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Abstract: To gain a better understanding of the internal work processes in service-oriented supply chains, it is very 
important to design models that are able to realistically describe the components of the supply chain. To meet this 
goal, it is necessary to find suitable statistical distributions of the processing times for the orders passing the chain. 
In this article we examine sample data sets with more than 2,000 individual work times from four steps in the work 
processes of a time-based aeronautical supply chain and derive the best possible distributions fitting the sample data 
sets. To increase the realism of the model, both the data sets and the resulting statistical distributions were 
subdivided into several categories of order complexities, a task made more challenging by the limited amount of 
data available for the rarer high-complexity orders.  
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INTRODUCTION 
 
 Time is money and money is time - is one of the 
most commonly used phrases in the business world, but 
for airline suppliers it goes to the heart of the matter. 
Most airline suppliers face a fundamental problem: the 
time it takes to procure and deliver the replacement part 
to a airline is longer than the time the airline is prepared 
to wait for it[1]. To clarify the problems faced by this 
industry, we investigated the following realistic 
scenario. 
 
Scenario approach: A customer places an order with 
36 hours left until the deadline. Since the order is for a 
large number of replacement parts, processing it at each 
step of the supply chain is a lengthy task and it takes 11 
hours until the order has moved through the Customer 
Service department. After this, the order passes to the 
Stock department, where a recent rush of high-priority 
orders (with a deadline of 25 hours or less) causes it to 
wait for 30 min. After this the order is assigned to an 
employee, but since it is late in the afternoon and he 
had a lot of trouble completing the high-priority orders, 
he is not quite as concentrated and has to break off 
working on it after 180 min at the end of his shift. Thus, 
the order waits for 14 hours until the next morning, 
when he completes the order after 30 more min. Now 
the order has only 7 hours left until the deadline and is 
thus tagged as a high-priority order. It now moves 
speedily  through  the  departments without any lengthy 

 
waiting periods and it takes 35 more minutes to pass 
through the Commission department and 25 min until it 
has been processed by the Final Control department, 
completing the supply chain with 6 hours left until the 
deadline. 
 
Preliminaries: If we want to model the above scenario, 
we need to determine the time individual employees 
require to complete their part of the processing 
statistically. As we have seen, the time required for 
processing orders within individual departments can 
vary considerably and if we want to realistically model 
the supply chains within a company, we need to come 
up with a reliable statistic prediction. However, a 
variety of factors (employee fatigue, breaks and any of 
the numerous other interruptions of the daily work life) 
conspire to make the distributions of processing times 
different from the more common probability 
distribution functions. Thus, the processing times for 
each department and each order complexity must be 
analyzed individually to find the distribution that fits it 
best. Finding suitable statistical distributions for a 
variety of data sets is a frequent occurrence in other 
research and industries. You will find citations of this 
early work in for example the following literature[2,3]. In 
face of all this early work our analysis is important for 
two reasons. First, we took on the challenge of 
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modifying and applying these approaches to the 
uniquely distributed processing times of process chains 
of the aeronautical supply industry. 
 Furthermore, we tried to take the peculiarities of 
such supply chains into account by dividing orders into 
different categories of complexity. Before starting with 
modeling the distribution of times LTFin needed to 
complete an order we summarize some stochastic 
notations: A tripel (Ω, P, B, (Ω)) on a topological space 
Ω, its Borel σ-algebra B, (Ω) and probability measure P 
is called a probability space. Random variables (r.v.) 
are measurable functions X: Ω → ℝ . Integration of a 
r.v. with respect to the underlying probability space is 
denoted by an expectation E, i.e., E(X):= 

( ) ( )f X P dω ωΩ . Conditional probability or expectation 
given an event A∈ B (Ω) is denoted by P(.│A) or 
E(.│A), respectively. For a given r.v. X on a real 
probability space (Ω d⊂ ℝ ) we write fX for its density 
distribution function with respect to the Lebesgue 
measure (d.d.f.) and FX for its cumulative distribution 
function (c.d.f.). 
 
