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Introduction to the Besov Spaces and Triebel-Lizorkin Spaces
for Hermite and Laguerre expansions and some applications.

Iris A. Lopez P.
Universidad Central de Venezuela, Facultad de Ciencias, Escuela de Matematica
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Abstract: We introduced new definitions of Besov spaces and Triebel-Lizorkin spaces associated with
multidimensional Hermite expansions and multidimensional Laguerre expansions, We showed that the
set of p-integrable functions is a Triebel-Lizorkin space with respect to the Gaussian measure and
similarly, with respect to the probabilistic Gamma measure. Also, we showed that the Gaussian
Sobolev spaces and Laguerre Sobolev spaces are Triebel-Lizorkin spaces, associated with Hermite and
Laguerre expansions respectively. We defined Carleson measures with respect to the Gaussian
measure and probabilistic Gamma measure. By using maximal functions, related to the Ornstein
Uhlenbeck semigroup and Laguerre semigroup, we studied these measures, giving a version of
Fefferman’s theorem. Finally, we stated relations between Besov spaces and Triebel-Lizorkin spaces.
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INTRODUCTION

Lebesgue L"(A,) spaces, Hardy H"(A,) spaces,
Sobolev L’ (A,) spaces, Lipschitz A, spaces and

BMO spaces are considered in Harmonic analysis
with many different applications (where A, is the

Lebesgue measure on RY).

From the original definitions of these spaces, it
may not appear that they are related, but there are
various unified approaches to their study.

Littlewood  Paley theory, Calderon’s formula,
Fractional Derivates and Atomic Decomposition allow
us to consider general functions spaces,

These general classes of spaces are the Besov

3" 9(A,) spaces and the Triebel-Lizorkin f“9(A
Bp d p Fp o

spaces. These spaces were studied!'! and they are
defined as follows.
Let us consider ¢ a rapidly decreasing function so

pcifiisligl<2y and  |@(f)f2e>0 if
1g|&l<s. For aeR, p#o, 0<pg<w and f a
tempered  distribution, the homogeneous Triebel
Lizorkin f'(4,) space is the set of all such f* for
which

that

Wy

F:"

I

< 0

¥

[Z(z‘“ 0, f )

vl

Py

and for the same indices including p =, the
homogeneous Besov space B7%(4,)., is the set of all
such f for which

"f"_c,:;-rr = [Z e |
\‘Ez

Inhomogeneous

1y
<o,

o1,

versions of these spaces,
F"(4;) and BJ*“(4,), are obtained by adding the

term [|£]],,, -

In this context, the following identifications are known:
i L(A,) ~ F(::z(ld) ~ F:"z (A4,) when 1< p<w.

ii. H"(A,)~ F’(A;) when 0<ps1,
iii. L0(A4)~ F3(A,) and LD(A,)~ Fy*(A,)
when 1< p<o and @ > 0.

iv. BMO ~ F2*(4,). Particularly f € BMO if and

only if du(x,1)=|(p * f)(x)[ dx% is a Carleson
measure,

By other hand, Triebel-Lizorkin spaces on spaces
of homogeneous type have been introduced by Coifman
and Weiss””. New versions of these spaces have been
studied by Han and Yang ™,

Continuous versions of the Triebel-Lizorkin spaces
were considered by Gatto and Vagi'. In their article
they considered (X,5,0)a normal space of

homogeneous type where & is a quasidistance and o is
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an infinite measure such that o({x})=0, Vxe X,
Then, introduced the Triebel-Lizorkin

F (o) showed that [/ (o)~ F**(a),

withl < p<w, and 0 <a <1, by means the Fractional

they
and

Derivate D7 operator. This Fractional Derivate was
introduced"”,
The main purpose of this article is to introduce

news definitions of Besov B, spaces and Triebel-

Lizorkin  f7 spaces associated with Hermite
expansions and Laguerre expansions. It is important to
notice that these spaces ( 3,“ and £ had not been

defined previously. We
identifications:

. -0,2
P L o
means Littlewood Paley theory.
L~ Fy
the Fractional Derivate operator plays an important
role.

Carleson measures:
theorem will be given.
Also, we state relations between Triebel Lizorkin
spaces and Besov spaces.

