.. ), ﬁ]la‘lkyk} =
j i
7_[3 9, v, P Pty By dy :7J‘gtpm Iv,, PPy o, dy

’ 2 ’ 2
Batty e vy, anJ+2[ Bt ¥l v o }r

where, is the Kronecher symbol.

We observe that, in view of p(y,t) =
(H1) and {7), we cobtain

0m = (Xm((}’t!y))s

IL1<C[ g, v, ' dy (32)

0< < mybh< (33}

In view of {29-33), we obtain of (28) that
d
ajﬂcpmwm B dy+Cy v, 1< [ 1g Py +Cf g, 1v, . dy

By (33) and Gronwall inequality, we have

olv,, P +C[ v, ()P ds<C (34)
Using {(33) and (34} we cbtain that v, and p are
defined to [0,T] and

(Vm) is bounded in L*0,T,V) L (0,T,H} (35}

Estimate II: Censidering v = wke Vpin (21) we have

0
(E}t((Pme),ij (Jm(t)’v) o
where:
Jv_ ov d
G [aﬂ (t)f ][ ¥, 0.V, 0By v] 37
dy, ay]
[M%F jl%yk,V] (9,97}
1

Integrating {37} over {{,t + ) with t + T and v fixed

we obtain
(@ (L BV (14 8 — 0 (VL (1, V) = (jt“ﬁ Jm(s}ds,v) (38)

We take now v = vy, {t+ }— v(tyin (38). Let us set:

82

K= mt+ Hvml(t+ =v{t)), vm(t+ vi(0)
Yi=(( wt+ =

Follows of (38) that

{39)

m{tH VD), Vimlt+ —vi(€}} (40)

X+ Y= (J'tt+slm(s)ds,vm(t+6)—vm(t)) (41)

Since we have
Xo  alt+ )= vgfoF (42)
Let us now transform Yy, [t follows from {22} that

({( m(t+ )= m{thHve(t),v) =
g [I‘”a(“’m"m) }v vy [

+8

=_-[ﬂay U ¢,v lBjids}vady—jﬂgUt meﬁfloclkds}ykvmvdy
i

—j U%tpmv Bds}[—\wv av}dy-%—
ayj ayj
dy
Y ]

Yx
Since, in particular, the embedding Vo (LYY

BﬂaIkkas}v vdy

(43)

v
*I U (PmBIIO:'Ide}[TV V+YkWV+Yk 7y

continuous {n = 3}, 0 < < < and 5 gy €
CY[0,T]) it follows that

I, @ut+9)-p, v, tvey<

SC(I:+5IVm(s)IL,(n) ds](u VoIVl 19 (€ g IV 11}

N ERGULE (44)

< C(j:+5||vm(s)\\ds)uvm(t)n I ll+C8 1w, @l

< cJS(j:va(s)\P ds]m v, (6 1 v I+CS v, (v L

Taking v = v{t + ) — vp(t) in (44} and using (35}, we
have

Y, C NE (v (6P + v (t+ I (45)

We integrate (45) on (0,7 — ) and we use again {35),
we obtain

[ 1d<cyB

{46)

We now estimate the term of the right side of (41). We
have of (18) that
d
4|2
‘[ayj

1('1)
[ ay a}ﬁ]
+ (e, 8. ¥}

-
1%y Y V}

(T, (®), v}l <p (vmi%vm%VJ + (47

LCAM)
%;
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In analogy of (43,44}, we obtain

[T S CIGOIVI+C v, v I+Clv, 1P Ll

L*(n)?

