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Abstract: It's a reality that there is a relationship between the sigma function of Weierstrass and theta
functions. An elliptic function can be set up using the theta functions just as it can be astablished with
the help of sigma functiocn of Weierstrass and two relations between the Dedekind's 7-function and -

. ‘ . o £
theta function were established by the using characteristic values { }
E

B},{ﬂ {mod?2) for #-function

according to the {(#,T) pair and »,T complex numbers, satisfying Im t>0. In this study, the
transformations among the theta functions according to the quarter periods have been given and a
Tacobian style elliptic functions has been set up the theta function by the help of a defined function.
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INTRODUCTION

The expansicns, in infinite series, of the @{u), (u) and
{w-functions of Weiestrass which we have so far
considered, are not best suited to numerical
computation.It is of advantage therefore to introduce
another function, defined by &u,t), which has a rapidly
convergent expansion in infinite series and which is
directly connected whith the sigma function of

,

Weierstrass. Let T be a complex variable, with t= —
(Dl
real, [m >0

and @ = mey + ney with mn = 0,£1,22,... and u a
complex variable. We define the function &u,t) by the
series,

e{j (1, 1) = ;exp{(n +§}2m+ 2ni(n+%}(u+%}} (D
£

where { } [1} [G} F} {ﬂ(modz), £ and £ are
e [1|1]" el o

integers and n ranges over all the integers (-co to co)[1].
The series (1) converges absolutely and uniformly in
compact sets of the v-complex plane and therefore
represents an entire function of u .

We can see the following alternative theta functions

e

&+

T 21‘—1

1
u+—+—,
( >

T)=ubo
> )u’

£+

21‘*1

153

where ].L:exp{—%(’c + 2} i- %(2u+€') i} and

{11}{0}{1{0} fmod 7) and £ are integers
e 11/ ]0f 0
. (n +E)27ti’c+
€
B{ , (u,’c)=Zexp ,
e , e e
- " 27c1(n+5)(u +E) (3)

[e] [11[0][11[0] i
where LS'J =L1J,L1J,L0J,LOJ (mod2), £ and &

are integers n ranges over all the integers (-co to oo} [2].

C
o
[e] [r][o][11]0] 1
where LE,J=L1J,L1J,LOJ,LOJ (mod2), &£ and

£are integers n ranges over all the integers (-0 to o)

It {:,} = E} {(mod2) then

€.
(n+—ymit+

@H=yexpl 7 ,

- 2i(n + %)(u - %n) (4
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1
1 N g (n+=)’mt+
eH(u,fc)_ 12( 1y exp 2" 5
a (2n + Tymiu

1
This the function HIJJ (1, 7T) is alternative formula

in [3]

{ } {}(mOdZ)andu:Othen
|_
“lo

}(0 T)= Zexp(n TiT) (6)

{ } E} (mod2) the

If {8} {0} (mod2) then

0L ) Lonireomiae st/ 1
G{J[u +Z{1},TJ—ZH:exp{(n+2) m’c+21t1(n+2)(u+4{1}+2}
G

nmt Tt T

[0]
This is the functicn QLOJ(O,T) that is an alternative
formula in [4].
a
Definition: A period, denoted ik is b+a T. A quarter

peried is quarter of a period, written
L)]al b ar
PRI

A reduced quarter-period is a quarter-period in which a
and b equal G or 1 [5].

With the help of this alternative formula (2) above, we
can get the following equalities according to quarter-
pericads.

