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Abstract: In this study simple nonparametric techniques hiagen adopted to estimate the trend
surface of the Swiss rainfall data. In particulee @mployed the Nadaraya-Watson smoother and in
addition, an adapted-by boosting-version of it. Kddally, we have explored the use of the
Nadaraya-Watson estimator for the construction @htwise confidence intervals. Overall, boosting
does seem to improve the estimate as much as peeeiamples and the results indicate that cross-
validation can be successfully used for parameticson on real datasets. In addition, our estmsat
compare favorably with most of the techniques presiy used on this dataset.
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INTRODUCTION statistical data analysis: density estimation (ofte
referred to as unsupervised learning and a pretade

Machine learning (Michie et al.! p. 2) is generally cluster analysis) discrimination (sometimes called
taken to encompass automatic computing proceduredassification, or pattern recognition) and regi@sgor
based on logical or binary operations, that leatask  prediction). All three are commonly used in reéd-li
from a series of examples. Attention has mostly$éed applications and each has its own historical
on methods developed for discrimination tasks.his t development. In all three domains, methods existhvh
case the data take the form {(x), i=1,...,n}, where make use of a kernel function (kernel density
Xi=(><i1'----Xip)T is an attribute vector and €stimation, kernel classifiers and ker“nel regreesiq

) ) these are often referred to as simply “nonparanietri
yiOG={l....g} is a class label. Given such data, thepmaking use of these kernel methods, Di Marzio and
Taylo™®” have indicated how boosting derives its
success: namely, by reducing the bias of the egiisia
. .~ > with only moderate increases in variance. Using thi
assesged by comparing the Frue class of_x (whiciotis result, one is able to use larger smoothing parenset
used in the learning @) with the predicted class. anq improve the overall quality of the final estta
Since different methods will produce different mlme_ Other insights into why boosting works are given by
methods themselves are then judged by the quallity Q3jimann and Y& (who consider boosting of splines in
the rule that is output, though this is highly degent regression), Friedmaret al) (who use logistic
on the type and quantity of data which is available regression in classification) and Friedfdn
Boosting (Shapire g Freun_é?]) has become a popular Di Marzio and Tayldf' investigated the use of
method in machine learning. Given that the goabis Nadaraya-Watson (N-W) kernel regression estimators
obtain rules which are as accurate as possibldhdbe 55 5 weak learner fdr,Boosting. Their study focused
idea of boosting is to enhance a method by adaptati ;, the one-dimensional casex (i OR) and the
whereby the rule is modified according to its
performance on the original data. More specificadly
B-steps boosting algorithm iteratively computes B
estimates by applying a given method, calledeak

learner, to B different re-weighted samples. The ) :
estimates are then combined into a single one wikich be obtained from the data. Firstly, we focus onak

the final output. This ensemble rule can be vieasa (p=2) case. Extensions to higher dimensions are then
“powerful committee”, which is expected to be straightforward, but our application is that of sam

significantly more accurate than every single esten SPatial data. Whilst simulations are very useful to
In the original setting, the weak learner was gvalidate theoretical results, real data is oftenremo

classification tree, often with only one split (anence  challenging, since many of the assumptions araisd|
weak), but recently other classifiers have beerstesb N Ways which are hard to quantify. The dataset on
Satistical learning (Vapnik?) has been used to which we focus has been previously used as a

encompass three previously used methods withighallenging spatial interpolation problem. Withinist
context, we are thus forced to consider data-based

goal is to estimate mule, say J : RP - G, which will
assign a new observation x to a clas§&inThe rule is

theoretical results were illustrated with simulago In
that study, no attempt was made to derive datacbase
methods in which the optimal choice of smoothing
parameter h and number of boosting iterations Bdcou
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methods of optimal selection of (h, B) and since th
data have been previously studied we are alsodhkn .
to compare our results with alternative methods.
Finally, we consider the problem of obtaining
confidence intervals for the predictions.
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EXPLORATORY DATA ANALYSIS
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In 1997 theAI-GEOSTATS mailing list set up a _ 3
“Spatial Interpolation Comparison”. The participant o 0"
were asked to estimate the daily rainfall valueS@t
locations using data of 100 observed measuremants (
different locations on the same day). Only aftes th
predictions were made, was the actual data made
available. Further details are given, with the Hssaf
the competition, in Duboiet al ",

The training data were 100 randomly selected sites
from a database of 467 sites in Switzerland. The
response variable was the amount of rainfall on 8th
May 1986 (measured in 1/10thm). Fig. 1 shows the
locations of the training data and the test daiatpolt
is perhaps slightly unusual that the number ohirg
points should be so much smaller than the number of
test points.

