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Abstract: The ULV decomposition (ULVD} is an important member of a class of rank-revealing
two-sided orthogenal decompositions used to approximate the Singular Value Decomposition (SVD).
The ULVD can be medified much faster than the SVD.
The accurate computation of the subspaces is required in applications in signal processing. In this
study we introduce a divide coenquer ULVD algorithm.
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INTRODUCTION

The SVD has been the main teol for extracling matrix
information such as rank, subspaces, noise space of a
given matrix A. However it is computationally
expensive and difficult to modify [9]. Thus alternative
decompositions have been considered which are nearly
as reliable as the SVD but computationally inexpensive
and easier to meodify. Stewart [13] proposed
rank-revealing ULV decomposition as an alternafive.
ULVD is guaranfeed to reveal the numerical rank
correctly.

Throughout the study Il . Il will dencte the two norm and
II. Iz will denote the Frobenius norm.

The ULVD is a special case of the two-sided
orthogenal decompositions defined by Faddeev,
Kublanovskaya and Faddeeva [5] and Hanson and
Lawson [10]. The most familiar formulation is due to
Stewart [13]. A slightly different formulation is given
below by Barlow, Yoon and Zha [2].

Let A € R™" with m = n have the factorization

C T

A=U| v (1.1)
4
where
Ue R Ve R orthogonal {1.2)
k n-k
C= &k L 0, L, G lower triangular, (1.3}
n—k F G

1" 2 |(F6)| s(@(n)) e (1.4)

where £ is the tolerance or “noise level” and ${n) is a
modestly growing function of n, typically n or
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éﬂogn—|+l. The value % is usually referred to as

erank or the rank “revealed” by the ULVD. It is not
numerical rank unless £ is very close to machine
precision times the norm of 4 and, in practice, £ will
often be larger than that value.

In this study, we let {4} denote the i-th singular
value of A.

The matrix V vields good approximations of twe
impertant right singular subspaces. Let W be the right
singular vector matrix of A and let W and V be
partitioned into

k n—k k n—k
W=(1Wl Wz)! V=(V1 Vz) (1.5}
In applications to least squares and total least squares
problems, it is important that range(V,} be “close” to
range(W)) or equivalently, that range(V.,) be “close” to
range(W,). To insure that, Fierro and Bunch [6] show
that Davis-Kahan [4] sin € measure of error in
subspaces is bounded by

sing| =WV, |< l#d]
gap

(1.6}

where

o 2]

With current procedures, computing the ULVD from
scratch saves a little time from computing the SVD.
These ULVD algorithms start with an initial skinny QR
factorization of A followed by steps involving condition
estimation, deflation and refinement.

2
o-k +1

(). a;(A)_W}.
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We introduce a divide conquer ULVD algorithm of cost
4m’n + 8mn” — 41307 + S0°+160°7 + O(n) The rest of the
study is organized as follows. In the next section we
briefly outline the steps of the divide conquer ULVD
algorithm. This section also includes some theoretical
results of the algorithm. Finally, in §3 we present some
numerical results obtained from using our algorithm.

DIVIDE CONQUER ULVD ALGORITHM

For the sake of simplicity we consider A to be an order
n matrix with n=2" for some positive integer .

Algorithm 2.1: {(Divide Conquer ULVD Algorithm}

Step 1: Construct orthogonal matrices U(O), AP
such that

al
U
¢rz—l an
Step 2: Partition the matrix B as
¥ n—r
¥ B, 0
B= 1 T T
¢r+lel .48

n—r—1 G B

2

Step 3: If (r>n%) then

take B = B and go (o stepl
else compute the SVD of By to obtain

g =g T O par
‘ 0 =,

such that SHEI’EH <1,

E.)<e

end if

Define L, = X1y, G; = Ly, F; = 0 and go to step 5.
If (n—r>n%) then

take B = B, and go fo stepl
else compute the SVD of B, to obtain

5oy T O per
: 0 I,

such that &[5} <1, [£,,]<e

end if
Define I, = Y51, Gy = Xop, 3 = ( and go to step 5.

Step 4: Construct orthogenal matrices U(D, v e g
and U, V™ e R*~"7*"="~! such that
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with the conditions |L'||<1. £|L'|<1.

