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Abstract: The main objective of the study is the developrmana linear filter to extract the signal
from a spatio-temporal series affected by measuneregor. We assume that the evolution of the
unobservable signal can be modelled by a spacedirt@egressive process. In its vectorial form, the
model admits a state space representation allowlieg direct application of the Kalman filter
machinery to predict the unobservable state veotothe basis of the sample information. Having
introduced the model, referred to as a STARG+Nuisdel, the study discusses Maximum Likelihood
(ML) parameter estimation assuming knowledge of ¥heiance of the noise process. Consistent
method of moments estimators of the autoregressiedficients and noise variance are also derived,
primarily to be used as inputs in the ML estimatmocedure. Finally, we consider some simulation
studies and an investigation involving sulphur diexdevel monitoring.

Keywords: Gaussian markov random field, image analysis, imam likelihood estimation,
measurement error, Kalman filter, STARMA model, SR@ model, state space model

INTRODUCTION In this studythe state process is assumed to be

The study is concerned with parameter estimatiohéPresented by a STARG XA, Ay (Space Time
and smoothing of a spatio-temporal series corrupted Autoregressive Generalised) md@id|  stationary
noise. In particular, we assume tlyés, t) is a spatio- around a possibly time-varying deterministic spatia
temporal process observed over timeand general trend. Under this assumption, expressiorl) fdr

locations within the geographical domain of inter&t the state  process will be referred to as a
at a finite number of points, i.e. we consigés, t) at STARG+Noise model. Given the structure of the signa
(s,t)fori=1,2,...,nandt=1,2, ..., T. We assume@nd considering assumptions (2)-(3), we also cemsid
the observed series is generated by the process the estimation and the |dent|f|ab|l|ty of model
y(s. ) = Ms ) +x(s 1) +e(s, ) (1) ~ parameters.

where/(s, t) is a deterministic spatial treng(s, t) is a _ _ )
zero mean, L-continuous, second order Gaussian  Under normality assumptions for the signal and

stationary process(s, t) is a white noise measurement N0IS€ processes, we discuss maximum likelihood (ML)
error with second moments estimators under general boundary conditions.

2 _ _ Following Drydenet al™®, we also propose thgpace-
E[e(s,,t)e(sj,t—h)]={ae’ Ts=5andh=0 ) Time Adjusted Maximum Likelihood Estimat(sT-

0 otherwise AMLE), which is an approximation to the ML
estimators, provided the noise variance is knowoaor
Elx(s,t) &s, t-h)] =0, Os,s,t,h (3) be consistently estimated. The ST-AMLE has the

appeal of being robust to the specification of rtloése

In (1), x(s, t) represents the variable of interest andprocess distribution. The remaining portion regafus
constitutes thestate or the signal processIn what State space formulation of the model and provideses
follows, we will in general assume thatZ"*, the set of computational insights to obtainbdock Kalman filter
positive integers and that(r, c)LJ Z° Such setting is Consistent moment based estimators of the
particularly well suited for the analysis of agficwal  autoregressive coefficients and noise variancealse
field trials or digital image data or, in generédr  derived, which are primarly used as starting valioes
spatial data that are collected over regular kstic the ML estimation procedures. Finally, we carry aut
However it can be extended to deal with point datsimulation study to assess the performance of the
collected with an irregular pattern, provided atabiie  proposed estimators and a demonstration of the
lattice is superimposed on the given area or redden methodology using data on sulphur dioxide levels in
methods of spatial weighting are considéfed Milan.
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THE STARG+NOISE PROCESS with reference to the general anisotropic case.
Introducing the displacement operators the modal ca
Specification of the model: In space-time data be given the following compact formulation
analysis, one class of models that has been foseflilu  gfB)x, = Uy (5)
is the Space Time Autoregressive (STAR) family. The h B) i | ial in the three-di ional
characteristics and properties of such models aé w where @B) is a po yncimla n ’e_ ree-dimensiona
documente®, but the lack of simultaneous spatial displacement oeerat(ﬁr— [B: B B]" with expression
interdependence structure was identified as a wesskn - ok B o pme g
- . . ) B) =1- ——=—B*B

of these models. The deficiency is particularlyicaes #B) ;;)“KHZ:‘AK N, (r,c) " B8
in situations where data have been aggregated SCTOFhere the individual displacement operators arenddf

both a reglon_and a period of time. A typical ex&mp_ by the following general expressions
concerns environmental data in which there is quite |

likely to be correlation between neighboring region BrXret =X cti Be Xret = Xr c-mit

within the same time of observation. Failure todian he

this spatial structure at zero time lag will resiita Bt Xrct = Xrct-h

deficiency in the model. To address this problers, w The process is stable and hence asymptotically
assume that the zero-mean unobserved state podcess stationary, if the characteristic polynomigB) has all

c, O, ( c, 1 LIZ?xZ" evolves in space and time the roots outside the unit circle. Stable procesaasbe
according to the STAR@Q A, ...,A)) model which given the following convergent moving average

involves thegigrlltroduction of lagged spatial var@bhat ~ representation
time lag zero 1 imi

° P @, Koot = ¢(B) Uret = AB)Uret = z[//ijh B: B(‘J Bthurc:t (6)
x(r, c, t) = zz Z _ e i,j,h

h=0 k=0x]=A, N, (r,c) from which the process autocovariance generating
X(r =l,c-m,t—h)+ur c t) (4) function (AGF) is readily seen to be

(M Rigigrh
wherep is the temporal order of the model; is the AGK =Zgij B, B¢ B

spatial order of thé-th autoregressive componert= hih

(I, m) is a spatial displacement operatdy; is the 5 " 05
distance defining thieth orderset of neighbourggiven 0, YUB)YUB™) = WB)ED
a distance measure aff, || || @im, is the auto-

h
regressive parameter at temporal lagnd spatial lag where gig = ElXeXeicon]-
(I, m); Ni(r, ©) is a scale factor equal to the number of The spectral density of the process is directly
k-th order neighbours of spatial unit ¢); u(r, c, t) isa linked to its AGF and has expression
homoskedastic space-time white-noise process with o2

f = _7u
X (‘*)) (2_,_[) 3 ([(Z)(KZD)
wherew=[wy,we,w{]' andz = [¢'“, &', &'“]’

)

varianceaf , independent of thes.