A summary of the rainfall data (training values) i
y =180.15and sd(y) =116.68.

As a first, very naive prediction of the test date
simply considel and this gives a root mean squared
error (RMSE) value of 111.14. We also note that a
naive 95% confidence intervgl+ 2xsd(y) has constant
width 466.72 and actually contair3$5/367= 96.73%0f
the test data.

-160C0
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Fig. 1: Location of the measurement sites (black
points indicate the training data and gray

However, these predictions take no account points the test data) and the relief map
whatsoever of the spatial structure and correlation showing the height above sea level of the
within the data. A slightly less naive approachoisise Swiss region.

a nearest-neighbour prediction, that is to prettiettest
value y; by the training observatiory; such that
j=argmin, d(% ,% ), with d denoting the euclidean
distance between the sites and x . This nearest The residual plots from the first fitted model

. . . indicate some shortcomings (Fig. 3), so we alslta
nag_hbour predlctor glves. a RMSE of 84.17, but NO%ransformation of the response variable and tresnsel
confidence interval is readily available.

-~ ) ] to improve the fit somewhat. The final fitted modhels

and this is also shown as an image in Fig. 1. RHinf

often depends on elevation and so the nature ang/y:13_86_ 4.06(log(sy 6.68)

strength, of this relationship was explored. Weertbat

height above sea level, s, can be negative, wheregich gives R-squared0.095and a RMSE of 112.52,
rainfally = 0 in general. There may be physical modelsvv.hereas. the null model hgs a RMSE of 116.09. The
available but throughout this study, we adopt thediagnostic plots are shown in Fig. 3.

principle of letting the data speak for themselves. We conclude that fit is not that good. Moreover,

, . ~ points which are close in space are likely to have
Switzerland all the elevatiossz c> 0 where c= 200,  gjmilar rainfalls and have similar heights. So & i

so we can consider transformations of the formunlikely that height will be of much help and it svaot
y? witha >0and $F orlog(s) and then a linear model. considered further in this analysis.

A plot of the data and the smooth fit shown in Fig.
suggests a quadratic model may fitatg(s) .
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height vs rainfall; linear model height vs rainfall; smoath fit
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Fig. 2. Dependence of rainfall on height. Left: tsmaplot with linear fitted line. Right: scattetop with smooth
fit.

lagiheight) vs rainfall; quadratic model
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Fig. 3: Top: rainfall predicted by log (height) ngia quadratic model with no linear term. Rightedarshow
diagnostics from least squares it. Bottom: usiagdformation of sqrt(rainfall).
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NONPARAMETRIC METHODS properly structuring the bandwidth matrix. Although
nothing works better than a properly selected
Motivation: The most studied and used interpolationparametric model, the above features appear chrtain
technique is kriging (see, for example, Stéln  promising when spatial phenomena are to be studied
Unfortunately, standard kriging yields unbiasedand parametric assumptions are hard to motivatihen
predictions only if restrictive assumptions - tyglg  basis of the available information.
some kind of stationarity or isotropy - are sagidfi Here, we focus on the N-W estimator (the zero-
Thereby, a rigorous check of them is always necgssa degree polynomial fit) because, as it will be ekpid
In fact, a model might not hold across all spatiallater, it is ideally suited for boosting.
observations, especially if large spatial datasaes
used. Kernel regression: Given three random variables,
In the last three decades, a number of recent OR2,
resea.rchers focus on nonparametnc re,gress'ofbgression model for their relationship
techniques as a fle_><|ble alternquve to kriging. AY:m(X)+J(X)£, with Ee=0, vare=1 (1)
nonparametric analysis seems suitable for explograto ) ) N
purposes in the selection stage of a parametricetnod whereX and ¢ are independent. Assuming that.nd.
or if the information on the specific case studgslaot ~ observations S={(X;,Y;),i =1,..,n} drawn from

allow parametric assumptions at all. We can distisly ~ (X,Y) are available, the aim is to estimate the mean

two tendencies: entirely nonparametric or mlxedaeSponse curve m(x)=E(Y [X=x). This is the

approaches, in which nonparametric techniques an ) - ) )
kriging coexist. A brief outline follows. random design model, in the fixed design model as