Finally, I wish to express my deep gratitude to
Prof. P. Graczyk for his enthusiastic encouragement.

obtained the following

when l<p<ew. It is possible by

ii. when | < p<ow, and 0<a <1. Here,

iii. A version of Fefferman's

PRELIMINARIES
Let wus consider the Gaussian measure
¥, (dx) =%;r:—dx with xeR” and the probabilistic
Gamma  measure u, , (dx) = l_[:‘ . T":{—”dx. with
xeRY and 1e(~1,w)". Let f=(B,,...,)e N’ be
a multi-index, let g1 = n:’_] B 1A= 8. 0= +

for each 1<i<d and 8" =8p..

Ornstein-Uhlenbeck differential
Laguerre differential operator

1 \
L= EA‘ —<.\.',V_r}', and

.81’}'. we consider the
operator and the

=ixfall+(l,+l—x')al.

Iml

Let wus consider the normalized Hermite
polynomials of order ﬁ in d variables

by =— =TT 0P eFah e,
(Zﬂlﬂ') i=l
and the normalized Laguerre polynomials,
X =4,
HORY | A, !
z ﬁ,!JI‘(ﬂ., +h[Asn)

173

Then, it is well known that, the Hermite

polynomials and  Laguerre  polynomials are
eigenfunctions of L and £, respectively. This is,

(2.1) Lhy(x)=~|B|hy(x) and £,13(x)=~|B|l;(x).
Given a function felL'(y,) or fel'(u,,). its

[ Fourier-Hermite coefficient and Fourier-Laguerre
coefficient are defined by

:{f,;;,,) and o/ = (f, i,

Let us consider, C, and C'* the closed subspaces
of L'(y,)and L*(u,,), generate by the linear
combinations {h,,, 8l = ,,} and [.-'; ;|p| = n}
respectively. By the orthogonality of the Hermite and
Laguerre polynomials with respect to y, and x4, ,, we

of

have the orthogonal decompositions,
L'(y,)=@p.,C, and L(u,,)=@%,C..

=l ~n
We denote, J, and J/ the orthogonal projections
of *(y,)ontoC, , and [*(y,,) onto C? respectively.
If f is a polynomial,
J S =D chhyp andJ)f =Y clti3,
ﬁj-n |‘ﬂ|wn
{7

Let us consider the Ornstein-Uhlenbeck semigroup
2 2 2 i

(o +[y) - 2e” (x,9)

1-e™

}J‘!O
1=, exp[” }/(y)x,(aﬁa).
Let us consider the Laguerre semigroup

M} )= [ Ko f Oy, (),

T
Jo ¥
and .J Ajdenotes the modified Bessel function of the

-e
first kind and order A, .

Now, by Bochner subordination formula, we define
the Poisson-Hermite semigroup {P} =~ and the

where,

| e -4,/
S (exy) ™
1-¢”

=f
e xlyl
=

e-!

2 exp( —.‘3'l (x, +y)

=]

Poisson Laguerre {R* }'20 semigroup as

RS == [T, , S,

1
Pf)‘f(x) =ﬁ r i/— £ r4u S (x)du.
{T;}:zﬂ {Ml}fzt} {P’}féﬂ and {F:A}rzo

I
are also strongly continuous semigroups on L"(y,) and
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L"(u, ), with infinitesimal generator

-1, -2, (-1)"% and (-2 )2
respectively. Then by (2.1)
Thy(x) =" hy(x) Phy(x)=e iy (x)
and similarly,
M} hy(x) = eIk (x), BAhy(x) = e"mi;;(x).
For @ >0, the Fractional Integral or Riesz potential of

order @, I and l: with respect to the Gaussian

measure and the probabilistic Gamma measure, are
defined as in the classical case, by

I' =(=L)y™'* and I? =(-£,)°".
If fell(y,) with L‘ f(»)y,(dy)=0, it can be proved
that'®!

y . alp d
I f(x) @) 1B, f(x)dt.