To ensure identifiability the following restrictie
are imposed on the autoregressive coefficients o, _
andz-is the complex conjugate of

=0 K . .. .
oo _ Considering a finite rectangular portion of the
iy = P -ly-mye process (4) withR rows andC columns, sorting the
Note that when the further conditia@gm, = 0 is lattice cells by lexicographic order and stackirng t

considered, expression (4) represents a STAR fodel observations for each time period, the model capuie
in the following vector form

Furthermore, wher, = A; = ... =4, = A say, the model

will be referred to as @ompleteSTARG(, 1). We P o

shall write A for the total number of autoregressive Xt :zz Z‘ﬂ’nlkmk Wi, m, Xt-nt Ut (8)
parameters. h=0k=0[«|=A

To deal with possibly anisotropic processes th@yherex, = [xy, Xou..., X1t Xty Xiattr- ey Xotts Xud's Xt =
autoregressive coefficientg are allowed to vary not x(r, c t) withi = (-1)C+c (r = 1, 2,....R c=1, 2,...,
only with lag in time and space but also with diil@t ) = RC and u, defined accordingly. Thexn
in space. However, the isotropic specification &N  matrices W,m have non zero entriesv m(ij) =
immediately derived from (4) by imposing the furthe Ay N _
restrictions thaigh,m, = ¢ for each k, my) such that N (i) if j = i+C+my, 1< ij <n and are defined so

. . e that >W, ., = W,. The summation entends over all
||K|| = A, Ohk. As the isotropic specification is nested Wiy, k

in the anisotropic one, expressions will be mogtlen such that""” =8 andWis the usuak-th order spatial
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weights matrix with equal scaled weidflts Separability conditions: In modelling space-time
Consequently, in the isotropic case, model expoassi processes one often makes use of separable caarian

simplifies to structures. Letting = ved[é&, &,..., &), its space-
P An time covariance matridX’ = E(£), has a separable
X¢ = Z Z%k W, X+ Uy (9)  structure when
h=0k=0 r=%;0%s (12)

as in Di Giacint8!. For example, the®lorder isotropic ~ where I is the covariance matrix of a purely spatial

STARG(1,1,1) model has three autoregressiveprocess and; is the covariance matrix of a purely

parameters: *Lorder temporalg,, 1 order spatiakg;,  temporal process. As can be immediately verified,

and T' order spatio-temporah, parameters. when the process is assumed to evolve over time

Finally, to complete the definition thETARG+Noise according to ap-th order autoregressive model,

modelis given by (1), with the noise defined in (2)) (3 assuming a separable covariance is equivalent to

andx(r, c, ) follows the STARG model of (4). postulating the following linear model for the obssd
spatial time series

Identifiability: A general issue in errors-in-variables

models refers to the identifiability of the stru@u g(B)é =5

parameters based on the likelihood function of the

observable process. Now, following a common ap-whereg is a zero mean multivariate white noise process

proach in the literatufe” we will only deal with zero it autocovariance functioBi(&&.;) = Zs if h = 0 and

mean purely stochastic Gaussian processes, forhwhicE(gtth) = 0 elsewhere anda(B) is the scalar
the identification problem involves the assessnunt autoregressive polynomial(B) = 1-a,B-a,B>-...-ar8°
..-apB°,

whether the autoregressive coel;ﬁuents z;md thelsho where i, @,..., @, are scalar parameters aBds the
and error variance parameteds; and g; can be usual backward shift operator.

uniquely recovered from the covariance function or, In the case of the STARG process, the VAR
equivalently, from the spectral density functiontbe  (Vector AutoRegressive) form has the following
observed process. expression

In time series analysis, when the unobservable
signal has an autoregressive structure the emers-i A(B)X;=u; (13)

variables model is known to be identifidflleBased on ) ) ]
the approach of Anderson and Deistler for rationavhereA(B) is the matrix polynomiaA(B) = A,-A;B-
spectral density functions, the following propasiti  AB%...-AB°, E(uu;) = 0'3|n (I, the n-dimen-sional
proves that an analogous result holds also inph&cs identity matrix) and

temporal case.

Ag
Proposition 1: Let J(@(2)) indicate the degree @b (2) Ao=ln- kZ::;KZA(pOIkmkWIkmk forh =0
and®OR" indicate the admissible parameter space for y “
the vector ¢ of the autoregressive coefficients. The Ry
2 2 . -~ Ah—z Z(qﬂkmk Wlkmk forh=1,2,...p
model parametererg , g, and ¢/ ® are identifiable k=0|k|=2y

if & >0, -
10 (9(2)) Pre-multiplying bon1 (the invertibility of A, can

Proof: Given assumptions (2)-(4), the spectral densityalways be achieved provided adequate constraiets ar
of the observable process, apart from a constast, himposed on model coefficients), the model can derpu
expression the equivalent form

2 ; 2
(@) = (W) = 0] 9" @92+ o (10) &A@ =g
wheref(«) andf(«) have the same poles. Since thewith A(B) = I- A,B- A,B*...- AP, u; = A(‘)lut and

coefficients of the polynomialp(z) can be uniquely A= A61Ah, h=1,2,..., p. Of course, the modelling of
recovered from the poles &f(«), they are identified. temporal interaction by means of a matrix polyndmia

Consequently, we can write allows for much more general dependence structures
_ g2, 2 than those that can be dealt with using a separable
DU AZ) = 0|+ T 9() () _ (1) covariance assumption. However, separable striture
and equating coefficients corresponding to non zergan be obtained from the STARG specification by
powers ofz, which exist under the assumption tha®,  imposing appropriate parameter constraints, thatbea

derived under the assumption that the matrix
polynomial A(B) reduces to a scalar polynomia{B),

by the usual factorization 6f(«)- ag ) implying that the following equality holds

gives ag. Finally, onceae2 is identified,a& is given
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A(B) = a(B)l (14) available for each location, the STARGRA A, . A)
Equating coefficients on both sides of equationmodel can be written as

(13) leads to the following set of matrix equaktie ax =u (16)