In  pioneering  research Yakowitz  and design observations we have a set of fixed, ordered

Sziradowsk§® study the robustness of kriging in the POINts  so  the  sample  elements  are
cases of perturbed data and incorrect variogran®= (%.Y;i=1..,n) in which the x; are often
selection. As a more robust alternative to krigitijgy =~ equispaced.

extensively discuss a fully nonparametric regrassio We will assume model (1). Recall that our data is
technique. In their examples, the nonparametrigyiven by{(x; y;), i =1,...,n} in which x; =(Xi;,Xi2)-

estimator performs similarly to kriging when dat® a ¢ m'(x) exists, then we can use the N-W estimator
correlated and better in presence of a spatiatitren

YOR and ¢0R, assume the following

Other fully nonparametric methods based on splines n*lhzin—lK (%)Yi P(x)
include works by: Wahbd, Hutcinson and Gesst&t  fy,, (x;S,h) = - = 2)
and Lasleft®. A common conclusion is that splines #zinle (Lﬁl) f(x)

constitute a serious contender to kriging in sdvera A
cases. Finally, Azari and Mullé? suggest a particular Here, we used the multiplicative kernel
nonparametric estimator that in their case studyK(X_xij |3| [xj—xij]

= K| ——— ,

outperforms kriging. h
Concerning the mixed approach, HB5tand =
Altman®® adopt the same philosophy in enveloping (X = (X1, X2), (Xj = (Xiz,Xi1))
techniques where the low-frequency signal (trerd) ijn which the functionx : R — R, called akth-order

grasped by nonparametric regression techniquesstwhi i ariate kernel, satisfies the following conditio
the high frequency signal (autocorrelation) by kg

In a similar logic, Opsomeet al.*! propose a complex _[K =1 and IXJK # 0,0 only for j=k and the scale
algorithm where nonparametric techniques are used t
estimate a variance function, their goal is to yamt N } )
the variogram fitting step in a standard kriging  Note that f(x) is a standard kernel density
procedure. estimate (kde) of the design density f &nd f(x) can

A nonparametric method suitable for local fitting
of spatial data is local polynomial regres&dn
Prominent features of local polynomial regressioer a Where g is the joint density. Thus, the N-W estonat
i) a polynomial mapping is selected, but note thatcan be considered a kernel estimator of
polynomials constitute a class of response surfaceqan(x)=Iyg(x,y)dy/f(x)= (r/f)(x). For the
much wider than the commonly used parametric . L -
families; i) not particularly restrictive smootrsge Simplest motivation, note that a N-W fit is a Idgal
assumptions are needed; iii) not all data are irea| weighted average of the responses. ) i
but only those lying in a neighborhood of the eation Clearly, the shape of the kernel weights is
point’ with an importance proportionaj to the theirdetermmEd by/( that in our case is the univariate
inverse distance from it; iv) the possibility toség  Normal density and the degree of smoothing alomg th
give specific directions the smoothing process bycoordinates by the scale h. So the multiplicatieenkl
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amounts to a bivariate gaussian density with aatiay 1 4 (x)
covariance matrix. Other than for sake of simpficte F(x) R(x) (_h)

make this choice because in a spatial contexteinse

natural to use the same degree of smoothing in each where g% (x) is the conditional variance. So:

ordinate, though there could be anisotropy is some <+ the regression curve is more stable (lower

applications. The univariate properties of the N-W variance) when there are more observations;
estimator are detailed below; it is straightforwaed + the bias-squared is dominated by the second
extend to higher dimensions. derivative m"(x) (close to a turning point) or

by m'(x) when there are few observations.
Properties: Given x[Osuppf , assume the notation