Now, following!” and Bochner subordination formula,
it can be proved that

4 _L a-l pA
L f @)= [ B Sy

where f€ L'(u,,) with [, £, (d)=0.
Observe that if f(x)=h,(x)orf(x)=1/;(x) and
|8]> 0, we get that
Ik, (x) =B hy(x) and 1203 (x) =| B 13 (x).
In a previous paper’™, the Fractional Derivate for

the Gaussian measure and the probabilistic Gamma
measure were defined as,

Dl =(-L)*'* and D} =(-£,)*"
and when 0<a <1, we can write for fa polynomial

DL1w == [P, £0)- f G,

all

DA f(x) == [0 (R () S5
where ]
¢, = fu'“"(e'“ ~Ddu,
Again inl™ and "* we can observe that if f(x)= by (x)
or f(x)=1;(x) with ||>0, then
DYy (x)=|BI""" hy(x) and D1 x) =| A" 1} ().
As an application of these functions D] and D: .

characterization have been given of the Gaussian
Sobolev L’ (y,) spaces and Laguerre Sobolev

Ll (p, ;) spaces, for 0<a <I and 1<p<w. These
spaces have been defined as follows”). Let us consider

174

the norm
£, =lz-0r24,,,

then, the Gaussian Sobolev space of order «, is
defined as the completation of the polynomials with

respect to the norm || "m'

Using the £, operator and u, , measure instead L

and y,, we define Laguerre Sobolev space in a similar
way.
In a previous paper, we got the following result™

Theorem 2.1: Let us consider 0<a <1, and 1 < p <o,

Then

i. If {P}, is a sequence of polynomials such that
li_l}lﬁ, =/ inLi(y,), then limD]F, exists in
Ll(y,) and does not depend on the choice of a

sequence (P} . If fell(y)NL,(¥,) thenthe
limit does not depend on the choice of p or r. Thus
Dy f =lim DIF, in Li(y,), [f=limP, inL{(y,),
Sell(y,) is well defined.

ii. fell(y,) if and only if Difel’(z,).
Moreover,
B}’»“ “f ‘p.u S"D“:f".g_m < Aﬂ-a ||f||p.a '

Remark 1: For D} operator with Laguerre polynomials
expansions and g, , measure, results similar to the
Theorem (2.1) were obtained'”).

RESULTS

We star considering Hermite expansions and ¥,
measure. Similar results are obtained to Laguerre
expansions and 4, , measure.

We define the operators , and Q! if 4 €(~1,20)"

QS (x)=~10, 1 (x), O f(x)=~13,F f(x)

and let us consider @20 and O<pg<x.

Following'l, the Gaussian Triebel-Lizorkin £%(y,)
space, is the set of functions for which

2 dr\"
(31) "f”;:n: (ff |Q;f|q TJ
M

and the Gaussian Besov spaces B“(y,) can be
defined as the set of the functions such that

<o
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A= Lrlesty,, 2 <o

Now following!"', we introduced an associated
function to the Fractional Derivate defined by

2 112
(3.2) @z‘f(x)=[f,—za..lla’ﬂf(x)l dt] ’

where 0 <a <1. We can see that D/, can be rewritten
as

(3.3) @Lf(x)=(rr"" |Q,f(x)|1dr)

We are going to study the D operator. First, this
D2y =20, |3 s,
¢, = [[u™e du < m, because a & (0,1).

operator  satisfies where,

In order to show this fact, we consider the change of
variable u = z\ﬂﬂr and the definition of ¢, . Then,

@;kﬂ{x)=|ﬂj|h,(x)|{Lq-:m.e-zmdr}m
20| B |, (x)]{fu"“‘e"du}m

=2ztw-l}ca Iﬂ nu h (-ﬂ'l
This way if f=h,, then D/ fel’(y,) with

l<p<w, Also, D’ is a sub lineal operator. It is easy
to see that, D7 (4f)= |A|D7(f) VA eR,and considering
the space,

> {u(.‘r): msf(..!)r g < ao]

with the norm E"' (fl“{ rjlx :le:n-ldr) . we denote

Slx.)=a,F f(x) and g(x,r)=0,Pg(x), then

D, f(x)=]f(x.)], and Dg(x)=|g(x,.),,
and Minkowski’s inequality implies,
DL(f+gXx) <D, f(x)+D,g(x) VxeR’,

Therefore, if /' is a polynomial then D7 f € L"(y,)

with 1< p<w,

Remark 2: Forie(-1«)", the Laguerre Tricbel
Lizorkin spaces j (4, ,)and the Laguerre Besov
spaces B,,"(u, ) are defined in a similar way, by

using the operator Q' and g, , measure instead of

2 \I72
m],

O, and y, measure.
Also, we define

A =da+l a
'D,.f(x){ | Wl A

175

for 0 <@ <1. Immediately we have,
il =22 ¢, | 5"

A
;|
and it is a straightforward exercise to see that D’
satisfies the same before properties.

