Tournal of Mathematics and Statistics 1 (1): 35-39, 2005
[SSN 15349-3644
© Science Publicaticns, 2005

Kernel Density Estimation for Interdeparture Time of G1/G/1 Queues
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Abstract: The departure process of a single queue has been studied since the 1960s.

Due to its

inherent complexity, closed form sclutions for the distribution of the departure process are nearly

intractable.

In this study, kernel type estimators of the density of inferdeparture time in a GI/G/1

queve are studied. Uniform strong consistency of the estimators in a GI/G/1 queve and their rates of
convergence are obtained. The stochastic processes are shown to satisfy the strong mixing conditicn
with random instants of sampling. With the analysis presented, we provide a novel analytic tool for
studying the departure process in a general queueing model.
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INTRODUCTION

Queuveing theory has been extensively used in today's
applicaticns in communication systems and flexible
manufacturing networks. In order to obtain a good
performance estimate of the system, instead of solving
the optimal problem at the whole network, it is often
preferable to study the waiting distribution at each
station (isolated node}. Describing the characteristic
of the departure process at a node is thus cne important
issue in studying queuveing networks, because the
departure processes at one node may be considered as
the arrival process at subsequent nodes.

Many literatures have been studied in this field. For
examples, Daley [1] investigated departure processes
from a GI/M/1 queune and studied the correlation
structure. Bertsimas [2] pointed out the difficulty of
analysis of a G/G/s queueing system and derived an
algorithm of a relatively low order of complexity for
the system-size, prearrival and  post-departure
probability distributions. Chang [3] showed that the
Peoisson process is the only staticnary and ergodic
process that induces identical distributions on the
interdeparture times when the service times are
exponentially distributed. Luh [4] provided an analytic
tool for studying the departure process in a GI/G/1
queveing system.

Since network traffic is composed of complex random
processes which may not conform to any known
Markevian model as commonly adopted in queueing
analysis, the sequence of interdeparture times may be
nonstationary, and even have a long history. In the
application of most real cases, at least certain kinds of

{weakly) dependent should be considered in the process.

Instead of conventional queueing approaches, many
researchers have paid exceptional attention on the
covariance structure. For example, Melamed ez. al. [5]
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captured the autocorrelated traffic by TES
(Transform-Expand-Sample}). Hwang and Li [6]
developed a statistical-match queueing (SMAQ) tool to
study measurement-based traffic management preblem.
In advance queueing analysis, recent real-life traffic
measurement indicates the significance of ftraffic
macrodynamics to network performance. The
macrodynamics, versus microdynamics, is defined for
characterizing the traffic behavior on the coarse, versus
refined, time scales at which the process is cbserved.
Consequently, the Autoregressive/Moving Average
(ARMA} process has been used to model the
macredynamic behavior of the arrival process in a
queueing system. Kulkarni and Li [7] show the
second-order statistics of the microdynamics are well
captured by white noise in the arrival process with
power spectrum which can have a significant impact on
the queueing performance.

In the present research, we study kernel type estimators
of the density of interdeparture time in a GI/G/1 queue.
Uniform strong consistency of the estimators in a
GI/G/1 queue and their rates of convergence are
obtained. The stochastic processes are shown to satisfy
the strong mixing condition with random instants of
sampling.

Kernel Estimate of the Interdeparture Time:
Statistically, the description of the departure process is
usually written in terms of the interdeparture intervals
{ D, }, where D, is the time between the nth and
{n+1)th departure epechs, n =1,2,.... We shall confine
our discussion to a more general GI/G/1 queuveing
system that implies a stationary and weak dependent
sequence of positive random variables { [), } with
finite mean E(D ). Let P(-) be the probability
measure defined in Definition 1. In view of
stationarity, define the distribution functicn
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of interdeparture times as:
f)y=P(D <1).

This study is concerned with the estimation of the probability density function f(#) for an interdeparture times
process {}'Dn,n =1, 2,...} on the basis of the discrete time samples {D(#,)}, 1<k < n, where the sampling
instants { #, } are random. As an estimator of f(#) we shall consider the kernel estimate defined by:

1=D(1,)

£ =k, Y K, (1)
= b

H

where K is a kernel function and { b, } is a sequence of bandwidths tending to zero as n tends to infinity. Here f,
takes values in R, =[(}, o).

Density estimation has been studied extensively since the works of Rosenblatt [8] and Parzen [9]. Under dependent
situaticns, kernel type density estimators have been investigated by Masry [10, 11], Robinsen [12], Roussas [13] and
Tran [14, 15] for various weakly dependent processes. Gyorfi er al. [6] studied the uniform convergence and the [,
convergence under different mixing conditions.