Kh(x)=%/((ﬁ) . Let this usual set of conditions hold: Results for swiss rainfall data: We choose the
bandwidth h in Equation (2) by leave-one-out cross-

a) x is an interior point of the sample space, "e'validation,i.e. select h to minimize

inf(suppf) +h <x <supbuppf)-h; N
b) m and f are twice continuously differentiable in a cy ()= — D (x 5
neighborhood of x; ) Z(yJ ( J))z ®)
c) the kernel « is a symmetric pdf with

U (K) = jvzk(v)dv >0 ;

=1
in which (x)is the N-W estimate which uses all the

data except the jth observation:
d) h=h, - 0Oandnh - © asn - o ;

X=X
e) f" is continuous and bounded in a neighborhood of (j) (x)= Zi#iK( )y,
X. Sk (5]
Sincef(x) estimates #o\h
We have plotte€V(h), as given by Equation (5), in
() = [yt (x ) dy /e have ploed(n). s given by Equation ()
Fig. 4. There is a unique minimum ht=1124 (which

we have corresponds to a RMSE value of
Ef(x) = j J-Kh(x—u)yf(u,y)dudy JCV(124)/n= 69.6¢ and this value of h is then

_ ~ _ _ used in Equation (2) to estimate the rainfall caegrid
_J-Kh(x u)f (u)m(u)du= J-Kh (= wr(u)dc of values. A contour plot of the predicted rainfil
where f(u,y) denotes the joint density ofX,Y) .  showninFig. 4. As expected, it can be seen tieaktis _
Making a change of variable and expanding in a iyl broad agreement between the y values and the fitted

values.
2 The fitted model, in whichm(x)is estimated from
Erf(x) =r(x) +h—I’"(X)/.12(K) +o(h2) as h- 0(3) the training data, can be used to obtain fittedieslfor
o , 2 the training data and to predict the test data. As
Similarly, usmgz expected, the RMSE is much reduced (from 69.69 to
- hs_, 34.43) when the training data is simply resubsiyt
EF() =() +=1 () 4K +o(h?) as h- 0(4) oy th)e RMSE from the tast data is 61 17, whicheisy

series gives

we have the approximation similar to the minimizedCV estimate. Fig. 5 shows the
- h2 residuals from the fitted model, the locations bé t
Em(x) :Q = r(x)+ r"(X)is (k) larger residuals and how the residuals are relatede
f(x) predicted values for the test data.
-1
2
(f (x) +h7f "(x) NZ(K)J +0o(h?) L,BOOSTING
Introduction: L,Boosting stagewisely optimizes the
=m(x)+ 2’;12( )(r"(x) f"(x)m(x))+ o(h?) squared loss functigm - m)? /2. Specifically, it is a
() ) procedure of iterative residual fitting where tiveaf
and so the bias im(x) is output is simply the sum of the fits. Formally, sater
2 ' ()f' a weak learnerm(GIS,y) , that in theL,Boostin
g (k) m"(x)+w +o(?). ) T (t5) 2 . g
2 f(x) terminology is simply a crude smoother. An initisdst
Similar calculations give the variance as squares fit isfy ()= M(GS,)p) . Forb=1,2,.. ,B,
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My () is the sum off,_4 () and a least “makes robust” problems whose solutions have big
changes for small changes in data, as kernel simgoth
is considered. From this perspective we can well
g understand that big bandwidths regularize the lagrn
process.

4 We propose to boost the N-W estimator in an
obviousL,Boosting manner. Our boosting algorithm is
described by the following pseudocode:

CV to choose optimal h

BEODOO  BROOOD

FES

Algorithm: L,boostNW
(Initialization) Given Sandh >0
| calculate my (x) = fgw (xS, .

