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Abstract: This study provided the basic needs of parameters estimation for nonlinear growth model such as 
partial derivatives of each model, determination of initial values for each parameter and statistical tests of 
industrial usage. Twelve nonlinear growth models and its partial derivatives for oil palm yield growth are 
presented in this study. The parameters are estimated using the Marquardt iterative method of nonlinear 
regression relating oil palm yield growth data. The best model was selected based on the model 
performance and it can be used to estimate the oil palm yield at any age of oil palm. This study found that 
the Gompertz, logistic, log-logistic, Morgan-Mercer-Flodin and Chapman-Richard growth models have the 
ability for quantifying a growth phenomenon that exhibit a sigmoid pattern over time. Based on the 
statistical testing and goodness of fit, the best model is the Logistic model and followed by the Gompertz 
model, Morgan-Mercer-Flodin, Chapman-Richard (with initial stage) and Log-logistic growth models. 
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INTRODUCTION 

 
Growth model methodology has been widely used 

in the modeling of plant growth. Since growth of living 
things are normally nonlinear, it is reasonable to 
explore the use of nonlinear growth model to oil palm 
yield. In the oil palm industry, there are only a few 
theoretical model formulated specifically for oil palm 
industry applications. Modeling of the growth in other 
disciplines and application here a considerable potential 
for modeling of the Fresh Fruit Bunches (FFB) growth 
and oil palm yield. This is partly attributed to the fact 
that the statistical methodology used for fitting 
nonlinear models to oil palm growth data is closely 
related to the mathematics of the models and not 
explored yet.  From our exploratory study on modeling 
practices, little work has been reported on modeling the 
oil palm yield growth. A nonlinear growth model was 
developed and proposed the used of partial derivatives 
of twelve nonlinear growth models. Growth studies in 
many branches of science have demonstrated that more 
complex nonlinear functions are justified and required 
if the range of the independent variable encompasses 
juvenile, adolescent, mature and senescent stages of 
growth[1]. Some of the application of the nonlinear 
model in agronomy was conducted by[2] is cocoa 
industry. While research in modeling tobacco growth 
data was done by[3-4].  

The problem in modeling oil palm yield growth is 
that it does not follow a linear model.  It normally 
follows a nonlinear growth curve. With the increase in 
the number of independent variables, modeling a 

nonlinear curve becomes more complex. This causes 
the model to be more inaccurate.  The function of a 
growth curve has a sigmoid form ideally its origin is at 
(0,0), a point of inflection occurring early in the 
adolescent stage and either approaching a maximum 
value, an asymptote or peaking and falling in the 
senescent stage. Normally, oil palm will be harvested 
after four years of planting.  The oil palm yield will 
increase vigorously until the tenth year of planting.  The 
yield will then remains at a stable stage until the 
twenty-fifth year.  The oil palm yield growth data are  
given in Table 1. The data used in this study are 
secondary data from research done by[5-6]. The research 
was conducted at Serting Hilir in Negeri Sembilan 
which normally annual rainfall in this location is had 
1600mm to 1800 mm with two distinct droughts in 
January-March and June-August, however, the weather 
relatively wet. The data used here is the average of 
fresh fruit bunches and measured in tonnes/hectare/year 
from year 1979 to 1997. 

Nonlinear models are more difficult to specify and 
estimate than linear models and the solutions are 
determined iteratively[7-8]. The iterative method used in 
the nonlinear regression model include the modified 
Gauss-Newton method (Taylor series), gradient or 
steepest-descent method, multivariate secant or false 
position and  is the Marquardt method[7]. If a model, 
after reparameterization, does not behave in a near-
linear fashion, the parameter estimates will not have 
desirable properties such as unbiasedness, normality 
and minimum variance and hence, complex estimation 
techniques (e.g[9]) may be necessary[8].  In such cases,  
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Table 1: The oil palm yield data 
Year  4 5 6 7 8 9 10 11 12 13 
Weight  11.78 18.43 25.21 30.78 33.03 35.66 36.96 37.97 38.04 39.20 
Year  14 15 16 17 18 19 20 21 22  
Weight  36.50 37.21 39.97 38.45 33.65 34.71 37.75 32.81 37.99  

 
the use of partial derivatives rather than computational 
approximations usually results in more efficient and 
more precise parameter estimation. Therefore, the 
purpose of this study was to derive the partial 
derivatives of twelve nonlinear growth models and 
demonstrate the method of parameter estimation using 
experimental oil palm yield growth data. The NLIN 
(nonlinear regression) procedure in[10] was used to fit the 
models to the oil palm yield growth data and estimate 
the parameters.  