Z( n" exp{(n+—) m+(2n+1)mu+7+T+T+I} 7

Uae 1 e, 1 11
9{0}(u+1{1},1)—Zexp{(n+5) T+ 27c1(n+§)(u+z{1}}

il nmi
=g ¢ exps(n+—ymT+(2n+Dmiv+—+
g p{( ST @t Dot == =

Using the equaticons {7) and (8) we can get

nwiT T|T T

+T+I} (8}

nwitT =TT Jti}

1 1 e
G[J(U"‘l{l}ﬁ) _1e e Z( D" exp{(n+ —)? m’c+(2n+1)mu+7+—+—+—

4

2 4 4

0 411

a. [f nis 0 or even integer then,

Aferitfomdopeil)o

b. If nis odd integer then

nwT TwT T
2 4 4

1 1 1 -  mit
6[ }(u+{ },r) e 4 Zexp{(n+—) mr+(2n+1)mu+7+—+—+—
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11 [1]
’C = —19 (u +Z ) ,T) Theorem 2: The function HLlJ(u,T) defined in [4] is
odd function of u and it can be expressed by infinite
|' ‘| |' ‘| product
L J L J(mOdZ) then

[ }(u T)=ce * 2sin JtuH{l SR
¢ 11 _ 2 ; l 1 l
BL}(U + Z{l},r) = Z,exls{n AT+ 20mifu + 4{1} + 2} H{l _ gl }
n’mit + thiu} ©)

n=1
— 1" . .
;( ) eXP{Jrnm+n’ﬂ:1’l:
2 2 i i
ATLT .
where €= | | (1-e )}, Imt > 0 . We consider the

[e] [0 e
If L J L 0 J (mod2) then function ¢ (u,T) expressed by product
— = [(Zn—1}t+ 2u =i
B{U}(qul{l},‘c) _Zexp{ngfcitJrani(qul{lH (P(U., T) - H {1 —¢ }
0 4 (1 o 4 (1 (10) n=1
= ;exp{n mﬂ:+2mc1u+n7m+¥} ﬁ {1_6[(21171)':7%]7;1}
n=l1
From the equaticns {9) and (10} we obtain
1]
FOT 11 QL J(u,f)
Ll J(u +=1.7.7) - . ‘ 1 ‘ o
eorem 3: The function —) is an elliptic
T
Jol 1f o P
LO J(u +— ol ,T) function with perieds 1 and 7.
- J1
> (=D exp{n RiT+ 2nTiu +n_m + mtw} L J(u ,T)
Z 2 : _ U
= it Proof: Let v (1,7 = @(u P
Zexp{n TT( 2nWin +n_ + } ’
B{H(u +1,1)
¢. [f nis 0 or even integer then yu+l = ————
Ppu+l,1)
0] 1t 0] 1t o ! Moo
fpetllodipttle o
Coewn 9w

d. If n is odd integer then

1 1
|_0—| 11 |_0—| 11 where 9|: :|(U.,’C)=—9|: :|(_U"T) from
ot o= doferih)o 1 1

thecrem 2.
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1 |
Bl |(u+t,1) -—e®vromg

(1,7)

( )
() ll, c
1

\|!(ll + T, T) = e—(2u+r)ni

ou+1,7)

since

o(u,7)

¢(u,1)

+ — — 1_ (Zn-1ytmi+2mi(u+1) - 1_ (Zn-1ytri-2mi(u+1)
o(u+7,7) H{ e }H{ e }

— _ (2n+1)mi+2m} { _ (2n—3)m‘1—2m}
[[{i-e [[{1-
n=l1 n=1

— H {1 _ e[Z(nH)—l]mHZniu }
n=1

— H {1 _ e(2m—1)m‘1+27c‘1u }

=]
—

s

m=2 n=0
_ = {1 _ e(2m—1)mi+27:iu} =
m-1 m=1
_ _e—(2u+c)mcp(u’ 7)

where n = m. The function ¥ {u,7} is therefore a doubly

periodic with periods 1 and 7 having neither zeros nor
1]

poles on account of the fact that QIJ J(u,f) possesses

the same pericdicity factors as ¢ (u,1). Hence the
Tunction ¥ (1,7} is an elliptic function since the set of
all mercmorphic functions form a field and W (u,7) is
meromerphic and periodic with periods 1 and 1. The
function {z,7) of Weierstrass, defined by the series