Ap=ail, h=1,2,..,, p, from which constraints on -

model coefficients can be derived. To illustrabe t WhereXx =ved[xy, X;,..., x1]), U = veq[uy, ua,...,ur]),
issue let us consider the case of an isotropic p ) )
STARG(1,1,1) with parametergiy ¢, andg,. In this A = (I0Aq) — Z(ChDAh) with C, a TXT matrix

case we havé(B) = I- A;B andA; = Ay A, where h=1
Ao =I- @W; andA; = @l +@W. having ones along thb-th lower diagonal and zero
To generate a separable covariance the followinglsewhere.
relation must hold With analogous notation, the STARG+Noise
A, = A51A1 = ol model expression becomes

y =u+tx+e

which implies A; = @A, i.e. matrix A; must be
proportional to Ao In this case, imposing with y = ved[yy, Yo ..., Y1), 4 = ved[ta, U2 ..., U7])
proportionality amounts to setting -

ande =ved[e, &,..., &]).

|- oW, = ¢10(| +&W1J The mean component is assumed to be represented
Ao by a parametric spatial trenf(s, £) of general

and consequently, the isotropic STARG(1,1,1) modefunctional form and possibly time-varying paramster

reduces to a separable model when the thre&. Assuming a polynomial approximation fbwe can

autoregressive coefficients lie on the surfaceimith  set

expression L =Df
@, wheref, is ad-dimensional vector of coefficients abd
Br="—= (15) is annxd suitable design matrix. As a consequence we
%o . _ ~ have
When the previous equality holds, the covariance,, _ Y (17)
matrix of the process has precisely the form gitgn 4
_ _ ) . where® = (10D) and B = ved[S., S.-.., Gr]). When
expression (12), witls = E(iii;) = g (A¢'Ao) ™ and the trend coefficients are fixed over time, i.e ew{, =
2= Bo=... =Gr =0 Din (17) simplifies to (OD), with /¢
aA-g)* B A gt aT—dimensi.onaI vector of ones.
a 1-g)" o g2 Assuming a Gaussian distribution for both state
0 o 10 ) 0 and noise processes, the log-likelihood functiorihef
%o B E (/f . STARG+Noise model parameters has expression
: : Ao 1-go) Pro I 0-2 0-2 Y )=
ﬂTo_l ¢1To_2 Do a- %0)_1 (X lm e O)
so that it represents the composition of a univariast _ﬂ Iog(2n)—£ Iog(|Q|)—l (y -y QNy -1) (18)
order autoregression in time and a simultaneowst fir 2 2 2= -

order autoregression in space, equivalent, foicéatt whereYq = [yo, Y.1,..., Ypral, @ is the vector of the
data, to a third order Gaussian Markov random fieldautoregressive coefficients and
with specific parameter constraints. Note that theQ:E[(y—g)(y_g)']:E(Z Xx')+E(e e’)
separable STARG model is a parsimonious model. - -

Under these constraints the STARG process gf(m’)'1+a§|
reduces to a sequence of time-correlated Gaussian |f toroidal boundary conditiongre assumed, the
Markov random fields and the choice between thecomputational burden is low — of order @(nT
separable and non-separable model specificationgg(nT) steps— through use of the 3D discrete Fourier
becomes essentially an empirical matter that can bgansfornf®. Accordingly, C,, and W, are slightly
subject to hypothesis testing based on the aveilabimodified to take into account the required edge

data. In particular, given the fact that the seplera correction§!. By the matrix spectral decomposition
specification is fully nested in the general STARGtheorem, we can write

formulation, it can easily be tested against the , > . o . B
unrestricted model by means of the usual likelihood? = (03 PQ P+ g 1) (remembering thekP =1)

ratio or Wald test criteria. =P o2 Q'+ g? 1YP' = PQP"

MAXIMUM LIKELIHOOD ESTIMATION . © , ,
Maximum likelihood estimation with toroidal where Q = diagqy,..., gn), gi = (O} qi‘1+ae) thei-th
boundary condition: Setting the initial values of the . 2 1, 2 . .
process equal to their unconditional zero mean ang?agonal element of &, Q_*?e 2 a“?' Gi is thei-th
assuming that T contiguous observations in time ar€igenvalue ofz'. The log-likelihood will be therefore
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T 13T Hence, the conditional densifyx |y ,-) is also a
I(y @02, 02 Y =-" -= > log(g;) - =
(X @0y 0el¥o) 2 9(@m 2 ; 9(7) Gaussian Markov Random Field (GMRF), widy, =
O, = QF = (0,2 22+ 0,21 and conditional
2y PPy - ORGSR §

Hence, we can use the 3D discrete Fouriepeanﬁxly obtained as solution of the large but sparse

transform to evaluate the log-likelihood and the ML
estimates of the parameters can be found by nuateric
maximization.

and positive definite linear syste@, 'l_jx|y = _GXVX’

with ©,, = 02 1.
EXACT MLE FOR GENERAL We use the notation EMLE to denote the Exact
BOUNDARY CONDITIONS Maximum Likelihood Estimator.

In most cases toroidal boundary conditions areThe adjusted space-time ML estimator: An
used as a computationally convenient approximation alternative ML estimator is the Space-time Adjusted
more realistic boundary conditions. In the follogin Maximum Likelihood Estimator (ST-AMLE). It is
we will consider estimation using Dirichlet or othe Obtained as a direct extension of the AMLE deriired
boundary conditions. Notice that the same resiwtd h the spatial context by Drydest al’¥l. The main feature
for any other boundary conditions that are differen Of this estimator is that it can be applied underyv
from the toroidal one. For a review of the mostgdeneral conditions on the noise, provided we ate &b
commonly employed boundary conditions see Mouré€stimate only the first two measurement noise
and Balrari?, moments.