Step 5: Merge the matrices By and B, to get

v oo o .
o 1 o |87 }
o o u® v
L 0 0 0} an
F G 0 0
=z Z zI 2
0 0 L O
0 0 F G,

Step 6: Reorder the matrix on the right side of {2.1) to
obtain

yt [V“f }
G B ,
¢ o ¥ v

L 0 0 0

0, L 0 0

=z 2z z =z

F 0 G 0

0 F 0 G,

Step 7: Construct orthogonal matrices U, v e jr
such that

L, 0 0
L o 0, L, 0 0
oy =UY o v
F G F 0 6 0
¢ F 0 G,
where
. 0
p=|h (2.2)
0 L
Z
2{%},7,:[ j , (2.3)
Z Z,




J. Math. & Stat., 1(2): 124-128, 2005

F 0 G 0
0 F 0 G,

(h @)=

Step 8: Construct orthogenal matrices U v e g
such that

}V(ﬂ. (2.4

L o
[i g}=UMT5T yer (v
G

with eHL"H<1

Using the definition of a flop as an addition and a
multiplication the complexity of the algorithm (2.1} is
dm’n + 8mn’ — 41307 + SP+16m7° + O(n) We will show
this using Proposition 2.2 in Propositicn 2.3.

The following proposition gives the number of levels in
which the problem is divided into.

Proposition 2.2: Assume the terminclogy of Algorithm
2.1. Then the number of levels { is given by

= %Llog2 n| (2.5

In the following proposition we prove the complexity of
Algorithm 2.1.

Proposition 2.3: Let a matrix A of size mxn be applied
to the algorithm (2.1). Then it takes 4m’n + 8mn’-4/3n°
+3n7+ 16n™ + O(n) to obtain ULVD of A.

Proof: Assume [ is the number of levels when A is
applied to the algorithm (2.1). Then the cost of all
SVD's in the Step 3 of the algorithm is given by

the cost of each SVD
2'x ‘ ‘ n (2.6)
of a matrix of size < ?

Moreover, at level { fqr i <{—1, there are o updates of
a matrix of size < n/2' Thus the updates, due to Step 8§
adds

the cost of update of

2.7
a mafrix of size < % (2.7)

where for a maftrix of size ng having rank kp, each
$ms —n (2K, —1)+(k; —k; }|. Taking

2
ke

update costs

= %Uogz nJ and adding the cost of bidiagonalization
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step to {2.6} suffice to complete the proof.

Lemma 2.4: Let

F 0 G,
0 F, 0 G

0

|

(7 G} 29

(2.8)

(r o)
be a given matrix. Then we have

(# O)=max{f(r 6.

[F o), =R Gl +I(7 6. @10

Theorem 2.5 tells us about the quality of the
decomposition obtained by Algorithm 2.1.

Theorem 2.5: Let A e R™, m 2 n. Then Algorithm
2.1 produces a decomposition of A such that

(L 0] r
A=U 1% (2.113
F G
where
Ue R, Ve R™ orthogonal,  {2.12}
ellL Y1 (2.13}
(7 G, <@, (n)*e.
(2.143
@; (ny=n, @ (| [)=n*
[(F G)|<®(n)e,
(2.15)

Bfn

}=1[log,n]+1, (I)((H%—D =1

Proof: Step 8 of Algorithm 2.1 constructs L so that
elIL, Mi<1, thus (2.13} is obvious. In doing so it reduces

L L 0

2T el .
Z,. :VAI F G

¥F G

By Lemma 2.4 and orthogenal invariance of two norm
and Frobenius norm we have

(7 6]

=max (£ G},

(F, G|} @6

217

~ s 2
(F G)F

=l e, e 6,
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We observe that since £ 11 L. i< 1 then

Lo
7y
has either k or k+1 singular values greater than £ We

first consider the case where (2.18) has & + 1 singular
values greater than £ Then

(2.18)

(F o=

(£ ¢

(F 6)

(F 6),=

. .
F

Thus, by (2.16) and (2.17),

P (n)= q’((ﬂ) , ®; (n) =2, ((ﬂ) :

We second consider that {2.18) has k singular values
greater than £ Let @ be the smallest singular value of
(2.18). Then

(2.19)

F

Moreover Step 3 gives us that

L 00,
B=U 14
0 X,

where H)22 H <g,

x, HF <nle. Hence,

Se far we presented the divide conquer ULVD
algorithm and related theoretical results. However, it
might be necessary to improve the quality of the
computed subspaces. It follows the bound in (1.6) that
this can be accomplished by reducing the norm of off
diagonal matrix.

