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Abstract: Anthropomorphic mechatronic systems are the most widely used 

robotics systems worldwide today in industry and in all automated 

environments. These systems are best suited to the modern automation and 

mechatronisation needs of the modern world, being mobile, dynamic, light, 

robust, complex, technologically simple, easy to design and manufactured, 

implemented, maintained and used in almost any industrial site, both in 

machine building and in special environments, such as chemical, toxic, 

dyeing, underwater, nuclear, in space.... Anthropomorphic robots are 

flexible, dynamic, stable, lightweight, fast, fast, inexpensive, easy-to-

install, mechanical, mechanical, mechanical and mechanical systems with a 

pleasant appearance, modern industrial design and easy to design and 

implement in any workplace, imposed. In this study we will present the 4×4 

operators and the way they can be implemented and used in the complex 

matrix calculations in order to simplify the complex matrix algebraic 

numerical methods. 4×4 operators are designed to simplify algebraic matrix 

calculations by making difficult matrix operations simpler and easier to 

approach. The method of using 4×4 operators is meant to introduce a 

degree in addition to the matrices to facilitate algebraic operations. The 

kinematics of serial manipulators and robots will be exemplified for the 3R 

kinematic model. The fixed coordinate system was denoted by x0O0y0z0. 

The mobile systems (rigid) of the three mobile elements (1, 2, 3) have 

indices 1, 2 and 3. Their orientation has been chosen conveniently. Known 

kinematic parameters in the direct kinematics are the absolute rotation 

angles of the three moving elements:  ϕ10, ϕ20, ϕ30, angles related to the 

rotation of the three actuators (electric motors) mounted in the kinematic 

rotation couplers. The output parameters are the three absolute coordinates 

xM, yM, zM of point M, i.e., the kinematic parameters (coordinates) of the 

endeffector (the actuator element (the final), which can be a grasping hand, 

a solder tip, painted , cut, etc ...). The 3×3 matrix is transformed into 4×4 (it 

is a mathematical operator) by adding two zero vectors (formed from three 

elements 0), one line and the other column, and adding one element 1 to the 

main diagonal (the last element). The matched T01 matrix becomes T01

4
. 

The column vector matrix (consisting of three elements) undergoes a 

minimal transformation receiving a fourth fixed value 1 if it is only used for 

matrix products. The convenient form of matrix A12 is A12

c
. 

 

Keywords: Anthropomorphic Mechatronic Systems, Robots, Geometry, 

Kinematics, 4×4 Operators 
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Introduction  

Anthropomorphic mechatronic systems are the most 

widely used robotics systems worldwide today in 

industry and in all automated environments. These 

systems are best suited to the modern automation and 

mechatronisation needs of the modern world, being 

mobile, dynamic, light, robust, complex, technologically 

simple, easy to design and manufactured, implemented, 

maintained and used in almost any industrial site, both in 

machine building and in special environments, such as 

chemical, toxic, dyeing, underwater, nuclear, in space.... 

Anthropomorphic robots are flexible, dynamic, stable, 

lightweight, fast, fast, inexpensive, easy-to-install, 

mechanical, mechanical, mechanical and mechanical 

systems with a pleasant appearance, modern industrial 

design and easy to design and implement in any 

workplace, imposed. In this study we will present the 

4×4 operators and the way they can be implemented and 

used in the complex matrix calculations in order to 

simplify the complex matrix algebraic numerical 

methods. 4×4 operators are designed to simplify 

algebraic matrix calculations by making difficult matrix 

operations simpler and easier to approach. The method 

of using 4×4 operators is meant to introduce a degree in 

addition to the matrices to facilitate algebraic operations.  

(Antonescu and Petrescu, 1985; 1989; Antonescu et al., 

1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 

2000b; 2001; Aversa et al., 2017a; 2017b; 2017c; 2017d; 

2017e; 2016a; 2016b; 2016c; 2016d; 2016e; 2016f; 

2016g; 2016h; 2016i; 2016j; 2016k; 2016l; 2016m; 

2016n; 2016o; Berto et al., 2016a; 2016b; 2016c; 2016d; 

Cao et al., 2013; Dong et al., 2013; Comanescu, 2010; 

Franklin, 1930; He et al., 2013; Lee, 2013; Lin et al., 

2013; Liu et al., 2013; Mirsayar et al., 2017; Padula and 

Perdereau, 2013; Perumaal and Jawahar, 2013; Petrescu, 

2011; 2015a; 2015b; Petrescu and Petrescu, 1995a; 1995b; 

1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 

2005a; 2005b; 2005c; 2005d; 2005e; 2011; 2012a; 2012b; 

2013a; 2013b; 2016a; 2016; 2016c; Petrescu et al., 2009; 

2016; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 

2017h; 2017i; 2017j; 2017k; 2017l). 