The purpose of this study is to establish weak conditions under which f, converges uniformly on K, to f as.
We also obtain sharp rates of convergence of f, to .

Assumptions and Preliminaries: Consider the GI/G/1 queue, in which the arrivals form a renewal process and the
service time are independently and identically distributed. Without loss generality, service times are assumed
independent of the arrival process, and the arrival rates is strictly less than the service rate. Let A , S, T and
]/V,I be the interarrival time, service time, flow time, waiting time of the nth customer. Since the flow time equals
service time plus waiting time, we have:

I =5 +W,
A
Moreover, for each n, wehave D =8 . +(A, —T, )", where x7 = max(x,0) which implies

Dn+l =-u/zﬁl _Wn, + Sn+1 - Sn + An (2)

Let A, 5, T W and D be a generic interarrival time, service time, steady-state flow time, steady-state waiting time,
and interdeparture time.  Therefore in steady-state we have

d )
T=S+W = S+ (T - A

d
and D=S+A-T)"

d
where: = means equal in distribution.

Because S and A are bounded, the density of D is bounded as well. Recall the strong mixing condition which is
defined by Tran [15].

Definition 1. Let X ¢ k=.-1,0,1,..., be a strictly stationarg sequence of random variables defined on a
probability space (£, F, P ) and taking values in R. Let F_ and F,  denote, respectively, the O -fields
generatedby X,, k<0 andby X,, k2m. Then X, isstrong mixing if

a(m) =sup{|P(An B)— P(A)P(B)|: Ae F°

—eo ?

BeF L0, as m— oo, (3)

The strong mixing condition is well known to be weaker than many dependence conditions, for example, the
absolutely regular condition or the ¢ -mixing condition. For more information on strong mixing processes, see
Rosenblatt [8], or Roussas [13].

We first write a weaker condition of {3) according to the evolutionary development of {Dﬁ}. From (2}, the
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covariance of D gives:

E(Dk’ Dk+h) _E(Dk)E(Dk+h) {4y
:E(SkJrh—l’Wk—l)_ E(Sk+h’Wk—l)_ E(AIH}H’kal)_E(Smhfl’Wk)

+E(S, 5 W +B(A L, WO+ B(S, . W 0 —EGS, W )

+BE(W W, )= BE(S . WL 0 +BGS W0

—E(S )V EWL) + E(S, ) EW ) +E(A, ) EW, _ )+ E(S,,, ) EW,)
- E(Sk+h) E(Wk) _E(Amh—l)E(Wk)_ E(Sk—l)E(Wk+h—1)+E(Sk)E(Wk+h—l)
_E(kal)E(WkJrhfl)"—E(Sk—l)E(WkJrh)_E(Sk)E(WkJrh)

Note that T, , A and S, areindependent of each other; therefore, W, ;, A, and S, , ;| are independent
of each other as well. Thus, {4} becomes

B Wy =W +ECS W, =W - BOS, DEW, 0 W, 00

w

—E(SOEW W, 0+ EW_ W n—EW_)EW,,, (5)

Since Cov (S8, . W, ., , =W, —=0, Cov (W, . W, )= 0as h—co, it has (5) approach to 0 and so
does (4yas hh — oo,

Thus, in order to have a general result for the density function f, we should give the following assumptions for the
kernel K and the process f(#). Let the letter C to denote a generic constant. All limits are taken as 7t —> o0
unless indicated otherwise. To prove the main theorem, we need the following assumptions.

Assumption 1:  The kernel K is a probability density function satisfies ‘K(x) - K(y)‘ < C‘x - y‘ .
We assume that the sampling instants {#, } are random, constituting a renewal process on [0, 00). Let { 7, ),
1<k < oo, be a sequence of ii.d. random variables with a common distribution G{x) on [0,ee)

b i
with G(() =0 and a finite mean J.o xdG{x)=1/ff <oo. The sampling instants are defined f, = T
by, k=12,.. .
Let (7, (x) be the cumulative distribution function of ¢, .If G(x) is absolutely continuous with density g(x)
then G, has a derivative, say, g, (X), which is the probability density function of #, . Define

m(y=2>"" kg, (), t>0

The quantity m is often referred to in the renewal theory literature as second-order factorial density.
Assumption 2: The renewal-type sampling instants {#, } have an intensity density g(x) on [0, o) and the
second-order differential m{x) satisfies m(x) < C(1+x) on R,.

Lemma 1: Suppose A{x) and S{x) are bounded and satisfied with Lipschitz condition. Then, the density f (x) is
beunded and satisfied with Lipschitz condition.