Statistical model: Typically, the exponential 
distribution EXP is used for simulating random waiting 
times in a mathematical context. It has both a simple 
c.d.f. F(t) = 1-exp(-λt). Moreover it can be 
characterized by the following properties: 
 
(E1) EXP is +

ℝ -valued. 
(E2) EXP is parameterized simply by its expectation 
λ¯1. 
(E3) EXP is time-invariant: For an EXP(λ)-distributed 
r.v. X the conditional distribution of X- t given the 
already passed time period t (t > 0 arbitrary) is again 
EXP(λ)-distributed, since it is easily computed that 
P(X- t >s│X>t)=exp(-λs)=P(X >s). 
(E4) The probability that the waiting time is greater 
than   an   arbitrary   t   decreases exponentially in t: Let 
X be EXP(λ)-distributed, then for arbitrary t>0 the 
probability P(X > t) = 1-λFX (t) = exp(-λ). 
 
Remark: The time intervals between two events of a 
poisson-process with intensity λ are EXP(λ)-distributed. 
The poisson-process is a good model for the radioactive 
emissions a Geiger-counter receives over time. 
However, for the distribution of the time to finish a 
certain order LTFin which we examine in this study, we 
have to assume slightly different properties analogous 
with (E1) to (E4): 
 
(A1) The distribution should not only be +ℝ -valued. 
Since we typically observe a minimal time tmin > 0 to 

finish a certain task, the distribution should only 
assume values greater or equal than tmin. 
(A2) We cannot expect to find a distribution only 
parameterized by its mean. We will also need to know 
at least its standard deviation. 
 
(A3) We expect that the distribution is not stationary 
in time. Finishing an order means that the progress of 
work can be observed. Hence, after waiting some time 
t>tmin we expect to observe a shorter time still to pass 
for easy complexity work or a longer time still needed 
to finish the order for difficult complexity orders as 
complications during the work process tend to happen 
more often with the latter. Therefore, for arbitrary s>0 

the inequality P(X >s+tX >t) < P(X > s) for short 

duration orders or P(X > s +tX > t) > P(X > s) for long 

duration orders should hold. 
(A4) The probability P(X >t) need not decrease at least 
exponential. For t→∞. For simulating times of short 
duration orders we expect again exponentially decrease, 
for long duration orders, however, we will also allow 
distributions decreasing more slowly for t t→∞. 
(A5) The modal value tmod of most of the empiric 
distributions is not on the boundary tmin or tmax. 
Therefore, we will typically fit to d.d.f. f with a 
maximum not on the boundary argsup {f(t);t≥0g>tmin. 
 
Identifying the class of distributions: Keeping 
positivity (A1) and the shape of the d.d.f. (A5) in mind, 
we have the following set of distributions for further 
consideration (in alphabetical order) with their mean µ 
and standard deviation σ. It is also important that all 
distributions are parameterized by the same amount of 
parameters (here two). Otherwise, distributions with 
more parameters would fit data more easily than those 
with less and the results would not be comparable: 
 
1. Beta-distribution BET(a, b, tmax): 
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Table 1: Classification of orders. (*: distribution does not fulfill 
property (A5), y: for all parameters) 
Short orders Orders with Long orders 
 medium length 
BET(a,b,tmax)† GAM(a,λ), a<1, λ>0* LLO(a,b) † 
GAM(a,λ), a≥1, λ>0* WEI (a,λ), a<1, λ>0* LNO(µ,σb) † 
WEI (a,λ), a≥1, λ>0* 
 

2. Gamma-distribution GAM (a, λ): 
1( ) .( ) exp( ), 0, 0, 0

( )
af t t t a t
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3. Log-logistic-distribution LLO (a, b): 
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4. Lognorm-distribution LNO(µ, σ): 
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5. Weibull-distribution WEI (a, λ): 
 

1( ) exp( ) , 0, 0, 0a a af t a t t a tλ λ λ−= − > > ≥  

1 1 2 11 1
. (1 ), . (1 2 ) (1 )µ a a aσ

λ λ
− − −= Γ + = Γ + − Γ +  

 
 The exponential distribution EXP( l) equals 
GAM(1; l) and WEI(1; l). Because of this and since it 
has only one parameter, we do not list it seperatly. For 
more details about these distributions we refer the 
reader the following statistical handbook[4]. 
 It is easily seen that depending on the properties for 
the remaining time (A3) and the longtime behavior 
(A4) we may classify the above listed distributions in 
the way described in Table 1. 
 