Materials and Methods  

The kinematics of serial manipulators and robots will 

be exemplified for the 3R kinematic model (Fig. 1).  

The fixed coordinate system was denoted by 

x0O0y0z0. The mobile systems (rigid) of the three mobile 

elements (1, 2, 3) have indices 1, 2 and 3. Their 

orientation has been chosen conveniently. Known 

kinematic parameters in the direct kinematics are the 

absolute rotation angles of the three moving elements: 

ϕ10, ϕ20, ϕ30, angles related to the rotation of the three 

actuators (electric motors) mounted in the kinematic 

rotation couplers. The output parameters are the three 

absolute coordinates xM, yM, zM of point M, ie the 

kinematic parameters (coordinates) of the endeffector 

(the actuator element (the final), which can be a grasping 

hand, a solder tip, painted , cut, etc ...). 

The 3×3 matrix is transformed into 4×4 (it is a 

mathematical operator) by adding two zero vectors 

(formed from three elements 0), one line and the other 

column, and adding one element 1 to the main diagonal 

(the last element). The matched T01 matrix becomes T01

4
 

(relation 1): 
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10 104
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cos sin 0

sin cos 0
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cos sin0 0 0
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0 0 0 01
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x x x

y y y

z z z
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y y y

z z z

T

T

φ φα β γ

α β γ φ φ

α β γ

α β γ φ φ

α β γ φ φ

α β γ

  − 
   = = ⇒   
     

−   
   
   ⇒ = =
   
   
   

 (1) 

 

The column vector matrix (consisting of three 

elements) undergoes a minimal transformation receiving a 

fourth fixed value 1 if it is only used for matrix products. 

The convenient form of matrix A12 is A12

c
 (2): 

 

1

1

2

12 2 12

0
0

1

c

d
d

a
A a A

 
   
   = ⇒ =   
    

  

 (2) 

 

The resulting product is also a 4×1 column vector (3): 

 

110 10

10 10 24

01 12

1 10 2 10

1 10 2 10

cos sin 0 0

sin cos 0 0

00 0 01

10 0 0 1

cos sin

sin cos

0

1

c

d

a
T A

d a

d a

φ φ

φ φ

φ φ

φ φ

−   
  
  ⋅ = ⋅ =
  
  
    

⋅ − ⋅ 
 ⋅ + ⋅ =
 
 
 

  (3) 

 

When the vector matrices multiply, it is sufficient to 

transform them into the vector matrix 4×1 column. 

However, if a vector matrix has to be assembled to 

convert the sum (from the space of 3 dimensions 3×3 or 

3×1) into a multiplication operation (produced in space 

with 4 dimensions 4×4 or 4×1) of matrices, no 4×1 forms 

are allowed only 4×4 (4-7): 
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Fig. 1: The geometry and cinematic of a MP3R 
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       (6’) 
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 

 (7)  

 
We have prepared the arrays necessary for the 

summation, now we can go directly to their assembly in the 
form of column vectors (3×1 or 4×1). In this way the direct 
result is obtained, and the operators we have complicated do 
not use anymore (apparently). We will still use the form 
with operators first to see how they work, and then we will 
resume the algorithm intelligently to understand the role of 
the operators. To make the addition in multiplication 
(matrix product) by operators, we must have a 4×4 matrix. 
In this case, whether we have a product or a sum, we 
perform the product of the 4×4 operator matrices (so using 
matrixes expanded to 4×4 we perform only matrix product 
regardless of whether it is a sum in 3×3 or a multiplication). 
A 4×1 vector array is operationally written 4×4 by 
completing the 3×3 unit matrix below it with a 1×3 vector 
zero line (0, 0, 0) and right with the original vector 4×1. 

When making the actual amount, things get complicated 
and at first sight this complication seems useless, but its role 
is essential (as we will see later) to work directly with 
transfer matrices. This is the real role of operators. 

The assembly to be performed is (between the 

operator arrays the sign is + instead of +): 

 
4 4 4 4 4 4 4 4 4 4

01 01 12 01 12 23 01 12 23 3
( ) ( ) ( )c c c

M
A T A T T A T T T X+ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅  

 

(see relationship (8): 
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The relationship (8) continues with (8 '): 

 

1 10 2 10 2 10 20 3 10

1 10 2 10 2 10 20 3 10

1 2 20

3 10 30

3 10 30

3 30

( cos sin cos cos sin )0 01

( sin cos sin cos cos )0 01

( sin )0 0 1

0 0 0 1

( cos cos )0 01

( sin cos )0 01

sin0 0 1

0 0 0 1

d a d a

d a d a

a d

d

d

d

φ φ φ φ φ

φ φ φ φ φ

φ

φ φ

φ φ

φ

⋅ − ⋅ + ⋅ ⋅ − ⋅ 
 ⋅ + ⋅ + ⋅ ⋅ + ⋅  ⋅
 + ⋅
 
 

