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Abstract: This study presents a study of concircular structure spacetimes which are connected
4-dimensional Lorentzian concircular structure manifolds.

Keywords: (LCS),-Manifold, Perfect Fluid Spacetime, Scalar Curvature, Killing Vector Field

INTRODUCTION

In general relativity the matter content of the spacetime
is described by the energy momentum tensor 7" which is
to be determined from physical considerations dealing
with the distribution of matter and energy. Since the
matter content of the universe is assumed to behave like
a perfect fluid in the standard cosmological models, the
physical motivation for studying Lorentzian manifolds
is the assumption that a gravitational field may be
effectively modeled by some Lorentzian metric defined
on a suitable four dimensional manifold M. The
Einstein equations are fundamental in the construction
of cosmological models which imply that the matter
determines the geometry of the spacetime and
conversely the motion of matter is determined by the
metric tensor of the space which is non-flat.

Recently the first author introduced the notion of
Lorentzian concircular structure manifolds (briefly
(LCS),-manifolds) with an example of dimension 4 [4].
The object of the present study is to study the
spacetimes which are connected (LCS)y-manifolds and
such manifolds will be called concircular structure
spacetimes (briefly (CS);-spacetimes). In this study we
investigate the applications of (LCS)-manifolds to
general relativity and physics. Section 2 is concerned
with preliminaries. Section 3 is devoted to the study of
perfect fluid (CS)y- spacetimes with the characteristic
vector field & of the spacetime as the flow vector field
of the fluid and observed that in such a spacetime the
flow vector field of the fluid is irrotational and also the
acceleration vector of the fluid must vanish although
the expansion scalar of the fluid does not vanish. Also it
is shown that if a Ricci-semisymmetric perfect fluid
(C'S),- spacetime obeys Einstein equation  with
cosmological constant then the matter content cannot be
a perfect fluid with o+ p # 0, where o and p are
respectively the density and pressure of the fluid. In
section 4 we investigate the possibility of a fluid
(C'S)4- spacetime to admit heat flux and it is proved that
in such a spacetime with the characteristic vector field &
of the spacetime as the flow vector field of the fluid, the
matter content can not be a non-thermalised fluid.
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The last section deals with a Ricci- semisymmetric
(CS)y-spacetime and it is shown that in such a
spacetime obeying Einstein equation, the characteristic
vector field & of the spacetime is a Killing vector field if
and only if the Lie derivative of the energy momentum
tensor with respect to £ is zero and also we obtain a
necessary and sufficient condition for the vector field &
to be a conformal Killing vector field.

Preliminaries: An n-dimensional Lorentzian manifold
M is a smooth connected paracompact Hausdorff
manifold with a Lorentzian metric g, that is, M admits a
smooth symmetric tensor field g of type (0, 2) such that
for each point p €M, the tensor g, : 7,M x T,M >R is a
non-degenerate inner product of signature (-, +, ..., +),
where T, M denotes the tangent vector space of M at p
and R is the real number space. A non-zero vector
vET,M is said to be timelike (resp., non-spacelike,
null,spacelike) if it satisfies g, (v, v) <0 (resp, <0, =0,
> 0) [2]. The category to which a given vector falls is
called its causal character.

Let M" be a Lorentzian manifold admitting a unit
timelike concircular vector field £, called the
characteristic vector field of the manifold. Then we
have

g5 B)y= =, (1)

Since € is a unit concircular vector field, there exists a
non-zero 1-form n such that for

g(X, o) =n(X) (2)
the equation of the following form holds
(Vxn)(Y)= a{g(X.Y) + n(Xm(¥)}  (a=0) (3)

for all vector fields X, Y where V denotes the operator
of covariant differentiation  with respect to the

Lorentzian metric g and « is a non-zero scalar function
satisfies

Vya=(Xa) = a(X) = pn(X), (4)
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p being a certain scalar function.

If we put

ox=1v_ ¢ ®)
a X

then from (3) and (5) we have

X =X+ n(X)E, (6)

from which it follows that ¢ is a symmetric (1,1) tensor.
Thus the Lorentzian manifold M" together with the unit
timelike concircular vector field & its associated
[- form n and (1,1) tensor field ¢ is said to be a
Lorentzian concircular structure  manifold (briefly
(LCS),- manifold) [4]. In a (LCS),- manifold, the
following relations hold [4]:

a) n(g) = -1,

b) ¢ =0,

c) nlgX) =0,

d) g(@X, @Y) = g(X.Y) + n(X) n(¥), (7
NRX,Y)Z) = (p- & ) [g (Y.Z) n(X)-g (X.Z) n(Y)]. (8)

SKX. &) =Mm=1)(p-&)n(X), &)

RIX.Y) & = (p-d ) [n(V)X ~n(X)Y], (10)
for any vector fields X, Y, Z where R, S denote
respectively the curvature tensor and the Ricci tensor of
the manifold. General relativity flows from Einstein’s
equation given by

;
SO = 2 gy + AgX) =kT (X,Y) (11)

for all vector fields X, ¥ where § is the Ricci tensor of
the type (0,2), r is the scalar curvature, A is the
cosmological contant, & is the gravitational constant and
T is the energy momentum tensor of type (0,2).