However, we can go further.
Proposition 3.1: Suppose f € C;(]R" ), such that

[y (dy)=0. Then D fel’(y,) for each

I<p<ow,
Proof: From the Lemma 2.1™ we can see that

l.Brxf <€, (d+]ahe™.
Using that, @ € (0,1) and (3.2) we get that
ir2
1)< C,,‘,(d+|x|)( [e "'"‘"d:) =C, ,(d+]x]).

This way, we get that |,

<00, 0

rrd

Now, we get the following result''?,

Theorem 3.1: LetO<a <1 and fell(y,). Then
D fell(y,) and |2 f"h <C, |71, -

Proof: Let / be a polynomial and considering
w=(/-L)""f, which is also a polynomial. Then
Jw=0+n)""*J f, and fcan be written as

/= Z(] -t-n] T

nzt
Trivially, f,y € L'(y,). Now, by Parserval identity,
we have

[learefy,
by
rr-entef] <3l b

=C.2r IIJ.fL,,,
<C Y vy ||,

IJ.N !

and Tonelli’s Theorem we  obtain,

3
=Gl o

In consequence, we obtain that D’ f e L'(y,),
when fe L (y,) and D, f =" J (D] f).

n20

But,

LYy

ir,,, =2l

P . . o nd
and this is equivalent to I.ﬂﬂ:{): =8 f"m =, where
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4 . . .
S*f= \[EZ nJ f - Since the Hermite polynomials
h

nml)
{hy

written as D;f=\/'CT,Zn‘”’J,f,wh°" fell(y,) and

ail)
specially, when f is a polynomial function.
This way, we are ready to show the next result. We
got a similar result to the Fractional Derivate
operator!".

}ﬂ yo  System is complete, then D’ f can be
E

Theorem 3.2:Let us consider O<a <l and | < p <o,
Then
i. If {P}, is a sequence of polynomials such that

lim P, = f in L;(y,). then limD_F, exists in
Ll (y,) and does not depend on the choice of a

sequence. {P,} If felL,(y)NL,(y,), thenthe
limit does not depend on the choice of p or r. Thus
Do =lmDLF, in Ly (y,), f=limP, inLi(y,),

fell(y,) iswell defined.

ii. fell(y,) if and only if D.fel’(y,).
Moreover,
G4 By, |1, s|2iA,, SAvalAl, .-

Proof: Let f be a polynomial and -considering
w=(1-L)y"f, which is also a polynomial, then
of=JC Y

all
(L) Jow,
o\ L+n
since [l /], =[wl,,, -

By Meyer's Multipliers Theorem, using the multiplier
h(z)=(z+1)*?, we obtain that

[0:7],,, s 4alWl,,, = 4pal/l,.

To prove the converse, suppose f polynomial, then
D! f e l’(y,). Consider

¥y 3
D’ f can be written as

1+nY"?

— | L (DL1)
(2] " st00)
By Meyer's Multipliers Theorem, using the multiplier
h(z)=(z+1)""*, we have

11,,, =W, <Ba|®i],,,-
Thus we get (3.4) for polynomials. Then we can prove

part i) using (3.4), the completeness of L’ (y,) and the
fact that for each /< p <00 we have,

Lh(y,) < L (y,), when 0<a<p.

w=U=-LY" =Y 0+n""1 =Y

nzh nEl

Finally we get (3.4) forany fe Ll(y,). 0
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Remark 3: In the Laguerre case we have,
Proposition 3.2: Suppose feCj(RY), such that

L, SOV, (dv)=0. Then D' f e L"(u, ) for each

l<p<w and A e(—l,w)".
Proof: This fact follows from!™
|a.M; (x| 5C, (0 +|xDe

and using Bochner” subordination formula, then we use
the same argument to the Proposition 3.1. o

By other hand, if you consider Laguerre
expansions instead of Hermite expansions and Meyer’s
Multipliers  Theorem for Laguerre  version!”,
immediately we obtain the Theorem 3.1 and the
Theorem 3.2.

Following'"! let us now consider three spaces of
functions. These spaces are particular cases of
Gausssian Triebel Lizorkin spaces and Laguerre Tricbel
Lizorkin spaces.

a) The spaces L"(y,) and L' (u, )

Observe that if @ =0, then (3.2) is a Littlewood
Paley g-function defined” and by Littlewood Paley
theory it is know that

T dr)m
Mg

Then, from the definition of the Gaussian Triebel
Lizorkin spaces, we have

L(y,)~ F,,M (7,) when |<p<w,

But, when you consider 4 =%-l, n €N for all

i=1...d, it has been showed that!""