1

+
1 _
C(u,W)EC(u;mI,mQ):HJFZ li Wu

wel _+_2
W W

is not elliptic since it is not double periodic. Hence we
write the Weierstrass's o-sigma function, which has
zero of order 1 at all lattice points, by the Weierstrass's
infinite product

U, Lty?
o(u) =c(u,w) = 6(u; 0, 0, )= uH(l ——je¥ ¥
w
w2l

Taking the legarithmic derivative formally vields the
d

function ¢ (u, W)= d—Logcr(u,w) which  is
u

hemogeneous of degree -1, namely

156

ﬁ{l _ e[Z(n—l)—l]mi—chiu }
(2m—1) mi—2 min
{l-e ™)

{1 _ e(sznmfmu }{1 _ e_(mﬂ.zmu) }{1 _ e(fci1+27ciu) }_1

& (Au, Aw) = A'¢ (u,w) and it is not elliptic since it

is not double periodic [3].
The medular group denoted by

:

is the multiplicative group of S

b
—adbc—l}
d

b} ra,b,e,de Z,de{al
d c

9(2, 7)) matrices with
11 and 0 -1
01 1 0

generate I'. We first define the Riemann's 8-function by
the series

determinant 1.The matrices of

Oﬁj (u,T)= nZ::Wexp{(n +a)y ®iT+2mn +a)}u + b}}

with a given complex number u and complex number T

w
satisfying Im(7 = — # real)» 0 and
w,
characteristic {a} where a and b are rational numbers .
b

Let us recall the transformation

miu®
cT+d

K

eL

} (1,%) = KM, 8t d.exp( }.9{” } 2.7
I

2
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L r= aT+b, i =d,u—c,u'—ﬂ and 4, :—by+ay'+a—band KM,
cT+d ct+d 2 2

where M:{‘I b} SL2, 7y U=
c d

&) is a certain root of 1. We want to define an action of an element of a4 = {d T on theta function. We fry the
b a

special value of ,, |4 ¢|_|1 Uland the get
b a 11

[
dit — cp'+— H
9{“1}@?):9 2 2 aT+bh g 1|z 7+

—by+ay‘+a—; ct+d cT+d BGAE

i exp{(n + ) T+ D+ 27i(n + p)(z— g+ ﬂ'+%)}

A=—sca

i exp{(n ) AT 2Am+ ) 2+ )+ i+ ) A+ 230+ )~ + %)}
= ieXP{(n+ﬂ)2ﬂif+27d(n + 0z + {7 0+ — 1))
=expmw—u2>.6’M(z,f>

since 7> + n = n(n + 1) is cengruent to zero module 2 @, w
[a(n + 1) if n=0(mod 2) and In{n + )] from n + 1 = O(H:@,,@,)=8 m%»f)-w- -
G{mod 2} if #n = I{mod 2}} (0,7)

In this study, we treat the special value of &- function where 77, = é’(%) and (@), , @, } is a pair of periods

with characteristic
of the Weierstrass's elliptic function (4, @, ,a); ) [4].

{(n + %)2 T+ } Now, let us observe that

27i(n +£)(u +5)

e -
BLJ (u,7)= Zexp

n=—so

0 . 0 2 ,
8{0}(% 7)= 9{0}(14, Ty =Y exp(n’ Mt + 2nmiu)

£ 0110
h = d &, &' are integers.
where L,} = L}[O}(nmd 2) an are tiegets Then we see that the function 9{0}(0,7;) defined by
0

Thus, we have the following relations the series in [1] is a alternative formula of 9{1(%@ .
8'

0 al 5 . . 0 0 <

g 0 (u,7)= Z(exp(n T+ 2nmu) . The formulas & 0 (u,7) and g | (u,T) were used in
- H=—m
this article where 1 # 0.

0 N n 2 '

[ | (n,7) = Z (=D exp(n" 7T+ 2nsmiu). At first we see the infinite products

H—oa

0 = = ~ JmiT+ 2w
Theorem.4: The Weierstrass's o-function is a theta {{0}(“5) =H(l—ez )-l:[ (I+ermrmy,
function so that the connection between the G- .
function and & -function is established H (14 gltrmeimey,
n=l
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which it converges absolutely .