(48)
<CUgM) 1+ 11w, I+ 1w, Y1l

Then

<

‘ (71,6050, 0+ 8)-v, )

(45}
C(J.:M\g(s)w v, (s)l1+ 1l v, (s} HE)(II v O+ v {t+51)

We integrate (493 on (0, T — ); we obfain

( 4
j‘ Jm(s)ds,vm(t+8)—vm(t))dts

T-8
Ik

Cf T 0G0 113 6 1+ 17, () IFY v, (011411 v, (t-+8) st

(50)

By Fubini Theorem and with the convention that v, =0
on {— ,0), we have

T-8
I

ch(r L gis) 1+ 1lv (s) 1 +11, (s)nl}(nv (O +1lv, (8 ldtds <
Ao & o = &

(.[:wlm(s)ds, Vo (L3 vm(t)]Pt <

CJ;(IQ(S) I+ 1w, ) I+, () Ill)dsj;(llvm(t) I+ 1lvy, (t+8) )t <

C(I;Ilvm(t) It +J':75IIvm(t +8) Ildt) <

142

C“%{U;”m(t) o) o] vait s al }stS

as above.
In view of {(41,42,46 and 51) it follow that

aJ.Z_ﬁIvm(t-kS)—vm(t)lz dt sjj’ﬁxmdt sJ'Z'ﬁ\ Y, ldt+
T-8
,

forall >0,0< <T.

In virtue of the a priori estimate and by a compactness
result {(Appendix), Lemma 2, we can extract
subsequences, still demoted by v, and 1, such that

(52)

(J.:+EJm(s}ds, Vot +8)— vm(t))‘ dt <c3

vm *7 u  weaklyin L%0,T,V) (53)
vip— u  weakly-starin L {0,T,H} (54
Vi u  strongly in LP(O,T(LY %) (55)
m —F7 weak-star in L (Q) (56}

where 1. 3.3

,pe{2, + ) qe 26)and - - .-

q 29 4

We also know that

yh < (57)
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It follows from (55} and (56) that

iVui m ivi weakly in LXO.T.LC })  (58)

and then
d d

B‘l_(um ’(pm) * B“L_(V‘L(P)

i 3yj s i ayj
weak-star in L%(0, T, H ¥ ) (39)
By analogy

a 2 a s
£lealkyk AL iﬁjlaﬂgyk

dy, dy,
weak-star in L%0, T, H }( ) (60)
Thus of (539}, (60} and (22} we obtain
9y x 9P weak-star in LAO,T,H () (1)

at ot

The equation (22} gives in the limit

aih.MB

oQ
oy Ditoy

Y, ay,

in the sense of L2(0,T,H™Y( ).

Id
WY, = 0

It follows from {36) and {61) that in particular {v,0}
(v.0)in H ()

{v.0y= oy

Taking p = q = 3 in (55) we deduce that

and therefore,

Vin, Yo, PPy 7 vvi9B,

weakly in L**(0,T,L**( ).
Also we deduce of (55}, with p = q =2 and {56} that

PV B0t 7 @V oy, weaklyin X0, T,LE ).

These convergence and density argument permit to pass
to the limit in {21} and {18} is verified. This conclude
the proof of Thecrem 2.

Proof of Theorem 3: Recall that x = K(Q)y, v = K
{OX, X, = ¥, n= X We have established that u{x,t}
=KX tx,tyand (x,0) = (K X0x,0). Let us consider ¢

X {0}}

A

€ (Cl(fl ))3 with compact suppert in Q u{
and divg = 0. We define.
(y,t) = ldet K{t) & K(t)y,t) or equivalently



J. Math. & Stat. 1(1): 78-85, 2005

o(x,t) = ldet K 1ty (K {ox,t)

where, det K denoctes the determinant of the matrix K.

It is easy see that € (CY Qx (0,THY with compact
supportin = X [0,T) and

diviM ' Y = 0 (Remark 3).