Since the nonlinear growth model study has not 
been explored yet in oil palm industry, this study was 
conducted purposely to model the oil palm yield growth 
using nonlinear growth model. This study provided the 
basic needs of parameters estimation for nonlinear 
growth model such as partial derivatives of each model, 
determination of initial values for each parameter and   
statistical tests of industrial usage. Twelve nonlinear 
growth models were considered and the equations are 
presented in Table 1.  The best model was selected 
based on the model performance and it can be used to 
estimate the oil palm yield at any age of oil palm. Then, 
with this useful information of the age and the total 
planted area of oil palm, the model can also be used to 
estimate the total production of Malaysian oil palm 
yield.    
 

MATERIALS AND METHOD 
 

For a nonlinear regression model 
 

                      φi = f(ti, β) + εI (1) 
 
i = 1, 2, …, n, where φ is the response variable, t is the 
independent variable, β is the vector of parameters βj to 
be estimated (β1, β2, …, βk), εi is a random error term, k 
is the number of unknown parameters and n is the 
number of the observation. The estimators of βj’s are 
found by minimizing the sum of squares error (SSerr) 
function as below 
 

                       SSerr = [ ]
219

i i
i 1

f (t , )
=

φ −� �  (2) 

 
under the assumption that the εi are normal and 
independent with mean zero and common variance σ2. 
Since φi and ti are fixed observations, the sum of 
squares residual is a function of β. Least squares 
estimates of β are values which when substituted into 
Eq. 2  will  make  the SSerr  a  minimum  are   found  by 
 

Table 2: Nonlinear mathematical models considered in this study 
Model Integral equation form Source 

Logistic  ( t ) /(1 exp ( t ))φ = α + β − κ + ε [7] 

Gompertz (t) exp( exp( t))φ = α −β −κ + ε [7] 

Von Bertalanffy [ ]
1

1 k t 1( t ) e− δ − − δφ = α − β  + ε [8, 11] 

Negative (t) (1 exp( t))φ = α − −κ + ε [1] 
Exponential 

Monomolecular (t) (1 exp( t))φ = α − β −κ + ε [7] 

Log-logistic (t) /(1 exp( ln(t)))φ = α + β −κ + ε [12] 

Richard’s ( )1

(t) / 1 exp( t)) δ� �φ = α + β −κ� �� �
+ ε [8] 

Weibull (t) exp( t )δφ = α − β −κ + ε [8, 13] 

Schnute ( ) ( )t exp( t)
δ

φ = α + β κ + ε [14-15] 

Morgan d ��(t)=(��+�t )/�+t + ε [13, 16] 

-Mercer-Flodin 

Chapman-Richards 
1

1(t) (1 exp( t)) −δφ = α − β −κ + ε [7] 

Stannard ( )( ) �

3�(t)=� 1+exp - � +�t �� �� �
+ ε [12] 

 
differentiating Eq. 2 with respect to each parameter and 
setting the result to zero. This provides the k normal 
equations that must be solved for �̂ . These normal 
equations take the form 
 

                  { }19
i

i i
i 1

j

f (t , )
f (t , ) 0

=

� �∂φ − =� � �∂β� �� �

�
�   (3) 

 
for j = 1, 2, .., k. When the model is nonlinear in the 
parameters so are the normal equations. Consequently, 
for the nonlinear models considered in Table 2, it is 
impossible to obtain a closed form solution to the least 
squares estimate of the parameters by solving the k 
normal equations described in Eq. 3. Hence an iterative 
method must be employed to minimize the SSerr

[7-8]. 
The Marquardt iterative method is an estimator 

method, which represent a compromise between the 
Gauss-Newton method and the steepest descent 
method. It is a method that combined the best features 
of both while avoiding their most serious limitations. 
Due this characteristic we decided to use the method. 
The Marquardt iterative method requires specification 
of the names and initial values of the parameters to be 
estimated, the model using a single dependent variable 
and the partial derivatives of the model with respect to 
each parameter [10].  