The log-likelihood function of the observable From a theoretical standpoint, ST-AMLE is based
process (see eq. 18), including the determinant andPon the possibility of expressing the likelihood
inverse of a non sparseTxnT matrix, can become function of the unobservable state process thrahgh
computationally intractable even for moderate sampl observed variabl¥ . Using (1)-(3), we get
dimensions. A direct calculation would ne€g(nT)®) 2 nT 2
steps. However, in the case of Gaussian measuremeht(y —€: @ 0| Yo) = -— log(2nay )+Tlog(Aol)-
noise, it is possible to reduce the computatioffatito 2

O((nT?) step¥!, by noting that in general, for a noisy 1 e IN T AN —
model, the log-likelihood can be written as follows 203 (X e-4 ’q’q(x e-4)
Myl @ of, 0g) = T 1

=—— log(2no? )+Tlo -y -@aay -
logfxyl @ a2, 02)ogfily, @ 02, 02)  (20) g 100N )TIoolR 7 Iy~ Aty
+2e a4y -y -€aae
wheref(x,y|) denotes the joint p.d.f. of X and Y affg| uree (X 4 -eaae]
y,") denotes the conditional p.d.f. of X given Yn&
Equation (20) holds for ak, we can evaluate the right- Now, sinceE[ € #4¢e] = E[€ aay]= gez tr(a 4), it
hand side setting equal to its constant mean With - T
reference to our STARG+Noise model, the first tefm )
the right-hand side is evaluated@n((nT)?) steps, since |, (y—€; @ 07| Yo)=
f(x=0,y) =f(x=0|X(y |x=0,) which only nT T
Y log(2m) Y log(ay )+Tlog(Adl) - (21)

follows that

requires the calculation of the determinant of txa

matrix Ay. 1
Egrthermorg, qsing the us_ual_ re_:sults for the j[(x—g)’ﬂ’ﬂ(x—g)— Je2 tr(2 2)]+0,((nT)"?)
conditional multivariate normal distributions, wave g,

that f(x |y ,-) can be evaluated B((nT)?) steps. In =15(y: @ UZIYo)
Z x\Yo u

fact, by puttingz = [X Y']" and assuming that all the which, apart from an adjustment term in the sum of
requested inverses exist, it is possible to dethe Squares component, is equivalent to the likelihood
elements of the partitioned matrix function of.a STARG process in the obggrvable Weia

Y. The first order derivative conditions for the
maximum of theadjustedog-likelihood are

®xx G)xy a|)<(3 1
® e) —:—zﬂﬂ'ﬂ(x—g):o

;' = X
08 oy

yX yy
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et Ttr(Ag Wi m) dnt Ly’

s =-Ttr +1 a
O, m, 0 et Ly, Y

~— GGt [(ChIW, ) 4] = 0
JLI

ol¢

== LI [y'day -o2t(24)]=0
oo 202 4t= =

u u u
WhereXhlm = (ChDW.kmk)X; h=0,1,.,p;, k=0,
1,...,

If the noise variance is assumed to be knawn
priori, the adjusted likelihood can be directly

maximized to obtain the ST-AMLE estimators of

remaining parameters. If the noise variance is onkn

(4): 309-321, 2005

based on the estimategy the matrix A, is

derived and the GLS estimatg!%1 are computed

from (22);
steps 2 and 3 are iterated until convergence is
achieved.
Upon convergence, hypothesis tests on model

coefficients # and ¢ can be based on the asymptotic
covariance matrices of the estimators
VAR £]= 02 (/4 aD)*

-1
[_ 2% J

VAR @] = E
R ¢l Y,

a consistent estimator can be employed in its place o
leaving the asymptotic properties of the estimatord-iltering and smoothing in a state-space framework:

unaffected.
From the first order conditions closed form
solutions for the maximum can be obtained for th

From expressions (1) and (13) it is straightforwswd

trend coefficients and innovation variance and ghes€duations

have expressions

B =@aapypvaay (22)

~2 _
Uu

1
—ly-@aay-p-ogr(2a)] (@3

Substituting expressions (22) and (23) ﬁrand &5
in expression (21) we have

c
IX

= constTlog(JAo|)-
nT ~ ~ 2 ,
- logl(y =y aa(y - - 0og w(#4)] (24)

Where£1 = Dé.

Since fz is a non linear function of the AR

coefficientsg maximization of (24) is not an easy task,

but it can be greatly facilitated by the adoptidntiee
following stepwise optimization procedure:

* a preliminary estimate,é0 of B is computed
setting2 =1 in (22), i.e. taking the OLS estimates
of the regression ofx on D; given the

deterministic nature ofb the OLS estimators are
consistent and thus provide a valid and easil
computed starting point;

go = Q)é’o is substituted forZ in (24) and this is

maximized through an iterative search algorithm

(e.g. a Newton-Raphson iterative procedure) t
give estimatesy of @;

obtain the state space representation of the
eSTARG+Noise mod& through the following
X = ®X+U; state equation (25)
y: = HX+g measurement equation (26)
whereX;, is thestate vector® is thetransition matrix
H is themeasurement matriandU; is themodel noisg
their structure is as follows:

i )(t Al A2 Ap_l Ap
X, =| X1 |, o= I 0 0 0

| Xt-p+1 0 O I 0

u,
u=109], H=|Ag" O 0 0.

|0

In the framework of state-space models,

estimation, filtering and smoothing algorithms are
naturally performed by means of the well-known
Kalman filtef'®. Following Shumway and Stoff&¥,
Stoffe™? also combined the EM algorithm with
Kalman filter to derive a recursive procedure for
estimating the parameters of a STARMAX model as
well dealing with missing data. The implementatifn
such algorithms is not a difficult task on its own;
however, for huge spatial temporal datasets, ther fi
dimensionality as well as matrix inversions may
ysuggest the adoption of some “tricks” which caruce
the computational burden.

Thus, we will briefly deal with some relevant
computational simplifications.
O1. Inversion of Ay The task of invertingAq is not
always a big problem, but it may require a strong
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computational effort for large lattice sizes (sayg., parameterg, = 0.5 and a block of sites represented
256x256); in these cases we suggest adopting ahy two rows of the lattice, Fig. 2 shows the the
approximate inversion foA, using the corresponding
convergent series. Let us define

Ao
S= Z Z%Ikmk W'kmk

k=0||«|=A
i.e.Ag= (I -S). Now, we know that

complete structure oA(_,l and its residual part which is

>'s=(1-sy'=Ag" = limS! - 0.
i=0 =

It is often very difficult to find the conditionsnder
which the generic term of the series converged tout
a sufficient condition which ensures the possipitid
adopt the convergent series approximatiériid

Jo Fig. 1: The blockv and the lower and upper guard
Z Z ‘%I ‘<1: ims! - o area for a (88) lattice

KMk oo )
k=0k[=4 1=

In this case, the following holds

Za:Si :isi =A
i=0 =0

wherea may be chosen to be a low integer{a€15)
with a very low loss of precision, since the comesrtce
of S is very fast.