* Short duration orders: P(X >s+t│X >t)≤P(X >s) 
and P(X >t) decreases exponentially or faster, i.e., 
P(X>t)= O(exp(-t)) or P(X >t) = o(exp(-t)) for t→∞. 
* Medium duration orders: P(X >s+t│X >t) > P(X >s) 
and P(X >t) decreases nearly exponentially, i.e., P(X 
>t)= O(exp(-ta)) or P(X > t) = o(exp(-ta)) for some a<1 
and t→∞. 
* Long duration orders: P(X >s+t│X >t)>P(X>s) and 
P(X >t) decreases slower than exponentially, i.e., 
P(X>t)=o(exp(-ta)) for all a > 0 and t→∞. 
 
 BET(a, b, tmax) is an extreme case in the class of 
distributions for easy complexity orders as it has the 
feature that the probability for times t >tmax equals 0. 

Notice also that LLO(a, b) has no finite second moment 
for a≤2. For being able to use the method of moment 
fitting to find suitable parameters of this distribution we 
have to assume that a > 2. 
 
Fit class of distributions to observed data: To fit the 
parameters of a certain distribution to some given data 
we use the method of moment fitting: 
 
Step 1: Calculate the estimates of the mean and the 
standard deviation (both estimates are unbiased and 
have minimal mean square error). 
Step 2: Find parameters of the distribution such that 
mean and standard deviation of the distribution equal 
the estimated moments. This is done by simply 
applying standard mathematical software solvers on the 
squared difference of the actual mean and standard 
deviation and the respective target values. 
 
 We used this method instead of maximum 
likelihood estimators (ML-estimator), as we have to fit 
a rather big class of distributions and it is not true for all 
distributions that the ML-estimator of their parameters 
is unbiased and has minimal mean square error. The 
estimators of the mean and standard deviation, 
however, always are. Since for all of the above 
distributions and for LLO(a; b) with a >2 the first and 
second moment exists, we will not encounter any 
problems. 
 To test the hypothesis that the observed data is 
actually distributed as we just calculated and to find the 
distribution which fits best the data we use the 
Kolmogorov-Smirnov-test (K-S-test). We preferred the 
K-S-test to the x2 -test for two reasons: 
 
* First, the K-S-test is independent of the assumed 
distribution. 
* Second, the K-S-statistics are more sensitive to 
singular deviations from the assumed distribution 
whereas the x2 -statistics is only sensible to greater 
single deviations or deviations within many intervals. 
 
 According to (A1) we have to find the minimum 
tmin≥ 0 of the distribution (and for BET also the 
maximum tmax). We started with the observed minimum 
of the data and the iteratively examined smaller tmin. 
We finally took the tmin with the smallest K-S-estimator 
(analogously for tmax).  
 