Numerical Examples: In this section we analyze the
performance of our algorithm. The results were
obtained using Matlab on a Ultra3 SUN station in
[EEE Standard double precision with machine
epsilon =10 1

n—k

=

k
Let A=ULW" , W=(W,

)

be the SVD of A of numerical rank %k obtained by the
Matlab's SVD algorithm. Also, let

k n—k
A=UCV" V=V, V)
be ULVD of A computed by ftraditional way. And

ULVD of A by cur divide conquer algorithm is given
by

k n—k

A=UCVT ,V=(V, V).
Define the angles between subspaces by

sin g, =WV, (3.1)

sine, =

The angles sin#, and siné represent error between the

<1>(r) =1,®, ( r) =nh (2.22) noise subspaces from Matlab's SVD and the one
obtained by traditional way and by divide conquer
for %n% <r< n}g' algorithm, respectively.
Table 1: Results from First Set of Mafrices
Divide conquer algerithm Traditicnal ULVD algerithm

n Dec. Err. error; sing Dec. Err. Errors siné
Results without any refinement
50 1.6806¢e-14 1.3768¢-09 2.2758e-15 1.9924e-14 6.5721e-10 2.0505e-15
106G 4.1523e-14 2.3551e-09 3.3393e-15 6.3926e-14 1.2770e-09 4.5402e-15
150 1.1059e-13 2.7901e-09 4.7793e-15 1.0100e-13 1.3591e-09 4.0696e-15
200 2.1651e-13 3.3787e-09 6.0035e-15 1.6343¢-13 1.6223¢-09 5.3578e-15
250 2.5751e-13 3.5982e-09 6.0715e-15 2.5230e-13 1.8572e-09 7.0443e-15
300 4.6100e-13 3.8086e-09 8.8898e-15 3.5068e-13 1.6105e-09 6.9187e-15
Results with refinement
50 2.5412e-14 3.7223e-23 1.9307e-15 5.952%¢e-14 7.1138e-23 2.3624e-15
100 7.5532e-14 2.4815e-24 3.1304e-15 1.3512e-13 1.7371e-23 3.5428e-15
150 1.2885e-13 1.1746e-22 3.9587e-15 2.039%¢-13 1.4972¢-22 4.8671e-15
200 2.0675e-13 4.0615e-22 6.5683e-15 3.4168e-13 3.4080e-22 6.4560e-15
250 2.4713e-13 2.316le-22 6.1558e-15 8.0126e-13 3.5403e-22 8.4351e-15
300 3.8083e-13 7.5819e-21 6.4523e-15 6.7611e-13 1.978%9¢-19 8.3802e-15
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Table 2: Results from Second Set of Maftrices

Divide conquer algorithm

sing;

Traditional ULVD algorithm

Dec. Err.

n Dec. Err. erron error, siné

Results without any refinement

50 2.86065e-15 2.4899e-0% 6.2554e-12 2.9380e-15 §.0483e-16 4.5764e-05

160 1.4867e-15 7.5672e-09 3.2217e-11 4.7703e-15 2.8091e-14 2.6420e-04

150 2.3815e-15 4.9852e-09 1.4367e-07 6.55317e-15 4.9376e-14 5.2104e-04

200 2.0544e-15 5.9237e-09 1.7014e-10 8.2519¢e-15 1.1137e-13 §.1981e-04

250 2.6867e-15 3.3665e-09 4.0178e-10 0.2295e-15 1.5452e-13 1.1078e-03

300 1.6876e-15 4.1915e-09 9.7344e-10 8.5009e-15 1.6433e-13 1.3774e-03

Results with refinement

50 2.9448e-15 0 6.2458e-12 3.7194e-15 8.2718e-25 8.6853e-12

100 1.6302e-15 1.6544e-24 3.2218e-11 7.8506e-15 1.6544e-24 1.8867e-10

150 2.6496e-15 8.2718e-25 1.7388e-09 8.3047e-15 5.7903e-24 1.3487e-10

200 2.7747e-15 8.2718e-24 1.7042e-10 8.3902e-15 1.6544e-24 3.5150e-10

250 3.4913e-15 3.3087e-24 4.0178e-10 1.4076e-14 9.0990e-24 3.0362e-10

300 1.8043e-15 0 9.7470e-10 1.5035e-14 9.(0990e-24 3.3719e-10

Define also

4. Davis, C. and W.M. Kahan, 1970. The rotation of
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rank of the matrix. However, the singular values are orthoeonal decompositions. SIAM 1. Matrix Anal
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