Implementation of ablock Kalman filter: For the sake
of simplicity, we will treat the problem for the
STARG(1,1,1) model, for which the transition matigx
represented byA;; provided p and Ao, Ay,..., A, are
small, the extension to higher temporal order modkel
straightforward at a low additional computationasic

If we are prepared to accept a small loss of
precision, the following block Kalman filter prodes
good results in a computationally efficient waypgint e
worth noting is that the Markovian structure A&f and oo | -
A, is very helpful for our problem. In fact, giveneth
space-timenxT data matrix, where the sites i = 1,
2,..., n are stacked in lexicographic order, we exploit o
the Markovian structure of the model to select,dach
observation time, the same block of sites iny;; t = 1,
2,..., T with v a subset of consecutive rows of the lattice
such thanh/v is a suitably large integer. We then embedFig. 2:  (Above) Structure of the inverse of theg
our block into aguard areagiven by one upper and one matrix, for a (3%32) lattice and a spatial
lower row of the lattice, as shown in Fig. 1. parameterg; = 0.5. (Below) The entries of

When implemented this way, the block Kalman
filter has a dimensionv§2xC) instead ofn = RxC,
where as aforementiond&®tlandC are, respectively, the
numbers of lattice rows and columns. Accordinglg w
extract the correspondingv#2xC)x(v+2xC) blocks

1an0.

aot e

oo

0.002 -] %

o0

Aal which are not involved in the reduced
Kalman filter for the same model

not involved in the reduced Kalman filter proceduke

is evident, only a small amount of very small esgrare

from the matricesAa1 and A1, which are involved in |eft out and hence

the recursion. f(y«(v)Iblock Kalman §=f(y,(v)lordinary Kalman f}
Notice that, owing to the structure &f, its inverse

Kalman filtering to evaluate the likelihood function:

The Kalman filter provides a computationally

neighbourhood of sitg. For a (3%32) lattice, a spatial convenient approach for evaluating the likelihood
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function for state space modéis If the initial stateX,

and the innovationsU; and e are independent _ _ o
multivariate Gaussian, then the distribution gf (ian bSe, obtained b(Lsyivyy) forv=0, 1,....V; s =0,

conditional onX; and.; is " i
> , _ P/
YilXt,O.a~MVN(H Xt|t—1 JHZyH'+R), t=1,....T  (27) gg’o\/ = Zz%k (ggkv—h - ag s ov-n)+

parameters to the space-time covarianggésand g2,

where i1 = (Ye1, Yeor-or Y1 Xet, Xe2s = Xo), Zy1 IS h=0k=0

the MSE of the state vector foreca%y;_; obtained U &+ 02 G (29)

via the Kalman filter an®R is the measurement noise whered; is the Kronecker’s delta.

covariance matrix. From (27), following the block The system, derived from the autocovariance

Kalman filter strategy described above, it

straightforward to construct the sample log-likebi

n/v T E(Let LX), hasM = Z\\LOS\, equations inA+2

;;IOQ el Xe, Oia) (28) variables and is expressed in terms of observable

|: =

wheref,(-) is the Gaussian densityyfX,, [, evaluated ~covariancesgd,, where, given assumptions (2)-(3),

at thei-th block consisting of sites. Y _ X 2 e L —h — Y _ X
Expression (28) represents an appealing procedurgskh = Oskn* e, if s=k=h=0 a_ndgskh = Yskn

to compute the likelihood, however, the presencthef €lsewhere. From the gene.ral covariance system, when

double summation leads to slow numericalV>0 and s#0 the following sub-system can be

maximization so its use is not recommended in pact extrapolated, consisting ofl, = ZV (S, -1) linear
for data sets with large spatial dimension. ’ v=l

IS function of the underlying STARG process, =

equations with expression

Generalized moments estimation:When a priori =g (30)
information on the magnitude of the measurememtrerr Where
is not available, a consistent estimator of thes@oi — [y y Y y y v
. . . . . gl_ [9101!---19301191021---g§ oz---xgm/y---ygs 0/]
variance is needed to implement the adjusted mawimu
likelihood estimation procedure. Moreover, giver th |j1:

need for an iterative search procedure to obtanSh- Ou v G G v o v O v Gy |
AMLE of the autoregressive coefficients, the | : : : : : :
availability of consistent preliminary estimatoffstivese oy - g Pe - Ghy - O g

. . S11 Al $10 9,0 st p &1 q
parameters can reduce the computation timg | y y , § ,
substantially, especially when the spatial samgle i| %2 = 9z Gm " G Gum v Gy o
large. Here, the issue of consistent estimator&\Rf : ' : : : :
coefficients and noise variance is considered based | 9. - 9%: 9% - 9s: v Fse v Ty
relating the moments of the observable proces$do t | : : : : : :
parameters of the underlying process. For the sdke | g7 .. Wy G s o Gy o Gy
brevity the exposition focuses on the isotropicecdmit . . . . ;
analogous results hold for the anisotropic model. y y y y , ,

7gs,1v g%\/ g$1v1 g@h\/l g\sH/ p g\,spfvip

The isotropic case:In the case of the isotropic model This is a set of Yule-Walker type equations that d

on Z? and by analogy, in the case of an irregular sbatian ot involve the parametensr& and Uez and provides a
configuration, the preliminary estimation can besdzh

on the spatio-temporal autocovariance functionhaf t
observed procesg, i =1,...,n;t=1,..., T. Using the
definition of Pfeifer and Deuts€hthe autocovariance

set of moment restrictions that the autocovariance
function of a STARG process must satisfy.
When exactlyA moment restrictions are imposed,

function has expression the system (30) can be directly solved to give ¢he
y coefficients in terms of the observable autocovegs,
Oskv = E(Leyit Lyinv) obtaining a Yule-Walker type estimator, with
wherel, is the spatial lag operator of orderdefined expression
. ~
by the enxpressmn @ =174, 31)
Ly = ZWk (i, DYj where 121—1 and g, are obtained fronT; and g, by
j=1

replacing theoretical covariancgﬁg/kh with the
Setting 9" = E(uy L), the following set of non

linear equations relating thé\+2 isotropic model corresponding sample estimators

316



J. Math. & Stat. 1 (4): 309-321, 2005

18 J generalized moment estimator can be obtained fham t
Qg’kh = —Z Z LsVie Ly Vit-n - least squares solution of the system, yielding
nT < 4
i=1t=h+1 _ v
For stationary and ergodic processes theag :\/1252 (34)
ev
autocovariancesgé’kh can be estimated consistently v=1

from the corresponding sample statistics and e, the simple arithmetic mean of the estimatgs,
consequently the Yule-Walker estimatogs will be  for v = 1,..., V. Although consistent, the method of

consistent. . - . moments estimators aﬁ‘g has the disadvantage that it
If M;>A covariance restrictions are imposed, a.