Theorem 5: We have the relations

Ty

a) — 590 e+l
nur=e" . 0(7

A

0]
between the functions B{O}M,T),e{ﬂ(u,r} and

3u+ 2k)

ut+d 3
PR

wy=e )] -
A=l

Dedekind's #-function which defined by the infinite
product

V21 TR,
nay=e® [Ja-e™™)
=1
where [m7 > (¢ and k is a integer.

Proof: a) Let us recall the formula

3] u,T) = 1_62117\11: . 1+e(2n—1)mr+2mu .
ofeo=TTe-o !
ﬁ(l + e(ln—l]%it—lm’u)'

n=l

If k infeger, then we have

0 = .
8  3u+2k)= | —lmi(3uszely
M( 2 =I1¢ )

u+l

ﬁ 1+ eczn—umwkmmTJ )'ﬁ a4+ QDR Guk) -2 () )
n=1 n=1

= o T 1y -2z — {2k 1) 7
H(l_eﬁnMU)'H (1+eﬁmuu Imiu—(2 )
=1 n=1

<

)H (1 _ eﬁnv\:iu—l:miu )

n=1

=

(1 + eﬁnﬂiu—m’du—(lkﬂ]:’d) — ﬁ(l _ eﬁnv\:iu
n=1

1

=

(1 _ eﬁnv\:iu—ttm'u )

s

n

If we set R= ™ , then we obtain

e 0 n+l
ol

ﬁ (1_ Rzn—l)-ﬁ (1 _ RSn—z )

Bu+2ky=[Ja-rR™.
n=t

158

On the other hand, we may set n =n’ + 1, then

0 - .
w4 _ _ In'+3
GM 2 3y +2k) L! (1-R™"),

ﬁ(l_RSn'+2)lﬁ(l_R3n‘+l)
w el w'ot

=(1-RY1-R»)1-R>»H(1-R") .=
ﬁ(l_Rm)zﬁ(l_eme‘u)

According to above, we have

A

0
) =e!? ,9[0}(“51,314 + 2k) from the Dedekind’s

n-function  defined by the infinite product
F: TR
nu)=el? H (1—e®™™) where m=n’.
n=1
b} According to the equation,
707 - n 2 .
@ . (u,7)= D (-1)" exp(n’m T+ 2n7in) we
have
0] utd 3 N 5 1 ;
6 ) (=2, 2u)= " (-1)" exp[L n(3n +1)7iu ]

=1+ i (-1*{exp[{n(3n — Dmiu |+ exp[4 n3n + Driu]}

n=1
%n t3n-1)

- . X +
:1+Z(_1) { Ln(anay
n=1 Xj'

]—1—X—X2+XS+X7—X12—XIS+

...+em EUEME (1—x)(1—x?)(1—xﬁ)...:I:I(l—x")

where x =™ for k< 1 and 3n(3n+1) are known

as the pentagenal numbers n =-1,-2,-3,...

This results play a role of key stone in the forthcoming
work concerning relation between the & -theta function
and Dedekind's 7-functicn. In fact, if the application of
theorem.{2-b Jon the relation obtained with the
theorem.{2-a) which known as the equation between
Dedekind's #-function and L.Euler's thecrem on
pentagonal numbers is done, we obtain

80(u+4 3
1 4 r2 _

H (1 _ e(zn-tjmu) H (1 _ e(Zn—Ijmu)
n={ n=1

[Ta-e™)

n={

ll) i (—1)" e(%nﬁnﬂ]mu]

n=—e=

[Ta-e=)=¢ ¥ n

n={

H (1 _ e(En—ljmu)

n={
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As aresult, the relation has been obtained between theta
and Dedkind's -7{x) functions by using the
characteristic

0 4 u+d
and the wvariable T instead of the
1

which were

... |0 4 u+l1
characteristic and the variable
0

previously used by Jaccobi.
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