Section 1: The summary of the results for the work 
times for Section 1 (as well as the summaries for the 
other sections) can be found in Fig. 1. 
 We see that with the complexity of the order the 
mean time LTFin increases as well as the empirical tmin 
and tmax (except for medium complexity orders). 
 For simple and medium complexity orders we may 
easily decide which distribution to choose: For both 
cases   the   gamma   distribution   is one of the best fits, 
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 Section 1 Section 2 Section 3 Section 4 
Description Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult 
No. of data 173 52 18 262 50 10 567 186 166 678 132 61 
Min. 1 1 4 5 15 25 2 2 2 3 5 10 
Max. 18 6 26 560 125 540 30 20 240 25 45 260 
Mean 2,5 3,4 8,9 22,0 34,9 176,9 5,9 7,2 12,0 7,5 13,1 30,4 
Variance 3,2 1,5 30,1 1.670,2 777,0 22.399,6 18.7 21.3 411,4 12,1 45,5 1.266,9 
K-S test (5%) 0,115 0,210 0,358 0,094 0,215 0,379 0,064 0,111 0,118 0,058 0,132 0,194 
Beta 
(K-S statistics) 0,179 0,094 0,201 0,199 0,197 0,040 0,048 0,116 0,127 0,152 0,221 0,213 
a 1,649 5,200 1,819 0,313 0,970 0,924 1,701 2,153 0,309 4,798 3,156 0,592 
b 21,904 11,510 6,367 6,701 3,200 4,298 20,071 27,959 10,002 23,334 20,884 3,974 
tmin. 0 0 0 3 0 0 0 0 0 1 0 2 
tmax. 35 11 40 560 150 1.000 90 100 400 50 100 250 
Gamma 
(K-S statistics) 0,115 0,110 0,126 0,181 0,125 0,035 0,093 0,110 0,124 0,157 0,220 0,186 
a 0,648 8,001 0,794 0,290 1,568 1,337 1,892 2,396 0,350 4,668 3,784 0,730 
λ 0,447 2,337 0,162 0,013 0,045 0,008 0,318 0,335 0,029 0,620 0,288 0,024 
tmin 1 0 4 5 0 6 0 0 0 0 0 3 
Log-logistic 
(K-S statistics) 0,197 0,146 0,124 0,156 0,193 0,117 0,185 0,184 0,144 0,184 0,256 0,149  
a 3,170 5,502 3,549 2,224 3,021 2,893 3,193 3,442 2,267 4,865 4,051 2,526 
b 2,069 3,240 7,773 15,394 28,941 144,106 5,028 6,198 8,506 7,947 11,852 23,154 
tmin 0 0 0 0 0 0 0 0 0 1 0 0  
Lognormal 
(K-S statistics) 0,163 0,130 0,145 0,130 0,166 0,054 0,145 0,151 0,087 0,154 0,216 0,133 
µ’ 0,680 1,172 2,023 2,425 3,306 4,896 1,570 1,793 1,809 2,066 2,458 2,983 
σ’ 0,658 0,343 0,568 1,193 0,702 0,748 0,651 0,591 1,162 0,393 0,484 0,929 
tmin 0 0 0 1 0 0 0 0 0 1 0 0 
Wiebull 
(K-S statistics) 0,183 0,106 0,198 0,174 0,191 0,037 0,105 0,126 0,112 0,171 0,229 0,196 
a 1,376 3,094 1,664 0,616 1,260 1,159 1,393 1,583 0,61 2,290 2,038 0,885 
λ 0,373 0,261 0,101 0,061 0,027 0,005 0,154 0,126 0,121 0,118 0,067 0,034 
tmin   0 0 0 2 0 0 0 0 0 0 0 1 

 
Fig. 1: Statistics and fitted distributions for the orders in sections 1-4. Best fits are marked with bold values of their 
K-S statistics 
 

 
 
Fig. 2: Q-Q plot for work times in section 1 of 
difficult complexity orders 
 
for medium weibull fits best. Depending on the 
parameters all of these distributions are classified as 
short or medium. For difficult complexity orders we 
have the problem to decide which distributions fit best: 
The best fitting distributions belong to different classes. 
To decide which distribution fits best we use an 
additional tool: The Q-Q plot where the quantiles of the 
empirical distribution on the ordinate are compared to 
the quantiles of the fitted distributions (Fig. 2). 

 In   the   Q-Q   plot   the   steeper   ascend     than 
the  empirical   distribution   indicates   that   the   fitted  

 
 
Fig. 3: Q-Q plot for work times in section 2 for 
simple complexity orders 
 
distribution puts less probability on the interval and 
vice versa. The steeper than asymptotic ascend for large 
t also means that the respective distribution is more 
heavy-tailed than the empirical distribution.  
 For difficult complexity orders we see that all 
distributions have lower probabilities for the interval 
[6,10] and compensate that on the interval [10, 14]. For 
times > 14 all distributions are parallel to the empirical 
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distribution, but on different levels. The gamma 
distribution fits better for small times whereas the log-
logistic distribution fits better for large times. Since the 
data for small times is more reliable (10 points on the  
interval [0, 7] compared to 3 on the interval [14, 26]) 
we rely on the better fit for small times and therefore 
prefer the gamma distribution. For more reliable results 
we would need more data (Fig. 1). 
 