generalized method of moments estimator can bé NOt constrained to yield positive results ants is
derived by minimizing an appropriate distance fiorct more likely to happen the smaller isrg. The

f:-RM: LR ie. by setting generalized moment estimator, being an averagheof t

= . moment estimators?évwill be less variable in general

@ =argminf(g,-I'y¢9) . and consequently it should reduce the frequenahef
¢ occurrence of negative results in finite samples.

Following Klajisen and Prucfi&@, we choose the
following simple quadratic form for the functid)

~ A i The anisotropic case:Defining yij)(, = ElYret Yri oy
¢ = arg([r)nln(gl—l“l 9(9:-T19 yijyu = E[U Yricjwd the following set of equations

from which the Generalized Moment Estimator isrelating the parameters of the anisotropic model to
simply given by the least squares solution of theSPace-time autocovariances can be derived by taking
~ expectations for i =, -1+1,...,-1,0, 1,...1-1,1;j = 0,

overidentified systeng, = I'y ¢ i.e. 1. J3v=01..V

~ P A
AI - - AI pas y - -
Q= (1"1 1"1) 1[‘1 01 - (32) yijv = ;;JHHZ‘& B, (yiy—lk.j—mk,v—h UgJOFIkJOj—kaOV— h)
The generalized moment estimators, exploiting ' Y )
more sample information than the standard Yule- + Vi Oy + T 01, Oj-m Oov

Walker estimators, are expected to be more efficien The system has the same structure of (29) and the

altough the asymptotic properties of the two estim®  gerivation of method of moments estimators of
and their respective perfomance in finite samples

remain to be investigated. autoregressive coefficientsp and Jg from the
Settingv = 1, 2,...,V ands = 0 a second subsystem appropriate sub-systems follows applying the sanee |
can be extracted from (30). This system is compaged reasoning given for the isotropic case.

V equations expressing the noise varianﬁe SIMULATION STUDIES

y - y 2 y
9oov = Ao Yopo~ Te )+ Bk Iokv- . :
oo 000 e Z Okv=h The isotropic case:ln order to test the performance of

(h,k)#(v,0) !
. . the estimators we have selected some example
in terms of observable covariances and unknown

autoregressive coefficients. Replacing the lattéth w situations. In particular, for 8 and 1616 regular
9 ' P 9 lattices andrl' = 30, we have first simulated 100 samples

) ] — ) ~ =~ from an isotropic STARG(1,1,1)+Noise model (9) with
consistent estimatorgp , like @ or @ above, a parametersg, = 0.5; ¢1o = -0.35; @4, = 0.45 anda'g =
consistent method of moments estimator can bd. For all the simulations, the noise variance patar
derived. When only thev-th equation is used the ag has been fixed to produce a Log Signal-to-Noise-
following expression for the estimator gives Ratio (SNR) equal to 5 dB, where SNR is the loghef
ratio of the signal variance and the noise variamhge
5;\/ = ngo-f?ial(égw- > @ Bv-n ]:¢V_(33) each simulation the measurement noise variamrﬁe
(h.K)#(%0) was fixed as being equal to its true value. Furtteee,
When a system witV>1 equations is considered, in all cases the optimization procedure was peréatm

in analogy with the previous case, we have the?y setting the starting parameter va_lues at outptie
overidentified system Yule-Walker type procedure outlined before. The

2 means and the standard errors (in brackets) of the
$=N0g estimated parameters are shown in Table 1. As ean b
where ¢ = [¢1, ¢s,..., &) and s, is a V-dimensional seen, the standard deviations decrease as thoe lsitie
vector with unit elements. Also in this case abecomes larger.
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Table 1: The means (and standard errors) of thenpeter estimates from 100 simulations of an isarTARG(1,1,1)+Noise model. The
true parameters ag; = 0.5; ¢10= —0.35; @, = 045 and Jf =1

Lattice Size &8 16x 16

Method @1 Ao A o? @1 Ao a a?

EMLE 0.495 -0.353 0.461 0.999 0.494 -0.343 0.444 004.

(0.028) (0.032) (0.043) (0.029) (0.017) (0.015) .0pat) (0.011)

ST-AMLE 0.501 -0.357 0.464 0.955 0.506 -0.351 0.456 0.954

(0.035) (0.036) (0.048) (0.070) (0.018) (0.016) .0p®) (0.026)

TOROIDAL 0.490 -0.305 0.404 1.033 0.493 -0.326 0.43 1.018

(0.030) (0.030) (0.053) (0.031) (0.021) (0.015) .0pa) (0.013)
KALMAN 0.447 -0.316 0.400 1.026 0.477 -0.325 0.429 1.016
(0.028) (0.028) (0.042) (0.019) (0.018) (0.014) .0m) (0.015)

Table 2: The means (and standard errors) of thenpeter estimates Table 3: The means (and standard errors) of thenpeter estimates
from 100 simulations of a  homogeneous from 100 simulations of a  homogeneous
STARG(1,1,1)+Noise model. For three different tti STARG(1,1,1)+Noise model. For three different Gati
sizes, the field was simulated with = 20 temporal sizes, the field was simulated with = 50 temporal
observations. The true parameters ﬂ\é =0.3; %11 = observations. The true parameters Q\ﬁ =0.3; @l =
~0.15;@=—03; @, =0.4; ¢f} =02andT? =1 ~0.15:¢0=—0.3; @} =0.4; ¢f} =02andT? =1