1A, ., = ([ loptof )

Then immediately we get
Lﬂ (Jud_g ) e F}?': (y.{.j )
b) Gaussian Sobolev spaces [/ (y,) and Laguerre

spaces L, (1)

=
Pty o

Py

Suppose /<p<c, ae(0,1) and Ae(-1,)"
First, let us consider the Gaussian Triebel Lizorkin
F"*(y,) space, We define modulo constants,

WAl =221, -

Then, the Gaussian Triebel-Lizorkin space £ (y,) is
defined as the completion of the polynomials with

respect to the norm |[ ].,_‘,,_,‘ Using the Fractional
P

Derivate and the Theorem 2.1, we can see that
U(y)~Fi*(y,) forl< p<wand0<a <l.
But now, we get an equivalent way to define Gaussian
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Triebel Lizorkin FF""(r‘,) space. Using (3.1) and (3.3),
it is immediately that

|[f||p;, = (E‘;-h |Qr frd‘)m )

Then, from the Theorem 3.2, we obtain the following
corollary

rre

Corollary 3.1:  Let and a€(0,1)
feEry,) ifandonly if f € L.(y,). Moreover,
Byalfl,a <M is < 4palfl, .

Therefore, using the D’ operator we have again,

I<p<w™

() ~F ) forl<p<wand O<a <.
In a similar argument by means the Laguerre Fractional
Derivate D! we obtain that

Ly ,)~ Fi*(pay ) for 1< p<ooand O < <1,
where, ||f o2 = ||D: f ”m«.” :

Now, using the definition of F:z (7,) space, CD;
operator, we get the same result.
e) Carleson measures with respecttoy ,and u, ,
Following!""! we are going to study the space C,

whose elements are measures on R‘: .

If B=B(x,r) is an open ball in R, then its tent 77B)

is the closed set in RY, defined by
TB)={(n.0):|y-xsr-t}.

Given a Borel measure du on R, we define the

function C (d ), like in the classic case, by
C(du) (xy= Sup
[Mxe

1
d .
72 ) bunl!
Then, we define C, to be the space of measures
du for which C (d p ) is a bounded function and set

(3.5) ||d,u] = .‘-‘uplC[du (x)[

Each du is called a Carleson measure, and (3.5) is
the Carleson norm of du .

Now, we consider the Gaussian Triebel Lizorkin space
F2*(7,), where

/1. =sup( [lo.sof "']
Then, when we consider
du(x,0)=1[0,Rf (0 7, (dx)dr,

we obtain the following version of Fefferman's
Theorem for the Gaussian measure.

Theorem 3.5: Suppose f € F'*(y,) and

177

du(x,t)=1(8,P ()| ¥, ().
Then du is a Carleson measure, with

7 Ve

Proof: Let us consider B < RY with radio >0, fix
and arbitrary. Then we can see that

lta,B.f (o ntm—s—

dt
5 [ flopreof ru@=

Y {B} Htﬂ'

(B} I El‘a f(x)'l h(ﬂﬁt)'—- s ||f".‘"a '

Then

2 di 2
= ( = nfﬂj)lfa; FCPACH T Vi e

and we get the theorem. o

Now we give the following version of Carleson's
problem

Theorem 3.6: Suppose ge F''(y,) and let us
consider du(x,1)= 1|2, Lg(x) y,(dv)at.
Then,

LIRS dutxin < C gl [17GOf e
Vf e Lz(?’.r)-
Proof: Using the definition of du we get,

[Lpref duens [L(2 reo) [ oloeeof dey, (d),
where
P'f(x)= Suf:[P, 1),

and using the definiton of " g" ;o2 and the fact that!'"

“P. f“p,“ s C"" "'fﬂp-h
the theorem. o

1< p<m, we obtain the result of

Now we consider
I,(x)= {(y,r)e R :|x-y) <(fn}xl" A])},
is what is called a Gaussian cone of aperture 1 and

vertex x € R“!" and the nontangential maximal
function P'f(x)= Sup |Bf(x).