The usual statistical tests, which are appropriate in 
the general linear model case, are, in general, not 
appropriate when the model is nonlinear and one cannot  
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Table 3: Partial derivatives of the Logistic and Gompertz, von Bertalanffy, Negative exponential growth models 
 Model and partial derivatives 

 Logistic: 
0 1 2

(t) /(1 exp( t))φ =α +α −α + ε 

0
∂φ ∂α  = 1/(1 + α1 exp(-α2t)) 

2
∂φ ∂α  = (-α0 exp(-α2t))/(1 + α1 exp(-α2t))2 

1
∂φ ∂α   = (α0α1t)/(1 + α1 exp(-α2t))2)(exp(-α2t)) 

 Gompertz: 
0 1 2

(t) exp( exp( t))φ = α −α −α + ε 

0
∂φ ∂α  = exp(α1 exp(-α2t)) 

2
∂φ ∂α  = -α0 exp(-α1 exp(-α2t))(exp(-α2t)) 

1
∂φ ∂α   = α0α1t exp(-α1 exp(-α2t))(exp(-α2t)) 

 Von Bertalanffy: [ ]3 3

1
(1 ) 1

0 1 2
(t) exp( t)−α −αφ = α − α −α  + ε 

0
∂φ ∂α  = [ ]3 3 3

1
1(1 ) (1 )

0 0 1 2
( ) exp( t)

−− α −α −αα α − α −α  

3
∂φ ∂α  = ( )( )3 3

1
1(1 ) (1 )

2 3 0 1 2
exp( t) /(1 ) exp( t)

−−α −α− −α − α α − α −α  

1
∂φ ∂α  = ( )( )[ ]3 3

1
1(1 ) (1 )

1 3 2 0 1 2
t /(1 ) exp( t) exp( t)

−−α −αα − α −α α − α −α  

2
∂φ ∂α  = ( )( ){ }3 3

1
1(1 ) (1 )

3 0 1 2 3
exp (1/(1 )) ln exp( t (1 )

−−α −α− α α − α −α − α * 

 
( )( )

( ) ( )( )
3

3 3

(1 )

0 1 2 3

(1 ) (1 )

0 0 0 1 2

ln exp( t) /(1 )

ln( ) / exp( t)

−α

−α −α

� 	α − α −α − α −
 

� �

α α α − α −α
 
 �

 

 Negative exponential: 
0 2

(t) (1 exp( t))φ = α − −α + ε 

0
∂φ ∂α  = (1-exp(-α2t)) 

1
∂φ ∂α  - does not exist 

2
∂φ ∂α   = (α0t exp(-α2t)) 

 
Table 4: Partial derivatives of the Monomolecular, log-logistic, Richard’s, Weibull, Schnute Morgan-Mercer-Flodin gowth models 

 Monomolecular: 
0 1 2

(t) (1 exp( t))φ = α − α −α + ε 

0
∂φ ∂α  = (1- α1 exp(-α2t)) 

1
∂φ ∂α  = (-α0 exp(-α2t)) 

2
∂φ ∂α   = (α0α1t exp(-α2t)) 

 Log-logistic: α0/(1 + α1 exp(-α2ln(t))) + ε 

0
∂φ ∂α  = 1/(1 + α1 exp(-α2ln(t))) 

1
∂φ ∂α  = [α0 exp(-α2ln(t))][ 1 + α1 exp(-α2ln(t))]2 

2
∂φ ∂α   = [α0α1ln(t) exp(-α2ln(t))]/ (1 + α1 exp(-α2ln(t)))2 

 Richard’s: ( ) 3

1

0 1 2
(t) / 1 exp( t)) α� �φ = α + α −α

� �� �
+ ε 

0
∂φ ∂α  = ( ) 3

1

1 2
1 exp( t)

−
α+ α −α  

1
∂φ ∂α  = ( )( ) ( )3

1
1

0 3 1 2 2
/ 1 exp( t) exp( t)

− −
α−α α + α −α −α  

2
∂φ ∂α  = ( )( ) ( )3

1
1

0 1 3 1 2 2
t / 1 exp( t) exp( t)

− −
αα α α + α −α −α  

3
∂φ ∂α   = ( ) ( )3

1
2

0 1 2 1 2 3
1 exp( t) ln 1 exp( t)

−
−αα + α −α + α −α α  

 Weibull: 3

0 1 2
(t) exp( t )αφ = α − α −α + ε 

0
∂φ ∂α  = 1.0 

1
∂φ ∂α  = ( )3

2
exp tα− −α  

2
∂φ ∂α  = ( )( )3 3

2 1
exp t tα α−α α  

3
∂φ ∂α    = ( )3 3

2 1 2
exp t ln(t)tα α−α α α  
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Table 5: Partial derivatives of the Schnute, Morgan-Mercer-Flodin, Champan-Richard and Stannard growth models 
 Schnute: ( ) ( ) 3

0 1 2
t exp( t)

α

φ = α + α α + ε 

0
∂φ ∂α  = ( )( )3 1

3 0 1 2
exp( t)

α −

α α + α α  

1
∂φ ∂α  = ( )( ) 3 1

3 2 0 1 2
exp( t) exp( t)

α −

α α α + α α  

2
∂φ ∂α  = ( )( ) 3 1

1 3 2 0 1 2
t exp( t) exp( t)