EOOOCO  EFO000  SA0000
1

(Iteration) Repeat for b=2,...,B

B0 BOD 1000 1200 400 1600 1800 Computethe residuals € = YI —ﬁb_l(xi) i=1,...,n;
Mool peramster update iy (X) = fp_1(X) + Myw (xS, H,  where
fitted surfaca Sez{(Xi,ei),izl,...,n} .
Note that our choice of using a fixed smoothing
_ parameter along the iterations seems appropriate. |
fact, if we optimally select the smoothing paraméoe
every estimation task, we would encourage the
overfitting tendency, since the “learning rate” enfery
single step is maximized. However a formal
justification is presented later, in which smalladbi
properties are proved to hold when the bandwidth is
fixed over boosting iterations.

000 10000
|

a
1

5000
1

L ,boostNW reduces the bias of the N-W estimator:
Here, we will show (for the univariate caskes 1 ) how
boosting reduces the asymptotic bias, up to boyndar
——T — effects, of the N-W estimator. The result cleastje@ds
- 16000 -5000 0 ECO0 10000 to d=2 by considering multivariate Taylor series'
Fig. 4: Cross-validation function of residual surh o €xpansions. . _
squared errors, which gives optimal value of ~ Assume conditions (a)-(e) hold, after the first
h=1124 and resulting trend surface contourP00sting step we have

=150
|

plot, of the N-W estimator. The original data zf‘ K(in)y. Z'n K (X_Xi )e.
. . . . " i=1 h | i=1 h |
are shown as circles with size corresponding tor, (x) = +
the rainfall. zillK(x_hXi) PIRS (X_r:(i )
squares fit of the residuals 27 (x) —#ZLK(X}? )mo(xi)
Se={Xie =Y, -1 (X))}, i.e M(E ). The = ™ :
L,Boosting estimator i1 () . We take the expectation of the numerator and

The two main issues are the bandwidth selectiofl€nominator as before. We already hairgx) from
and the choice of the number of boosting iteratiBns ~ =guation (3) and (x) from equation (4). So the only

. ) thing we need is the expectation of the second tarm
As the end is to get a weak learner, a naturalda®®t 0" merator. By ignoring the non-stochastic term
way for reducing the complexity of whatever kernelwhen i=j ), expanding in a Taylor series and

method isoversmoothing. This is because large values integrating, Di Marzio and Tayl6t eventually obtain
of the bandwidth reduce the locality of the metlaodl  the following expressiop for the asymptotic exptota
consequently, overfitting. Thus the smoothingup to terms of ordeO(h”)

parameter can be viewed as a potential component of h2u, 1 h2u,f" (x) -1
regularization. A quite similar point of view is Emz(x):{r(x)"z (X)f"(x)} f(x){ +2f(x)}
supported by Vapni# (pp. 327-330) who upholds that

in kernel density methods regularization can be r(x){ of . h2,f"(x) }

achieved by modifying the window width. This is =7y 2 2 e .

because regularization is interpreted as a methat t 109 [2F+ 0%, (x) - 26 +h7of"(x)

=m(x).
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As a consequence, we observe a reduction in thigss smooth than that of the N-W estimator in Bigor
asymptotic bias from Ofhto o(If). This conclusion is  of the boosted N-W estimator in Fig. 6.
consistent with that found by Di Marzio and Tai6
where boosting kernels gives higher order biasfith ¢ predictions: The edited volume Dubot al !

density estimation and cIassﬂcatmn. However, npte contains many results from the original competition
that the current result usésBoosting for regression, ! - :
Table 2 contains a summary. The kriging valuesrgive

rather than theAdaboost-like algorithms used in h liahtly b h btained and
classification and density estimation. Remarkahbte there are slightly better than we obtained andhoww

that we have reduced the bias without requiring angStimator (and its boosted version, in particular)
new smoothness assumption. Although p-ordePerforms reasonably well overall.

polynomials smoothers become less biased when p We note that the best combination ¢h,B)
increases, they require that at the same timeubetiy = (chosen with reference to the test data) is
h =2040.8, B= Zwhich gave RMSE=56.37 and so we
might conclude that boosting N-W works reasonably
well for this dataset.

m(P*D (x) exists.