We have the following identity

%(x,t} = det KH(t) \%(y, £+ det K7 (0 My, (v, £ + (62)

ldetK™ (t)

il

We have det K(t} = k{t)" det M and hence

K

o ldet K™ '(t)1 (63}

ldet K '(t) I=—

On the other hand,

, Y k'(t)
Py = U[( K l(t)] K(t}] = H[_k(t) IJ =
where, tr K dencte the trace of the matrix K and I the
identity matrix.
Combining (62}, (63} and {64), we get

gmyw
k(t)

¢‘ [3‘4’1 By, J
(X t) =ldet K" {t}! B o,
at i ayj
Then
R oY o B0wyy) - 3 (65)
_jn IQ(PV{E+I3]10LIK 3, ]dy dt ——jqugdxdt
Alsc we get
ov oy
(-~ Tdydt={, VuVodxdt (66)
J‘ J‘Q il a,yj ayl j
T aw a¢l
J.o jgﬁjivi$va_ndydt=jéujpuia—xjdxdt (67
T
L] IQ%‘dedt:jépf odx dt (68)
JL v @dyde= | pyu,o(0)dx (69}

and in view of (65-69} and (18} we obtain (16).

Now we assume {19} and prove (17). Indeed, let <«
CY Q) with compact support in Q u{ ox {0}}. Let
hiy,t; = ldet K(t) (K{t)y,t;. Then h € Cl(ﬁ x [0,T]
and h has compact support in X [0,T]. We note that
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the equality (19} is in sense of LXO,T,H '( }). We

multiply (19) by h and we integrate in X [0,T]; we
obtain
7J‘ I“(P_ i jj *hy3 dyd”j |, OB, a(h;k)dydt 0

Similarly as in Theorem 2 we obtain (17). Moreover
ue OV 9y L (OTHC ¢ and e L (Q)

Appendix: For the sake of completeness we will show
some auxiliary results and also we will define scme
spaces used in our work. In order, let u{x,t} and {y,t)
be vector real functions related by:

wix,t) = Idet K {01 (K Yoix,b). (70)
We have

. ] g, }2 1)
RIOYS | det K™ (01| Py <t )
w(vfy Zj e ()[m)ay y
This implies

e IEW vl vy, Sc, 1LY, (712)

where, ¢y and ¢, are constants independents of u and .
Motivate by (71} and {72) we define L (0,T.V{ t}, {1

P ) as the space of {classes of) functions u: (AQ

R such that there exists e LP(0,T,V{ t)} verifying
{70) equipped with the norm

Up

[N (j 0T, gy AU 1 p< (13
lu IILW(U,T,V(%]: ess Sup oy lu ”V(m {74}
In a similar way we define the space LP(0,T.( ). Let

u{x,t} and w(y,t} be vector real functions such that

u(x,t) = w(K Ytx,0). (75)
Then
au(x D Ba 3, ow(y,t} . ow(y,t) (76)

dy, dt

Take u e LX0,T,V( ). Then w verifying {75} belengs
to L%0,T,V). Motivated by {76} we say that u e
LX0,T, H( »if w e L%0,T.H). In a similar way we
saythatu e L2 (0, T, V{ Jyifw € L7 (0, T, V). In
this case u € L0, T, Vs { ).

Concerning the operator defined by (15), we have
Lemma 1: Let A(t} the operator defined by {15} and
a(t,v,w) the bilinear form defined by:
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E}V E}w
ay

alt,v,w)= .[ "

Then, we have

iy (AlHv,w) = alt,v,w), ¥ vyw € V, where (, } is the
duality pairing between V and its topelogical dual
{iyaltv,v) aglvl®, Vve V, a positive constant

(iiiy latt,v,w)l  Clivll Iwll, ¥ vywe V

Proof: The same given in Limaco-Miranda [14].

Lemma 2: [f n=3 and let us consider
={ve LXO,T,V) L (0,T.H);

[ v s —viPa<cs” v e o1

with v ||[5=| vi, +lvl Then, the
12(0,T,v) I (0, T,H)
embedding < LXO,T,.LY )} is compact whenp
@2+ ) qe26 amd s s3
P 29 4

Proof: By Licns [5], Lemma 5.1 pp: 298.
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