Proof : By (2), we have D=5 1— (A-TH)" < s + +A < C since S and A are bounded. | f{x)— f(¥)I
IS(x)=S(M+(AX)-T(x) —(AY-THH' I < IS(x)-SMI+1Ax)-A(y)l <
[x— vyl

Assumption 3: Suppose the joint probability density f(x, ¥;T) of (D,,D,) exists. There exists some
constants C such that it satisfies

!

j:f(x, v T+5)g(D)dT<C < o0

forall x,yand s =0.
Denote

y(n.1)=(Qogn)*/(nb, }*
Assumption 4:  For some £ > 0, (w(n,1))” Sup‘f(x)‘ =0(1),

X2
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Snl=]_, fxyd) <o
n=l .

Assumption 5: ((n,1)b, ) ' sup K(x/b,)=0(1).

lxlzr’

Uniform Convergence of f : The following lemmas are needed in the proof of Theory. The proofs of these

lemmas can be found in the Wu [17] based on assumptions.

Lemma 2:  Suppose Assumptions 1-5 hold and b, tends to zere slowly encugh that

nb, llogn — co. We have

sup|£, ()~ Ef, (0| = O (1)) as. as n—>eo.
x<2at
Lemma 3:  Suppose the condition of Lemma 2 holds.

sup |7, = F)| =0 (a1) as. as n—eo.

x»2n

Then

Theorem: Suppose all assumplions hold. Further assume ﬂx‘ ‘K(x)‘dx< oo and (;V(I'l,l)y1 b, =0(1). We

have
Sup,.

£(0- £ =00 (D)  as.

Proof: SinceIK(x)dx =1 and “x‘ ‘K(x)‘dx < oo, following Roussas [15, p. 141], we have

sup|Ef,(x)— f(x)|<Cb,,

xeR,

which implies SUp,_p ‘Efn (x)— f(x)‘ <CO((n1)) by letting b, = O(w(n,1)). From Lemmas 2 and 3, it

produces

SUp |/, ()= f ()]

< SUP,. g [ £, (0= Ef, (0] +5UP,p.
J, ()= Ef, ()] + sup
LO=EL0)] as

< sup
£

x<2n

O (n,1)) + sup
O (1)) +sup

x>20

Oy (n.D).

1A

1A

x>2n

1A

Ef,(x)— f ()|
[ () —Ef, ()| +sup,_, |Ef,(x)— f(x) as.

f (- f(x)‘ + sup; ‘f(x) - Ef, (X)‘ a.s.

Remark: Censider an M/M/1 model where the case that { 7, } constitutes an ordinary renewal process with { 7 }
having an exponential density function G * (@>0). Inthis case f, hasthe Gamma density function, namely

00 x) e O IT(k),

(k)= j :xk_le_x .

1/3

From Theorem 2, it follows that f, can achieve the uniform rate of convergence on R, of order (n™' logn)"*.

CONCLUSION

In this study, we study the departure process of the
GI/G/1 queve. We use kernel type estimators for the
stochastic processes to prove the uniform strong
consistency of the estimators and their rates of
convergence, With the analysis presented, we provide
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a novel analytic tool for studying the departure process
in a general queueing model. The stochastic processes
are assumed to satisfy the strong mixing condition with
the sampling instants which are random.

The time scales of traffic measurement on a network
are directly related to the time and space complexity of
the moedel used to describe the departure process. We
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have rigorcusly proved the “rate process” or the
accumulated departures in a time interval may be taken
to describe the departure process. Intuitively, this
result can also be extrapolated to self-similar output
processes since the strong mixing property represents
an asymptotic behavior of the second-order statistics.
The generation of strong mixing of traffic sequences
and its associated queueing analysis require further
study.
There are many studies about the problem of queuing
system construction for varicus types of models.
Some of them are only suitable for independent
observaticns or special cases. Some of them have too
strong assumptions that could not be easily reached.
The weakness of the independent concept for
distributed density function of service time clearly
resides in the complexity of statistical computation.
Unlike the traditional methods, estimation of a GI/G/1
gueue system applies the concept of strong mixing to
cooperate the realization structure change and dynamic
heredity. This research liberates us from the
independent-based process and thus fewer assumptions
of the system will be made.

Finally, in spite of the realistic performance for the

strong mixing property, there remain some problems for

further studies. For example:

* The convergence of the proof for GI/G/1 model
and the proposed assumptions have not been
well used.  This needs further investigation.

* Te find an efficient procedure for the cutliers as
well as the intervention that make the structural
change.

However, in order to give the popular questions, such as

adaptive modeling, what if a hush point occurs, and

combined forecasting, a satisfied answer, we believe

Theorem suggested in this study will be a worthwhile

approach and will stimulate more future empirical work

in the GI/G/1 svstem.
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