Section 2: Again, we see that with the complexity of 
the order the mean time LTFin increases. For medium 
complexity orders we can easily decide which 
distribution to choose: The only best fit is the 
lognormal distribution. Therefore, it is classified as 
long. 
 For simple and difficult complexity orders we have 
the problem of deciding which distribution fits best: For 
difficult complexity orders the best fitting distributions 
belong to different classes and for simple no 
distribution fits properly according to the K-S statistics. 
To decide which distribution fits best we consult again 
the Q-Q plot: 
 For simple complexity orders (Fig. 3) we easily see 
in accordance with the K-S statistics that the lognormal 
distribution is the best fit of the data. However, the 
probability for small t (up to 30 min) is larger and the 
probability for medium t (from 30 min to 80 min) is 
smaller   than   modeled by any of the distributions 
(Fig. 5). Since we observed a large number of data, 
resampling of the empirical distribution would be an 
option. 
 Resampling means that instead of simulating the 
unknown distribution with a best fit estimate the dis- 
tribution is directly simulated by the empirical 
distribution. This is done by drawing numbers of the set 
of data independently and with equal probability. 
 
Advantages of resampling compared to sampling 
from a fitted distribution 
1. The simulated distribution equals exactly the 
observed distribution. 
2. It works for arbitrary data and is easy to handle. 
 
Disadvantages of resampling compared to sampling 
from a fitted distribution 
1. Only events that have actually occured can be 
samples, i.e., rare events (here large LTFin) will not be 
simulated. 
2. This only works for large numbers of observed 
data. Otherwise there would be too much variance due 
to random perturbations. 
 
 For difficult complexity orders the Q-Q plot does 
not give any additional information (Fig. 4). We would 
need more data to classify the distribution correctly. 
Classifying the distribution as difficult and simulating 
LTFin with a fitted lognormal distribution is the most 

plausible way to model LTFin with the accessible data 
(Fig. 1). 
 
Section 3: Again, we see that with the complexity of 
the  order  the  mean  time LTFin increases as well as the  
 

 
 

Fig. 4: Q-Q plot for work times in section 2 for 
difficult complexity orders 
 

 
 
Fig. 5: Histogram for work times in section 2 for 
simple complexity orders 
 

 
Fig. 6: Histogram for work times in section 3 for 

simple complexity orders 
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empirical times tmin and tmax (except for medium 
complexity orders). For medium and difficult 
complexity orders we can easily decide which 
distribution to choose: The only best fit is the gamma or 
lognormal distribution, respectively. Therefore and 
according to the parameter a = 2:396 for the gamma 
distribution it is classified as short or long, respectively. 
 For simple complexity orders no distribution _ts 
properly according to the K-S statistics. As also seen 
for other orders the best fit is the gamma distribution. 
However, the empirical distribution has (at least) three 
local maxima (trimodal) and should be quite reliable 
with 567 observations. Therefore, the value of the K-S 
statistics is too large and we again suggest sampling 
directly from the empirical distribution (Fig. 6). 
 However, since the local maxima are at 5 min, 10 
min, 15 min and 20 min there might be a flaw in 
recording data. Some recorded times seem to be 
rounded to the next multiple of 5 min. For a more 
detailed analysis of the distribution in this case the 
experiment should be repeated. 
 