EMLE T=20 EMLE T=50

Lattice Size Lattice Size
Parameters 8x8 16x16 3%32 Parameters 8x8 16x16 3%32
qq‘)’lz 0.3 0.248 0.268 0.282 ¢E\)/l: 0.3 0.250 0.281 0.290
(0.069) (0.043) (0.018) (0.048) (0.023) (0.014)
¢£'1= -0.15 -0.127 -0.145 -0.148 (12;]1:—0.15 -0.133 -0.138 -0.145
(0.062) (0.040) (0.019) (0.043) (0.025) (0.009)
$%o=-0.3 -0.297 -0.297 -0.297 @o=-0.3 -0.300 -0.301 -0.300
(0.040) (0.015) (0.008) (0.029) (0.015) (0.006)
ﬂvl= 0.4 0.300 0.357 0.384 @Vf 0.4 0.340 0.376 0.387
(0.105) (0.056) (0.029) (0.073) (0.031) (0.013)
4411: 0.2 0.172 0.186 0.198 (411: 0.2 0.169 0.186 0.195
(0.124) (0.049) (0.025) (0.078) (0.040) (0.008)
0’5 =1 1.003 1.009 1.006 Jg =1 1.006 1.002 1.002
(0.028) (0.014) (0.008) (0.018) (0.010) (0.004)
ST-AMLE T=20 ST-AMLE T=50
Lattice Size Lattice Size
Parameters 8x8 16x16 3%32 Parameters 8x8 16x16 332
qq‘)’lz 0.3 0.256 0.275 0.288 ¢E\)/l: 0.3 0.257 0.285 0.297
(0.073) (0.044) (0.020) (0.054) (0.026) (0.014)
¢£'1=—0.15 -0.126 -0.148 -0.150 (12;]1:—0.15 -0.137 -0.144 -0.148
(0.064) (0.040) (0.020) (0.043) (0.024) (0.011)
$%o=-0.3 -0.301 -0.304 -0.304 @o=—0.3 -0.303 -0.305 -0.302
(0.043) (0.017) (0.009) (0.030) (0.015) (0.006)
ﬂvl= 0.4 0.312 0.367 0.395 @Vf 0.4 0.344 0.379 0.392
(0.109) (0.059) (0.031) (0.073) (0.033) (0.015)
4411: 0.2 0.179 0.186 0.198 (411: 0.2 0.172 0.187 0.197
(0.123) (0.055) (0.028) (0.076) (0.040) (0.011)
0'5 =1 0.978 0.989 0.993 05 =1 0.993 0.995 0.995
(0.030) (0.015) (0.009) (0.020) (0.012) (0.007)
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Table 4:  The means (and standard errors) of thenpeter estimates . v . _
fom 100 simulatons of a homogeneous SPatio-temporal parametergf; = 0.4; 4411 = 0.2

STARG(1,1,1)+Noise model. For three different ti (Where v and h denote vertical and horizontal
sizes, the field was simulated wifi = 100 temporal ] 2 ) ]

) v autocorrelations) andr; = 1. Also in this case, the
observations. The true parameters gfg =0.3; %]1 =

noise variance parametewg has been fixed to produce

v 2
—0.15; =—0.3; =0.4; ﬁ =0.2and0;, =1 . . .
o a1 L u a Log Signal-to-Noise-Ratio equal to 5 dB and was

EMLE T=100 considered fixed at its true level. However, toidvihe
Lattice Size boundary and the block filter approximations, imsth
simulation we have only compared the performance of
Parameters  8x8 16<16 332 EMLE and ST-AMLE estimators which are valid for
¢Z\J/1= 03 0.259 0.283 0.292 general' boundaryicon(jitions. In particular, corls@tlye
(0.029) (0.024) (0.005) three different Igttlce sizes, Table 2-5 show satiah
results, respectively, fof = 20, 50, 100. As can be
%11:‘0-15 -0.134 -0.138 -0.144 seen, also in this case boBMLE and ST-AMLE
(0.025) (0.013) (0.004) perform very similarly, although, according to our
P10="03 -0.305 -0.298 -0.300 Matlab codeST-AMLEis much faster thaBMLE.
(0.014) (0.005) (0.004)
@"1=0.4 0.345 0.373 0.390 Simulation based on sulphur dioxide levels in the
(0.044) (0.019) (0.009) Milan district: The model and inferential methods
outlined previously find a natural field of applitm in
dy=02 0.168 0.189 0.194 an environmental pollution context. In particulave
(0.037) (0.014) (0.007) have chosen pollutant data from the Milan distiicta
ng 1 0.998 1.002 1.001 test bed simulation study for our analysis andstteal
(0.012) (0.004) (0.002) modelling. The data set consists of 365 daily ayesa
STAMLE T=100 (from January to December 2001) of Sulphur Dioxide
(SO, levels at 24 monitoring stations. The data were
Lattice Size provided by the Environmental Agency (ARPA) of the
Lombardy Region. The coordinate system of the
Parameters  8x8 16<16 332 monitoring stations is referred to the Italian oaél
(/8\3/1: 03 0.259 0.283 0.296 gri(_:i system (Gauss-Boaga), which is ba_sed_ on the
Universal Transverse Mercator (UTM) projection. To
(0.030) (0.025) (0.008) ;
demonstrate the performance of our spatiotemporal
%11?0-15 -0.139 -0.146 -0.148 model for large data sets, given the irregularlgcsu
(0.030) (0.016) (0.006) data, we have created a “synthetic’ data set
@o=—0.3 -0.302 -0.300 -0.302 representing a temporal sequence ofx@ regular
(0.017) (0.006) (0.003) grids of interest. In particular, using an invedégtance
@/1:0.4 0343 0379 0.390 procgdure, we have first' predicted the p(ocessaam e
0.050) 0.025) (0.008) spatial Iocatlon on-the grid for each data timeefT,Hor
each spatial location, we have smoothed the data ov
d‘fo.z 0.179 0.189 0.195 time using a cubic smoothing spline with smoothing
(0.031) (0.018) (0.008) parameter equal to 0.5 (see the matlab command
2_ “csaps” in the Matlab spline toolbox). To test the
gy=1 0.990 0.994 0.995 method’s ability to recover the underlying signstiate-
(0.014) (0.007) (0.005) variable) x;, we have added independent Gaussian

measurement noise with variancé = 0.0158 (SNR
Furthermore, as expecteMLE and ST-AMLEare by equal to 5) to give the noisy daya This procedure

far the best estimators, while a slight bias iseobsd  onerates a large final data set of 373760 obsensat
for the Kalman and the toroidal cases. This might b arranged in a data matrix of= 1024 rows and = 365
explained by the suboptimal block-algorithm strgteg cojumns. Our aim is to determine how well we can
and the mis-specification of the boundary cond&ion  predict the unobservable variable of intevesfiven the
noisy data y, However, note that for temporal