α −

α α α α + α α  

3
∂φ ∂α  = ( ) ( )3

0 1 2 0 1 2
exp( t) ln exp( t)

α

α + α α α + α α  

 Morgan-Mercer-Flodin: 3

0 0 1 2
(t) ( ) /(1 ( t) )αφ = α − α − α + α + ε 

0
∂φ ∂α  = 3

2
1 (1 ( t)α− + α  

1
∂φ ∂α  = 3

2
(1 ( t)− α+ α  

2
∂φ ∂α  = ( ) ( )3 3 2

3 0 1 3 2 2
( )( t) / ((1 ( t) )α αα α − α α α + α  

3
∂φ ∂α  = ( ) ( )3 3

2

0 1 2 2 2 2
( ) ln( t)( t) / 1 ( t)α αα − α α α α + α  

 Chapman-Richard: 3

1
1

0 1 2
(t) (1 exp( t)) −αφ = α − α −α + ε 

0
∂φ ∂α  = ( ) 3

1
1

1 2
1 exp( t) −α− α −α  

1
∂φ ∂α  = ( )( ) ( )3

1
1

1
0 3 1 2 2
/(1 ) 1 exp( t) exp( t)

−
−α−α − α − α −α −α  

2
∂φ ∂α  = ( )( ) ( )3

1
1

1
0 1 3 1 2 2

t /(1 ) 1 exp( t) exp( t)
−

−αα α − α − α −α −α  

3
∂φ ∂α  = ( )( ) ( )3

1
2 1

0 3 1 2 1 2
/(1 ) 1 exp( t) ln 1 exp( t)−αα − α − α −α − α −α  

 Stannard: ( )( ) 3

0 1 2 3
(t) 1 exp ( t)

α

� �φ = α + − α + α α� �  

0
∂φ ∂α  = ( )( )( ) 3

1 2 3
1 exp ( t)

− α

+ − α + α α  

1
∂φ ∂α  = ( )( ) ( )( )( ) 31

0 1 2 3 1 2 3
exp t 1 exp t

−α

α − α + α α + − α + α α  

2
∂φ ∂α  = ( )( ) ( )( )( ) 31

0 1 2 3 1 2 3
t exp ( ) / 1 exp ( ) /

−α

α − α + α α + − α + α α  

3
∂φ ∂α  = 

( )( ) ( )( )
( )( )( ) ( ){ }

3

0 1 2 3 1 2 3

1 2 1 2 3 3 1 2 3

1 exp ( t) / ln 1 exp ( t) /

* (( t)exp ( t) / ) / ( t) /

− α

� � � �α + − α + α α + − α + α α� � � �

− α + α − α + α α α + α + α α
 

 
simply use the F statistic to obtain conclusions at any 
stated level of significant[7-8]. This study considers 
several procedures to test the goodness of fit for 
nonlinear model, such as confidence interval of the 
parameters estimated; asymptotic correlation matrix, 
residual analysis and normality probability plot were 
carried out. The Mean Squares Error (MSE), Mean 
Absolute Error (MAE), correlation coefficient between 
actual values and estimated values and the Mean 
Absolute Percentage Error (MAPE) were used to 
measure the model performance.  
 
Partial derivatives of the models: Let the symbols of 
the parametersα, β, κ and δ, in the nonlinear model be 
replaced by new symbols α0, α1,  α2 and α3 
respectively. The parameters for all models considered 
here are defined as follows: α0 is the asymptote or the 
potential maximum of the response variable; α1 is the 
biological constant; α2 is the parameter governing the 
rate at which the response variable approaches its 
potential maximum; and α3 is the allometric constant. 

The partial derivatives of the models with respect to 
each parameter (

j
)∂φ ∂α are given in Table 3 to 5. The 

NLIN procedure in[10] requires that the integral forms 
and the partial derivatives of the nonlinear models must 
be entered in the program using valid SAS syntax. 

The Marquardt algorithm requires that an initial 
value for each parameter be estimated. Initial value 
specification is one of the most difficult problems 
encountered in estimating parameters of nonlinear 
models [7]. In appropriate initial values will result in 
longer iteration, greater execution time, non-
convergence of the iteration and possibly convergence 
to unwanted local minimum sum of squares residual. 
The simplest parameter to specify is the α0. This is 
attributed to the clarity of its definition. The parameter 
α0 is defined as maximum possible value of the 
dependent variable determined by the productive 
capacity of the experimental site. Therefore, in our case 
α0 was specified as the maximum value of the response 
variable in the data. Then, the α2  parameter is defined 
as   the  rate  constant  at  which  the  response   variable  



J. Math. Stat. Sci., 1 (3): 225-233, 2005 

 229 

 
approaches its maximum possible value α0. For 
modeling biological growth variables the, allometric 
constant α3 lies between zero and one for the Chapman-
Richards growth model and is positive for the von 
Bertalanffy, Richard’s, Weibull and Morgan-Mercer-
Flodin growth models. Finally, α1 parameter can be 
specified by evaluate the models at the start of growth 
when the predictor variable is zero.  
 