The energy momentum tensor 7" is said to describe a
perfect fluid [2] if

T(XY) = (ot p)A(X) A (Y) + pg (X)), (12)
where o is the energy density function, p is the
isotropic pressure function of the fluid, 4 is a non-zero
|-form such that g(X,U) = A(X) for all X, U being the
flow vector field of the fluid.

In a (C'S)4- spacetime by considering the characteristic
vector field & of the spacetime as the flow vector field

of the fluid, the energy momentum tensor takes the
form

T(XY)=(a+p)n(X)n(Y)+ pg(XY). (13)
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The another form of the energy momentum tensor in a
(C'S)4- spacetime is given by

X Y)=(o+ pinXin(Y) + pg(X.Y)

+ n(X)a(Y)+n(Y)aX), (14)

where g (X, V) =a(X) for all X, V being the heat flux

vector filed [3] ofthe fluid orthogonal to § ie.,
g, V) =0.
A Lorentzian manifold M' is said to be

Ricci-semisymmetric if its Ricei tensor S of type (0, 2)
satisfies the relation

RIXY).§S=10

where R(X,Y) is considered as a derivation of the tensor
algebra at each point of the manifold for tangent vectors
X, Y. The notion of Ricci-semisymmetry was first
introduced for a Riemannian manifold by Z.I. SzabO
[5]. We can easily prove the following:

Proposition 1: In a Ricci-semisymmetric (LCS),-
manifold, the Ricci tensor and the scalar curvature are
given by

SXY)=m~1)(p-a)g (XY, (15)

r=nn-l)(p-c). (16)
From (15) it follows that a Ricci-semisymmetric
(L.CS),-manifold is Einstein and hence its scalar
curvature is constant. Consequently (16) implies that
(p - o) is constant.

The above results will be used in the next sections.

Perfect Fluid (CS),-Spacetimes: Let us consider a
perfect fluid (CS), -spacetime with the characteristic
vector filed & of the spacetime as the flow vector filed
of the fluid. From (3), it follows that

(Vx ) () = (Vyn) (X) =0,

which yields g (Vy&Y) - g (V& X) = 0.

This means that the flow vector field & is irrotational.
Again from (5) we obtain by virtue of (7(b)) that
V& = 0. This implies that the integral curves of £ are
geodesics. Hence we can state the following:

Theorem 1: In a perfect fluid (C'S),-spacetime, the flow
vector field £ is irrotational and its integral curves are
geodesics,

Again by definition we have
4

divé = Z Elg(Vr' &€, ) where g, = g (¢, e)),
jm]

{e; }.i= 1,2, 3, 4 is an orthonormal frame filed, ‘div’

denotes the divergence.

From (5) we get

g8(ViiY) = ag(pXY)

which vields by virtue of (6) that
gV, Y) = efg(X.Y) + n (X) n ()]
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This implies that div & =3c # 0, because a # 0.

Since div & represents the expansion scalar and V.5
represents the acceleration vector, we can state the
following!

Theorem 2: In a perfect fluid (CS)-spacetime the
acceleration vector of the fluid must vanish but the
expansion scalar will never vanish.
Using (13) in (11) we obtain

r
SNY) - ;;g(X. Y) + Ag(X.Y)
=k{( o+ p)n (X) n (Y) +pg (X.Y)]. (17)

Putting X =Y = & in (17) and then using (9) (for n=4),
(1) and (7(a)) we obtain

S
il 2A-6(p-a”)

(18)
2k
From (13) we have
ir. (1) =3p-o (19)

Taking an orthonormal frame field and contracting over
X and Yin (11)and then using (19) we get

r=k(o-3p) +4A (20)
In view of (18) we obtain from (20) that
ﬂ)=6a1—r»6(p—rx‘) @1

6k

Since o and r are non-constants, from (18) and (21), it
follows that o and p are not constants, Thus we have
the following:

Theorem 3: If a perfect fluid (C'S),-spacetime obeys
Einstein equation with cosmological constant then none
of the pressure and density of the fluid can be a
constant.