The anisotropic case:To complete the study of a rediction purposes, we have taken out the laskee

STARG(1,1,1)+Noise model, we have considered L 359 365) from the exploratory analysis
more complete simulation of fields which are o g,y of the temporal pattern of the data set

homogeneous in space. In particular, for diﬁerenthighlights the highest values of SO2 in the autiand

lattice sizes and observation time T, we have G88Er \inter months. Furthermore, for each of the 358iapa
100 samples from model (8) with temporal parameterseries' locations in the city of Milan show a higtaily

@0 =-0.3; spatial parameteg§; =0.3; q@l =-0.15; and average with respect to the other sites.
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Table 5:  Summary statistics for real and predistikes

Series Obs. Time Mean St. Dev. Min Max MSE Corr. Coef.
Real — 25 Dec 2001 359 0.000 0.245 -1.142 0.938 - -
Predicted 359 0.000 0.165 -0.614 0.658 0.009 0.962
Real — 26 Dec 2001 360 0.000 0.229 -0.803 0.903 - -
Predicted 360 0.000 0.157 -0.528 0.609 0.008 0.964
Real — 27 Dec 2001 361 0.000 0.213 -0.684 0.873 - -
Predicted 361 0.001 0.150 -0.462 0.569 0.007 0.961
Real — 28 Dec 2001 362 0.000 0.200 -0.675 0.824 - -
Predicted 362 0.001 0.144 -0.411 0.537 0.006 0.950
Real — 29 Dec 2001 363 0.000 0.189 -0.644 0.758 - -
Predicted 363 0.001 0.138 -0.371 0.509 0.006 0.938
Real — 30 Dec 2001 364 0.000 0.187 -0.622 0.734 - -
Predicted 364 -0.001 0.133 -0.339 0.484 0.006 0.933
Real — 31 Dec 2001 365 0.000 0.204 -0.859 0.753 - -
Predicted 365 -0.001 0.129 -0.313 0.462 0.012 0.878

This is not surprising and may be attributed to athere is some difficulty in predicting the extrensues
variety of factors as emissions from vehicles,of the series.
manufacturing and heating systems. Because

concentration data are always positive, it is coiesmat CONCLUSION
to operate on a logarithmic scale to remove thecefhf
heteroskedasticity and thereby stabilizing the arare. In this study we have advocated the use of a

The exploratory data analysis indicates a spat@ald STARG+Noise model for describing the dynamic of
parametrized as a six-parameter quadratic surface noisy random fields in climate and environmental
appropriate and this has been subtracted from thsystems. We have shown that the model can be
original data to create a zero mean data set. fruitfully used when the available spatio-tempaodata
Variogram based analysis confirms that isotropy igs rich both in time and spatial dimensions and rmtiee
reasonable for the process and the omnidirectiongdurpose of the analysis is to provide time-forward
variogram also allowed us to asses the presenae ofpredictions at the spatial locations where histiriata
nugget effect which, as a result of its temporabme is available. To deal with huge data sets, we have
provided an estimate of the measurement error équal exploited the Markovian structure of the model to
~2 ; ; implement areduced Kalman filter to be used for
Je = 0.0137. The generalized moment esur‘n"jltmjsmpoothing and prediction aims. Although the state-

provided an estimate af‘g equalt to 0.0134. As can be space formulation also allows for estimating thedeio

seen, although they provide very similar resultsthp Parameters, we have suggested an “off-line” infeeen
procedures underestimate the real value of theenoigVhich can be implemented efficiently. This is i in

variance confirming that its estimation is a veryProblems related to the monitoring of poliutantsieve
difficult task. The estimation of the measuremenisa st algorithms are necessary to issue warninga in

variance can be carried out through several methoddmely A For example, as also remarked by
(Olse'®, provides a wide range of methods on thisStroudet al.™”, when large data sets are considered the

topic), but in this study we have chosen the vaeog EM algorithms are computationally inefficient besau

approach following Huang and Cresffewho also they relay on the repeated inversion of large roasri

propose to estimate the noise as a nugget efféoenG Conversely, it is relatively straightforward to
compute the ST-AMLE estimator when the noise

A2 .
O¢ , for a STARG(1,1,1)ST-AMLE provided the yariance is known. The estimation method is useful
following parameter estimates (standard errors irwhen only the moments of the noise are specified or

o - S - when the exact maximum likelihood estimator is
brackets)g, = 0.489 (9'003?[40._ 0.680 (0.002)44, . difficult to compute (e.g., for certain non-Gaussia
- 0'17.4 (0.003), Wh'c.h highlights a strong Spatlalnoise distributions). As remarked in Dryden al,
interaction structure. Finally, we used the staiaecs . o 5 . -
formulation and the block Kalman filter to perfotime  Simultaneous estimation ofig is very difficult and
smoothing of the observed series as well as théhere are usually confounding problems. There are
predictions of the state variable. To show the joteéxh  several methods which can be carried out to estimat
ability of the filter, Table 5 presents some sumynar the noise variance. For example, following a

statistics for the zero mean real signqland the geostatistical approach, one could estim‘a@ as the

predicted state variablg . o time average of the nugget effects obtained from th
As can be seen, predictions are able to track thgample semi-variogram of the spatial series.

true signal although, as is typical for the Kalnféter,  considering thenedian absolute deviatio®AD) of
320
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wavelet coefficients, a robust estimator was alsalO.
provided by Donohcet al™®. In this study we also
proposed a consistent Yule-Walker type estimatorll.
comparable to the ones mentioned above. As welleas
STARG model presented in the study extensions are
possible. For example, it can be applied to multate

data (where multiple observations are observedhelh e 12.
point in space and time) or also tailored to alkpatial
predictions at unobserved spatial locations.
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