RESULTS AND DISCUSSION 
 

The least squares estimates of the parameters of the 
nonlinear models for oil palm yield-age relationship are  
given in Table 6 and 7. The parameter estimates for the 
logistic, Gompertz, negative exponential, 
monomolecular and Morgan-Mercer-Flodin growth 
functions are all statistically significant at the 5% level. 
Estimates of α1 and α3 for von Bertalanffy, Richard’s 
and Chapman-Richard growths model are not 
statistically significant at the 5% level. Parameter 
estimates of the Weibull and Stannard growth models 
except α1 are statistically significant at 5% level. The 
Marquardt iteration procedure was converge for all 
growth models with various numbers of iterations. The 
minimum iteration is 8 for negative exponential growth 
model and Chapman-Richard growth model recorded 
the highest iteration i.e. 43. The Schnute model is not 
presented as it failed to converge. 
Statistical significance of the parameters of the 
nonlinear models was determined by evaluating the 
95% asymptotic confidence intervals of the estimated 
parameters. The null hypothesis H0: αj = 0 was rejected 
when the 95% asymptotic confidence interval of αj 
does not include zero. The 95% asymptotic confidence 
intervals for each growth model are presented at last 
column Table 6 and 7. 

Table 8 presents the asymptotic correlation 
coefficients among the parameter estimated. All 
asymptotic correlation coefficients are relatively small, 
except for von Bertalanffy {(α1, α2)=0.9248; (α1, 
α3)=0.9970; (α2, α3)=0.9496}, Richard’s {(α1, α2) 
=0.9752; (α1, α3) =0.9937; (α2, α3)=0.9495} and 
Weibull {(α0, α3)=-0.9999; (α1, α2)=-0.9475} 
respectively.   

Table 9 provides predicted values of fresh fruit 
bunch over the range of age using the least squares 
parameter estimates derived from the Marquardt 
algorithm. The logistic, von Bertalanffy, Richard’s and 
Stannard models have produced a slightly smaller mean 
absolute percentage error (0.03) compared to the 
Gompertz and MMF (0.04), the negative exponential, 
monomolecular and Weibull (0.05), the log-logistic 
(0.06) and Chapman-Richards (0.07). All the models in 
Table 9 appear to predict reasonable estimates over the 
entire range of  age. Figure 2 shows the plotted residual  

 
Table 6: Parameter estimates of the logistic, Gompertz, negative 

exponential, monomolecular, log-logistic, Richard’s and 
Weibull growth models for yield-age relationship 

   Asymptotic  
 Parameter Asymptotic confidence interval 
Model parameter Estimated standard error lower        upper 
Logistic 
α0  37.0806 0.5327 35.9514 38.2098 
α1 4.8149 1.3115 2.0345 7.5952 
α2 0.7817 0.1087 0.5511 1.0122 
Gompertz 
α0 37.1788 0.5701 35.9703 38.3874 

α1 2.2683 0.4265 1.3642 3.1724 

α2 0.6132 0.0854 0.4321 0.7943 
Negative  
Exponential 
α0 37.5017 0.6643 36.1001 38.9033 

α2 0.4046 0.0362 0.3282 0.4811 
Monomolecular 
α0 37.3235 0.6565 35.9317 38.7151 

α1 1.1408 0.1367 0.8511 1.4305 

α2 0.4592 0.0689 0.3130 0.6055 
Log-Logistic 
α0 38.1172 1.0667 35.8559 40.3785 

α1 3.1947 0.8678 1.3549 5.0344 

α2 1.8874 0.3245 1.1995 2.5754 
Richard’s 
α0 37.0418 0.5698 37.0418  38.2564 
α1 11.0433 33.6452 -60.6695 82.7561 

α2 0.8729 0.4059 0.0076 1.7383 

α3 1.5205 2.0391 -2.8257 5.8667
  
Weibull 
α0 37.3234 0.8887 35.4291 39.2178 

α1 -5.2452 8.9982 -24.4245 13.9339 

α2 0.3415 0.0906 0.1483 0.5347 

α3 1.3442 0.0014 1.3411 1.3472 
 
Table 7: Parameter estimates of the MMF, von Bertalanffy, 

Chapman-Richard and Stannard growth models for yield-
age relationship 

   Asymptotic  
 Parameter Asymptotic confidence interval 
Model parameter Estimated standard error lower        upper 
Morgan-Mercer- 
Flodin 
α0 37.2032 0.6724 35.7700 38.6365 