Boosting the Swiss rainfall data predictions. We
need to find the optimal pair (h, B) for our datelahis ) _ ) ]
can be done by leave-one-out cross-validation. Eig. Confidence intervals: Here, we consider confidence
shows the estimates of RMSE for various value8 of intervals for N-W estimates. In particular, we [enets
and h. The optimal value was found for B=2 andtwo naive approaches andpaired bootstrap strategy
h=1269.4, which gave a resulting CV estimate ofdiscussed by Hardfé. We firstly discuss the naive
RMSE of 69.244. This is only a very small approaches.

improvement on B=1 (no boosting). Using the pair

(1269.4, 2' the RMSE on the test data was 60.99Table 2: Summary of results (RMSE values) from Dsigbal 1Y,
. . ’ . . with page numbers as given.
which is a again a very small improvement on B=1jzmaa TNSE ot

(61.17). The resulting trend surface of the boostet

. h . . .. Inverse distance weighting 632 (p. 37)
model is also shown in Fig. 6; it is very similarthat T J '
of Flg 4 Inverse distance (with jacknife corr.) H30 (p. 57)
multiquadratic functions 53.1-35.7 {p. 72) anisotropy better
COMPARISONS thin-plate splines 56.0  (p.85)—also o/ transformation
. robust kriging 61.0 (p.124)
Trend surface analysis: A standard method for the _ L . . .
. . . . ordinary and indicator krig. 59.69-60.04 (p.159)
analysis of spatial data, is to fit a trend surfand then a B )
carry out kriging for predictiofé. To be consistent  R=kizin 7 (- 171
with the previous approach we use cross-validadon  neural network 56.34 p- 187)
parameter estimation and model selection. Firstlg, maximum entropy 92,83 p. 199)
obtained the proper order of the fitted trend st@fa . . conine 673 (p. 207)
The results are shown in Table 1 which indicates ¢ o
another fuzzy method 7295 (p. 220}

guadratic (or possibly linear) model is optimal.
An assessment of the spatial structure was made t%(totally naive method is to simply use

examining a correlogram (Fig. 7) of the residuals,\—(+2xSD(Y):(L u)

which indicated that points close in space tendebdet = ~ ' )

similar. Various models for the covariance function(in which the mean and SD are estimated from the

were fitted: gaussian, exponential and sphericalng) ~ training data). _ _
cross-validation based on the training data aldneas ~ USing the kernel regression model we could simpsly: u

found that the gaussian model was best (giving arM(X)£20 = (L,U)
estimated RMSE of 74.5 using leave-one-out CV @n thin whichd is estimated by CV.
training data). These methods (1 & 2) give, respectively,

Table 1: RMSE estimated by leave-one-out crossigibn of

trend surface fitted by ordinary least squares T F T F
Surface order 0 1 2 3 4 5
RMSE 117.3 1124 112.0 1151 1155 112.4 Voo |35 12 V< |59 8
The gaussian model was used to predict the te! ¥, =1 |37 0 Y=L |32 3
data, with a resulting RMSE of 72.66 and the fitted — —
. . . . . e bl T A a1 o]
surface is shown in Fig. 7. Note that the fittedfaee is ~ Both | 353 12 967  Both | 354 13 86.5%
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residuals for training data: RMSE = 3443 residual vs. fitted walue
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Fig. 5: Residuals from fitted model for the testad@op left) and dependence of the residuals erfitted values
(top right). The spatial structure of the residussalso shown with gray-scale colors (bottom left)
dependent on the sign and absolute size (bottam)rig

CV estimates for various boosting iterations fitted surface by boosting
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Fig. 6: Left: cross validation estimates of RMSE ¥arious h and various B. Right: fitted surfacebobsted N-W
estimator using (h, B) found from CV.
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correlogram of residuals from quadratic surface fitted surface by kriging
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Fig. 7: Left: Correlogram of residuals from fittggiadratic surface, with Gaussian covariance funcfitted by
eye. Right: Fitted trend surface by generalizedtlsguares.

and these give fixed CI widthsl(—L ) of 466.7 and coverage rate because of the bootstrap estimator
278.7, respectively. Note that, although the coyera observations outside 95% Cl

rate of these intervals is similar, the averagethwviof
the second naive method is much less.