Again from (18) and (21) we have

_r-12(p-a’)
3k

P (22)

This implies that o + p # 0.We now suppose that a
perfect fluid (CS),- spacetime is Ricci- semisymmetric,
Then from (16) we have
r=12(p-d) (23)
By virtue of (23) and (22) we obtain

otp=1

Hence we can state the following:
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Theorem 4: If a Ricci-semisymmetric perfect fluid
(CS)s-spacetime  obeys  Einstein  equation  with
cosmological constant, then the matter content cannot
be a perfect fluid with o+ p #0.

Possibility of a Fluid (CS),-Spacetime to Admit Heat
Flux: This section deals with a (CS)-spacetime in
which the matter distribution is a fluid with the
characteristic vector field & of the spacetime as the flow
vector field of the fluid. If possible, suppose that the
matter  distribution is described by the energy
momentum tensor 7(X, Y) given by (14). Since V is the
heat flux vector filed orthogonal to & we have
g V= nV)=w () = 0 Hence from (14) we
obtain

TX. ) =—on(X)—w(X). (24)

Putting Y = & in (11) and then using (9) and (24) we get

[3(p—d) - ’5 + A+ kol g (X) = ~kw (X). (25)
Since w (&) = 0, (25) yields

5 ol .
dp-d) -7 +Arko=0 (26)

By virtue of (25) and (26) we obtain

ke (X) = 0.

Since k # 0, it follows that @ (X) = 0 for all X, Hence in
a (CS)y-spacetime the matter distribution cannot be
described by the energy momentum tensor of the form
(14), This leads to the following :

Theorem 5: If in a (CS)y-spacetime the matter
distribution is a fluid with the characteristic vector field
& of the spacetime as the flow vector field of the fluid,
then such a fluid can not admit heat flux.

Ricci-Semisymmetric  (CS)-Spacetimes:  In  this
section we consider a Ricci-semisymmetric (CS)y-
spacetime. Then from (15) and (16) we get

S Y)=Lg(xy. (27)
4
Using (27) in (11) we have
re
(A —E ) g (X, Y) =kT(X, Y) (28)

Since in a Ricci-semisymmetric (CS),-spacetime, r is
constant, the relation (28) yields
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(- % )(£:8) (Y1) = k(£ (X,) (29)

where £; denotes the Lie derivative with respect to &
Now if the vector field £ is a Killing vector field, then

(£@) (XY) = 0 and hence (29) implies that
(since k # 0)
(£:D(X.Y)=0 (30)

r
Conversely, if (30) holds then (29) yields either A = Z
or ( £,2) (X,Y)=0 for all X,Y.
r
Butif A = Z . then (28) implies that 7 (X,Y) = 0 for all

X,Y which is not possible,
Hence we must have (£ :g) (X,Y) = 0.
Thus we can state the following:

Theorem 6: In a Ricci-semisymmetric (CS)4-spacetime
obeying Einstein equation, the characteristic vector
field £ of the spacetime is a Killing vector field if and
only if the Lie derivative of the energy momentum
tensor with respect to £ is zero.

Next, if  is a conformal Killing vector field, then

(£)(X,Y)=2yg(X,Y), (€3]

where y is a scalar function. Using (31) in (29) we get
r
which vields by virtue of (28) that
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(£:1(X.Y)=2yT(X.Y). (32)
From (32) we can say that the energy momentum tensor
has Lie inheritance property along & [1]. Conversely, if
(32) holds then it follows that (31) holds and hence & is
a conformal Killing vector field.

This leads to the following:

Theorem 7: In a Ricci-semisymmetric (C'S),-spacetime
obeying Einstein equation, the characteristic vector
field £ of the spacetime is a conformal Killing vector
field if and only if the energy momentum tensor has the
Lie inheritance property.

REFERENCES

I. Duggal, K.L., 1992, Curvature inheritance
symmetry in Riemannian spaces with applications
in fluid spacetimes. 1. Math. Phys., 33: 2989-2997.
O'Neill, B., 1983. Semi-Riemannian geometry,
Academic press, New York.

Reboucas, M.J. and J.A.S. Lima, 1981. Time-
dependent, finite, rotating universes. J. Math,
Phys., 22: 2699-2703.

Shaikh, A.A., 2003, On Lorentzian almost
paracontact manifolds with a structure of
the concircular type, Kyungpook Math, J., 43:
305-314.

SzabO, Z.1., 1984, Classification and construction
of complete hypersurfaces satisfying R(X,Y).
R =0, Acta. Si. Math., 47: 321-348.