α1 11.5236 2.5198 6.1525 16.8943 
α2 0.3534 0.0355 0.2776 0.4292 
α3  3.4347  0.8877  1.5425  5.3270 
Von Bertalanffy 
α0 37.0416 0.5698 35.8270  38.2562 
α1 -0.0455 0.1979 -0.4673  0.3763 
α2 0.8731 0.4058 0.0080 1.7382 
α3 2.5203 2.0388 -1.8254 6.8661 
Chapman-Richard 
(without initial stage) 
α0 35.8502 0.8162 34.1106  37.5898 
α1 0.4927 2.3322 -4.4783 5.4637 
α2 0.4488 0.1449 0.1397 0.7579 
α3 0.6155 2.8893 -5.5430 6.7740
  
Stannard 
α 37.0415 0.56598 35.8269 38.2561 

α1 -1.5799 0.2544 -2.1222  -1.0376 
α2 0.5743 0.5236 -0.5417 1.6904 
α3  0.6577  0.8825  -1.2232   2.5388 
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Logistic model 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Gompertz model 
 
Fig. 1: Residual plot for Logistic and Gompertz 

growth models 
 
Table 8: Asymptotic correlation for each nonlinear growth models fitted 
Model Asymptotic correlation 
Logistic  (α0, α1) = -0.1743;  (α0, α2) = -0.3631; (α1, α2) = 0.8863 
Gompertz  (α0, α1) = -0.2324;  (α0, α2) = -0.4398; (α1, α2) = 0.8675 
Von Bertalanffy (α0, α1) = -0.2911; (α0, α2) = -0.3891; (α0, α3) = -0.3073; 
 (α1, α2) =  0.9248; (α1, α3) = 0.9970; (α2, α3) = 0.9496. 
Negative  (α0, α2) = -0.5911 
exponential  
Monomolecular  (α0, α1) = -0.3532;  (α0, α2) = -0.5552; (α1, α2) = 0.8536 
Log-logistic (α0, α1) = -0.3162;  (α0, α2) = -0.7245; (α1, α2) = 0.7799 
Richard’s (α0, α1) = -0.3212; (α0, α2) = -0.3892; (α0, α3) = -0.3072; 
 (α1, α2) = 0.9752; (α1, α3) = 0.9937; (α2, α3) = 0.9495. 
Weibull (α0, α1) = -0.3766; (α0, α2) = 0.2781; (α0, α3) = -0.9999; 
 (α1, α2) = -0.9475; (α1, α3) = 0.3763; (α2, α3) = -0.2778. 
Morgan-  (α0, α1) = -0.2426; (α0, α2) = -0.0015; (α0, α3) = -
0.5212; 
Mercer-Flodin (α1, α2) = -0.7558; (α1, α3) = 0.6085; (α2, α3) = -0.5218. 
Chapman-Richard (α0, α1) = -0.7459; (α0, α2) = 0.4445; (α0, α3) = -0.6289; 
 (α1, α2) = -0.6471; (α1, α3) = 0.9104; (α2, α3) = -0.2844. 
Stannard  (α0, α1) = -0.0364; (α0, α2) = 0.2542; (α0, α3) = 0.3077; 
 (α1, α2) = -0.6204; (α1, α3) = -0.5031; (α2, α3) = 0.9871. 

 
of fitted nonlinear models. The plot showed that 

the residual are distributed along the zero line and we 
can conclude that the residual from the fitted models 
are normally distributed. 
 

Next, the models were diagnosed using error 
analysis. The error analysis is performed to analyze the 
difference between the error values and the estimated 
values of observation. This analysis is able to 
investigate the goodness of fit of the nonlinear models 
graphically  and  some  of the plots are illustrated in 
Fig. 1. The scattered plot of the errors is important in 
deciding    whether  the  residual  values  are  uniformly  

 
distributed, there is no systematic trend of the residual 
values or the variance is consistent or not. If the error 
plot showed that the errors have a homogeneous 
variance then the model are adequate to model the data. 
The figure shows that the errors are scattered uniformly 
and the residual variance is homogeneous. It is proved 
that the nonlinear growth models used in this study has 
the ability concerning the behaviors of the oil palm 
growth data.   