(yryel, (x)

Following!""l, let N be the linear space of all
(everywhere  defined)  functions  such that

P’ f € L'(y,), with the norm ”f“n =

For example, if feCi(R"), from the Lemma
2.1"" we can see again that, la.B/ W) <€, (d+]e

and consequently, from the definition of P°,
P f(x)<C, (14d+|x).



J. Math. Stat. 1 (3):172-179, 2005

This way, /€ N. In this context, we get the following
result"*!

Theorem 3.7:  Suppose fe F**(y,)and let us
consider du(x,t)=1|0,P.f(x)| y,(dx)dt.

If f € N. wehave, ] [, Bhdp.0)| < cldul. Al

Proof: The proof of the theorem is similar to the
classical case, where the Lebesgue measure it was
considered. This proof is based on two simple but key
observations. First

(3.6) {(x,0):|Ph(x)|> a} = T(0),
where 0 = {x: P*h(x) > a} ,and

1(0) = | J T(B(x,dist(x,0°)))-

xell

Since, if (x,f) is such that |Ph(x)|>a, then for any

veB(x,r) with r<(ea|x" A1), we have that
P'h(x) > a . But

Sup IPf(r)|2 P'f(y)>a

[ r¥|w=pf<e}
thus, B=B(x,r)c O and (x,0)e T(B).
The second key observation is as follows. If we assume
that ||d |, <1, then this implies that
(3.7 u(7(0)) < cy,(0),

for any open set OcC R?. This true in our case,
because the principal key mgrecllent to show (3.7) is the
Whitney decomposition''?, This decomposition does
not involve measure theory, but deals with the

geometric structure of general closed set O° inRY,
This way, we can repeat the same argument like in the
classical case.

Now, using (3.6) and (3.7) we have,

u({ex.):|BA| > a)) < (1)) S cfdu, 7,(0)
and integrating both sides with respect @ we obtain,
[ [Pl dpte0) < cldul,. [, PhCx)y, (). o

This theorem implies the following corollary. This
corollary is a general version from Carleson’s problem.

Corollary 3.2: Suppose feF*(y,)and let us
consider du(x,t)=1]2,P£(x) y,(dx)dt,
If he L' (y,). for some 1 < p <o then we have,

[ |Prf" ducey s, [dul. 4], ,
Proof: In fact, the corollary follows from the Theorem
(3.7), by replacing |Ph(x) by |Ph(x)|" and the

L' (y,) continuity for 1< p<w of the maximal
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operator P h!1" g

Remark 4:  Now, considering 4, , and the function
C(du ), defined by
I(l.‘lll ﬂl

Cldu) &) .ﬁi!‘im“w)
similar to before case, we say that du is a Carleson
measure if C(du ) is a bounded function.

Also, we consider the Laguerre Triebel Lizorkin
space F* (u, ,), where

e = S“P( [letrof d')t ’

and we get the Theorem 3.3 and the Theorem 3.4,

taking P and M, , instead of F, and y,

respectively and considering the maximal function
P10 = Sup| B 1),

which itis L"(u, ,) -continuous when | < p <o !1%,
To get the others results, it is necessary to find
appropriate definitions of the Laguerre cone and P;

maximal function for Laguerre semigroup.

The last result in this article, is the following
relation between Gaussian Triebel-Lizorkin spaces and
Gaussian Besov spaces.

Proposition 3.3: Let 2 >0, p>0, ¢>0, and r >0,

such that

i Ifq>p then F}"(y,)c BS'(y,).

If p>q then E:"'(y‘,) = F:"‘(:{‘;).

iii. If'r>gq then B:"’(;v‘,) & E;:"(h).

Proof

i. Suppose g>p. By using Minkowski's integral
inequality we have that

Ut =([rtes;,, %)
=[rf"°(,[, 0,7 (x)|" n(dx})" , er

sL(Frloror %] ru(ds)=| 1L

Analogously, by using Minkowski's
inequality again, we have

i,

integral

Pl qip
—[_L.( [ lary ?] r,(dr}}

A Wip
(Lo, %) =t

If f&B}“(r,), we can suppose that |/[f,, <

s

iii.
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This way we have that ||Q, f"m <l,and then

lo./]
fE B:"’(?'nr ).

:]_?‘ <lo.f ||';.r‘ when g <r. Consequently

Remark 5: Finally, it is very easy to get a similar
version of the Proposition 3.3 with respect to Laguerre

semigroup and 4, , measure,
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