Section 4: Again, the summaries for the task Section 4 
can be found in Fig. 1. This time, we see that with the 
complexity of the order the mean time LTFin increases 
as well as the empirical times tmin and tmax. For difficult 
complexity orders we can easily decide which 
distribution to choose: The best fit is the lognormal 
distribution. Therefore, it is classified as long. 
 For simple and medium complexity orders no 
distribution fits properly according to the K-S statistics. 
This time, the best fit is either the gamma or the 
lognormal distribution with only slight differences in 
the value of the K-S statistics. Let us again have a look 
on the Q-Q plots (Fig. 7 and 8). 
 The distribution of the simple complexity orders is 
again bimodal and thus no distribution fits properly. 
Again we would suggest sampling directly the empiric 
distribution, if we were sure that the data is recorded  
correctly. Since the local maxima are at 5 min, 10 min, 
15 min and 20 min, there is definitely a flaw in the 
recorded data. Nearly all recorded times seem to be 
rounded to the next multiple of 5 min (Fig. 9). 
 For more detailed analysis of the distribution of 
times, the experiment should be repeated. The best fit 
for medium complexity orders is either the lognormal 
or the log-logistic distribution having for all times 
nearly the same increase as the empirical distribution in 
the Q-Q plot (Fig. 8). For continuity reasons we suggest 
using the lognormal distribution for sampling. 
 
 

RESULTS AND DISCUSSION 
 
 We found that depending on the difficulty of the 
order process in a service oriented supply chain 
different  distributions  qualified  as  the  best  fit for the  

respective data sets. For short or medium duration 
orders (recognizable as a rule of thumb by an empirical 
mean of less than 10) gamma and weibull distributions 
were the best fits. For long duration orders the log-
logistic or lognormal distributions fitted best.  
 

 
 
Fig. 7: Q-Q plot for work times in section 4 for 
simple complexity orders 
 

 
 
Fig. 8: Q-Q plot for work times in section 4 for 
medium complexity order 
 

 
Fig. 9: Histogram for work times in section 4 for 
simple complexity order 
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According to this result, we suggest to simulate LTFin 
depending on the complexity of the order. 
 
* LTFin of short duration orders should be simulated 
with fitted gamma or weibull distributions. Keep in 
mind that as seen in Fig. 1 for gamma distributions a 
good estimate for tmin is crucial. It is therefore very 
important to know the minimal time from data analysis 
or even better from theoretical considerations. Since the 
best fits of the gamma distribution have suitable 
minima tmin according to the empirical distribution, the 
gamma distribution should be preferred. 
* For long duration order times LTFin should be 
simulated by fitted log-logistic or lognormal 
distributions. In all cases the best fit was observed at 
tmin=0. In most cases the lognormal distribution was the 
best fit, so we suggest to use always the lognormal 
distribution for sampling data. 
* Some of the empirical distributions were bimodal 
or one even trimodal. Since we can relay on many 
observations this should not be the result of statistical 
perturbations. In all these cases no distribution fitted 
properly. For actual simulations we therefore use the 
empirical distribution to sample from. However, since 
the local maxima of the empirical distribution function 
were always multiples of 5 s, there might also be a flaw 
in recording the data. 
We suggest the simulation of times LTFin according to 
Table 2. 
 
Table 2: Final Results: Proposal for simulating the different types 
of orders (*: possibly not reliable data as times seem to be rounded to 
multiples of 5 min) 
Order Classification Method of simulation 
Section 1, simple Medium GAM(0.648,0.447)+1 
Section 1, medium Short GAM(8.001, 2.337) 
Section 1, difficult Medium GAM(0.794, 0.162)+4 
Section 2, simple Long Empirical distribution 
Section 2, medium Long LNO(3.306, 0.702) 
Section 2, difficult Long LNO(4.896, 0.748) 
Section 3, simple Short Empirical distribution* 
Section 3, medium Short GAM(2.396, 0.335) 
Section 3, difficult Long LNO(1.809, 1.162) 
Section 4, simple Shot Empirical distribution* 
Section 4, medium Long LNO(2.458, 0.484) 
Section 4, difficult Long LNO(2.983, 0.929) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 For future work it might be interesting to find 
proper fitting bimodal distributions and extend the 
classification of distributions of time accordingly. In 
this context compare also the work on hazard models 
(technical background) by Bain and Engelhardt[5] and 
survival times (biological and medical background) by 
Lee[6] and Kalbfleisch and Prentice[7]. 
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