When nonlinear models are fitted to a biological 
growth data set statistical non-significance of the 
estimated parameters might imply one of the following:  

 
• One or more parameters in the model may not be 

useful, or more accurately, a reparameterized 
model involving fewer parameters might be more 
appropriate;   

• The biological growth data used for fitting the 
model are not adequate for estimating all the 
parameters; or  

• The model assumptions do not conform with the 
biological system being modeled. 

 
The argument in (ii) was the case with the von 

Bertalanffy and the Chapman-Richard growth models. 
Investigation of the differential forms and second 
derivatives of the von Bertalanffy and the Chapman-
Richard models indicate that the functions are suitable 
to model a system that encompasses the entire range of 
cycle (i.e. juvenile, adolescent, mature and senescent 
stages) of the biological response variable. However, 
the FFB growth measurements considered in this study 
lacks data on juvenile stages of growth. Hence, non-
significance of two of the parameters of the two models 
might be attributed to this cause. To support this 
argument we have included an initial data point (age = 
0, FFB = 0) to the data and refitted the von Bertalanffy 
and the Chapman-Richard models. Table 10 shows the 
parameter estimates, asymptotic standard error and 
asymptotic 95% confidence intervals for each 
parameter of these two models.  

Without inclusion of the initial data point two of 
the parameters (α1 and α3) are not statistically 
significant (Table 7). However, inclusion of the initial 
data point has resulted  in only the Chapman-Richard 
growth model showing statistically significant estimates 
of the three parameters. Meanwhile, the von Bertalanffy 
growth model did not shows any improvement. 
Inclusion of any additional data point from an early 
stage of growth will result in significant improvement 
in the estimate of the parameters of the Chapman-
Richard model. Table 9 also indicated that with initial 
values, the MAPE was reduced from 0.07 to 0.05. This 
illustrates that significance of the parameters of the 
Chapman-Richard growth model depends on the range 
of the growth data. 
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Table 9: Actual and predicted values of FFB yield, the associated measurement error and correlation coefficient between actual and predicted  
 FFB    Von Ber- Negative Mono- Log   Chapman-  Chapman- 
Year yield Logistic Gompertz alanffy Exponential molecular Logistic Richard Weibull MMF Richard  Richard* Stannard 
0 0 - - - - - - - - - - 0.92 - 
1 11.78 11.58 10.88 11.91 12.48 10.42 9.09 11.91 10.43 12.23 13.43 10.05 11.91 
2 18.43 18.46 19.11 18.28 20.81 20.33 20.46 18.28 20.33 17.51 20.01 19.51 18.28 
3 25.21 25.37 25.93 25.12 26.36 26.59 27.19 25.12 26.59 25.65 25.09 26.33 25.12 
4 30.78 30.62 30.59 30.61 30.07 30.54 30.90 30.61 30.54 31.21 28.71 30.71 30.61 
5 33.03 33.81 33.45 33.98 32.54 33.04 33.05 33.98 33.04 34.02 31.18 33.38 33.98 
6 35.66 35.51 35.11 35.68 34.19 34.62 34.38 35.68 34.61 35.40 32.82 34.97 35.68 
7 36.96 36.35 36.04 36.46 35.29 35.61 35.26 36.46 35.61 36.11 33.90 35.91 36.46 
8 37.97 36.74 36.56 36.79 36.03 36.24 35.86 36.79 36.24 36.50 34.60 36.45 36.79 
9 38.04 36.92 36.84 36.94 36.52 36.64 36.28 36.94 36.64 36.73 35.05 36.77 36.94 
10 39.20 37.01 37.00 37.00 36.85 36.89 36.60 37.00 36.89 36.87 35.34 36.95 37.00 
11 36.50 37.05 37.08 37.02 37.06 37.05 36.84 37.02 37.05 36.96 35.52 37.06 37.02 
12 37.21 37.07 37.13 37.03 37.21 37.15 37.03 37.03 37.15 37.02 35.64 37.12 37.03 
13 39.97 37.07 37.15 37.04 37.31 37.21 37.18 37.04 37.21 37.07 35.72 37.16 37.04 
14 38.45 37.08 37.16 37.04 37.37 37.25 37.30 37.04 37.25 37.10 35.76 37.18 37.04 
15 33.65 37.08 37.17 37.04 37.42 37.28 37.40 37.04 37.28 37.12 35.80 37.19 37.04 
16 34.71 37.08 37.17 37.04 37.44 37.30 37.48 37.04 37.30 37.14 35.82 37.19 37.04 
17 37.75 37.08 37.18 37.04 37.46 37.31 37.55 37.04 37.31 37.15 35.83 37.20 37.04 
18 32.81 37.08 37.18 37.04 37.48 37.31 37.60 37.04 37.31 37.16 35.84 37.20 37.04 
19 37.99 37.08 37.18 37.04 37.48 37.32 37.65 37.04 37.32 37.17 35.84 37.20 37.04 
MSE  2.96 3.15 2.94 4.06 3.72 4.64 2.94 3.72 3.20 6.19 3.41 2.94 
MAE  1.22 1.35 1.22 1.61 1.53 1.72 1.22 1.53 1.37 2.27 1.45 1.22 
MAPE  0.03 0.04 0.03 0.05 0.05 0.06 0.03 0.05 0.04 0.07 0.05 0.03 
r  0.97 0.97 0.97 0.96 0.96 0.96 0.97 0.96 0.97 0.96 0.97 0.97 
* With 
 