A description of the naive bootstrap follows. Let
{(xiD,yH,i =1,...,n} be a sample, with replacement,
from {(x;,y;).1 =1,...,n}. Taking B bootstrap samples
of sizen and forming a N-W estimate for each one at x,
gives a population of B bootstrap estimates

{mD(x),b=1,.. ,B}. From these latter we can then
b

1

5000

northing

—~5000

obtain an empiricakr th percentile as the valué,(x)
such that _

-15

1 .
5 2 mp00 <ig001=a, .
b=1

where I[A] is the indicator of the evel equal to 1 if 15000 5000 0 5000 10000
A'is true and 0 otherwise. Then, for any x, we could easting
interpret (fa,z(x),fl_a,z(x)) as a (1-a)100% Fig. 8: Test points which are inside 95% bootstrap
confidence interval for m(x) (interpolating as confidence intervals (x) and outside (+). The
necessary for sma). dots indicate the training locations.

We have drawn 1000 bootstrap samples of size .
n=100 (with replacement) and got 248 counts, butm~(X) is not centered on m(x) but on
with a quite low meansize of 140. Of the 119 wHieh  rh(x) = m(x)+er ror (M(x)). Hall®® argues that
outside the confidence intervals, 71 are outside thundersmoothing is preferable to an explicit bias

lower interval and 48 are ogtside the upper interva ggtimation step as a strategy for improving theecage
However, although 248/367 is only 68% (rather thanaie Byt undersmoothing worsens the point estimate
95%), note that the Cls are not simultaneous aogeth g5 the conclusion seems to be that the value of h

which are not in the Cls tend to be either clustere oniima| for the coverage rate differs from that one
together, near the boundary, or are in regions @vti&  ,iimized for point estimation. Actually, if in owase
density of test points is low; Fig. 8. However, thain  gy,qy 1 is reduced to 450, then the coverage isesea
cause of this rather poor coverage rate lies irbtag of 1, 7504 and the mean width increases to 164. However

the estimator. In particular, note that the abaa&e e RMSE becomes 77 and further reductions in d lea
algorithm does not explicitly take into account@@xy iy numerical instability in the N-W predictor.

when deriving the coverage rate. In fact, Hlpoints Recall that the boosted N-W estimator has a bias-
out that the naive procedure is doomed to a POOfeduction property, so deriving confidence intesvialr
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the boosted estimate may yield improved coverag®.
rates. In a similar manner to that described abose,
can resample from the data and calculate a bod$ted

W estimate of the test data using the bootstrappkam

(a “boosted bootstrap”). In order to follow this
approach, we have drawn 1000 bootstrap samples gf
size 50 and estimated by using, for every sample, t
CV-optimzed values of (h, B). The resulting confide 8.
intervals have coverage 337/367=92%, with an aeerag
width of 234 (searching a grid ¢f(1[300,2400 andB

in the range (1,2,3,4). So there is good evidehet t
higher order bias potentialities of boosting can be
conveniently employed to improve the coverage rate.

9.

CONCLUSIONS

11.

The Swiss rainfall data are an extensively studied
spatial datasBtl. As seen, several approaches were
employed to fit these data, both traditional and

parametric like kriging and more recent nonparaimetr 12.

techniques. We have seen that
techniques have been successfully employed fo
estimating the signal content of spatial data takera
whole. This is additional evidence that a nonpatame
analysis seems suitable for exploratory purposdhen
selection stage of a parametric model as well asnw
the information on the specific case study does not
allow parametric assumptions at all.
In this study we have proposed a new approach
based on kernel smoothing and an adapted versitn of
by boosting. Our smoother was the popular N-W
regression estimator with product kernels and eross
validated bandwidths. Quite interestingly, the N-W
smoother has given very good performance, ranking
among the methods with the best behavior. Moreover, 5
its boosted version drastically improves on the
construction of confidence intervals. Note thatélbur
results have been obtained with an automated agiproa
using cross-validation and the selection of bantwid 18
and number of boosting steps has worked well. Qlyera
we should not draw conclusions from only one datase 19
particularly given various user-inputs which camyvia
a subjective manner and further simulations are
necessary. However, our results confirm that
confidence interval construction based on the N-W:
estimator is still an open and quite challengingjybem.

locally adaptive
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