Table 10:  he parameter estimates an asymptotic correlation for von Bertalanffy and Chapman-Richard when an initial growth response data 

point is added 
   Asymptotic confidence interval 
Model parameter Parameter Estimated Asymptotic standard error  lower                 upper 
Von Bertalanffy 
α0 37.2017 0.6140 39.9001 38. 5033 
α1 5.5385 9.5941 -14.7999 25.8769 
α2 0.5498 0.1238 0.2873 0.8124 
α3 0.4826 0.3959 -0.3566 1.3218 
Chapman-Richard 
α0 37.2036 0.6256 35.8773 38.5298 
α1 0.8530 0.3581 0.0937 1.6122 
α2 0.5498 0.1265 0.2816 0.8181 
α3 0.4822 0.1018 1.3340 
Model Asymptotic correlation 
Von Bertalanffy (α0, α1) = 0.1127; (α0, α2) =-0.4229 ; (α0, α3) = -0.2532 ; 

 (α1, α2) = -0.8174; (α1, α3) = -0.9887; (α2, α3) = 0.8428 
Chapman-Richard (α0, α1) = 0.2264; (α0, α2) = -0.4879; (α0, α3) = -0.2988; 
 (α1, α2) = -0.6940; (α1, α3) = -0.9571; (α2, α3) = 0.8516. 

 
This study provide the statistical requirement for 

estimating parameters of nonlinear growth models, 
statistical testing for the parameters estimated and 
interpret some of the relevant statistical output from 
oil palm perspective. The NLIN procedure in SAS 
does not guarantee that the iteration converges to a 
global minimum sum of squares residual[10]. Hence, an 
alternative approach for avoiding the problem of non-
convergence or convergence to u nwanted local 
minimum sum of squares residual is to specify a grid 
values for each parameter. Then NLIN evaluates the 
residual of sum squares errors at each combination of 
values to determine the best initial values for the 
iteration process. Initial values may be intelligent 
guesses or preliminary estimates based on available 
information. Initial values may, for example, be 
values suggested by the information gained in fitting 
a similar equation in a different place or values 
suggested as ‘about right’ by the experimenter based 
on personal experience and knowledge. Based on 
meaningful biologial definitions of the parameters of 

the nonlinear models, expression to specify initial 
values for the asymptote and the biological constant 
were developed. These expressions were found useful 
to specify initial values of the parameters for 
modeling the sample fresh fruit bunches data used in 
the stud. 
 
Table 11:  The summary of number of iteration and sum of squares 

for each model 
Model  Number of iterative Sum of 
squares 
Logistic 20 56.1502 
Gompertz  22 59.9054 
Von Bertalanffy 36 55.7957 
Negative exponential  8 77.0909  
Monomolecular  26 70.6852 
Log logistics 22 88.2415 
Richard’s 26 55.7958 
Weibull  18 70.6852 
Morgan-Mercer-Flodin 21 60.8861 
Chapman-Richards 34 117.6159 
Chapman-Richards  43 65.6814 
(initial stage)  
Stannard  42 55.7957 
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CONCLUSION 
 

Some of the models such as the negative 
exponential and monomolecular have no point of 
inflection and are not sigmoid shape. Hence, the 
models are not appropriate for modeling the entire 
range of the life cycle of biological response variables 
such as oil palm yield growth that exhibit a sigmoid 
pattern over time (reason (iii)) in previous part. This 
study found that the Gompertz, logistic, log-logistic, 
Morgan-Mercer-Flodin and Chapman-Richard 
growth models have the ability and suitable for 
quantifying a growth phenomenon that exhibits a 
sigmoid pattern over time. Base on the statistical 
testing and sum of squares error (Table 11), the 
model in the first rank is the Logistic model, second 
rank is the Gompertz model and followed by Morgan-
Mercer-Flodin, Chapman-Richard (with initial stage) 
and the Log-logistic growth model.  
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