⋅ ⋅
 ⋅ ⋅⋅
 ⋅



1 10 2 10 2 10 20 3 10 3 10 30

1 10 2 10 2 10 20 3 10 3 10 30

1 2 20 3 30

( cos sin cos cos sin cos cos )0 01

( sin cos sin cos cos sin cos )0 01

( sin sin )0 0 1

0 0 0 1

d a d a d

d a d a d

a d d

φ φ φ φ φ φ φ

φ φ φ φ φ φ φ

φ φ



 =


 


− + − + 
 + + + + 
 + ⋅ + ⋅
 
 

  (8’) 

 
Next step will be to step-by-step determination of the 

transfer matrix from left to right, which was not possible 

in the 3×3 system. The relationship (9) is written in the 

form (9’); we see how the sum turns into a product due 

to 4×4 operators, which allows us to carry out the 

operation between matrices from left to right because we 

do not add or multiply (9-12). 
 

0 01 01 1M M
X A T X= + ⋅  (9) 
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It found the crossings from 0 to 1 and from 1 to 2; at 

this point we do not go any further until we set the 

transition from 0 to 2 (13-14). 
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Now you can go further on the chain to determine 

D23 (15-16): 
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The transfer input matrix D03 can now easily be 

found (17-18): 
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The formula (17) can be simplified by reducing the X 

(4×4) matrices to the 4×1 column vector, because 

practically there is only a multiplication operation 

between the DX transfer matrix 4×4 and the vector 

X3M; as an observation (both forms may be used, but 

Xx vector type 4×1 is not required to matrix form 4×4, it 

is preferable to working with the simpler form), (19-20): 
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From the type 4×1 vector, we get the 3×1 vector, 

which we really care about, eliminating the final line, ie 

the element 1 (21). 
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Results  

We can now write the coordinates of the M point 

taken separately, as functions of the independent rotation 

angles of the three movable elements (22). 
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
− + −


= ⋅ + ⋅ +

+ + +

 = + +

 (22) 

 

Discussion  

We have prepared the arrays necessary for the 
summation, now we can go directly to their assembly in 
the form of column vectors (3×1 or 4×1). In this way the 
direct result is obtained, and the operators we have 
complicated do not use anymore (apparently). We will 
still use the form with operators first to see how they 
work, and then we will resume the algorithm intelligently 
to understand the role of the operators. To make the 
addition in multiplication (matrix product) by operators, 
we must have a 4×4 matrix. In this case, whether we have 
a product or a sum, we perform the product of the 4×4 
operator matrices (so using matrixes expanded to 4×4 we 
perform only matrix product regardless of whether it is a 
sum in 3×3 or a multiplication). A 4×1 vector array is 
operationally written 4×4 by completing the 3×3 unit 
matrix below it with a 1×3 vector zero line (0, 0, 0) and 
right with the original vector 4×1. 

When making the actual amount, things get 

complicated and at first sight this complication seems 

useless, but its role is essential (as we will see later) to 
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work directly with transfer matrices. This is the real role 

of operators. 

Conclusion 

In this study we will present the 4×4 operators and 

the way they can be implemented and used in the 

complex matrix calculations in order to simplify the 

complex matrix algebraic numerical methods. 4×4 

operators are designed to simplify algebraic matrix 

calculations by making difficult matrix operations 

simpler and easier to approach. The method of using 4×4 

operators is meant to introduce a degree in addition to 

the matrices to facilitate algebraic operations. The 

kinematics of serial manipulators and robots will be 

exemplified for the 3R kinematic model. The fixed 

coordinate system was denoted by x0O0y0z0. The mobile 

systems (rigid) of the three mobile elements (1, 2, 3) 

have indices 1, 2 and 3. Their orientation has been 

chosen conveniently. Known kinematic parameters in the 

direct kinematics are the absolute rotation angles of the 

three moving elements: ϕ10, ϕ20, ϕ30, angles related to the 

rotation of the three actuators (electric motors) mounted 

in the kinematic rotation couplers. The output parameters 

are the three absolute coordinates xM, yM, zM of point M, 

ie the kinematic parameters (coordinates) of the 

endeffector (the actuator element (the final), which can 

be a grasping hand, a solder tip, painted , cut, etc ...). The 

3×3 matrix is transformed into 4×4 (it is a mathematical 

operator) by adding two zero vectors (formed from three 

elements 0), one line and the other column, and adding 

one element 1 to the main diagonal (the last element). 

The matched T01 matrix becomes T01

4
. The column 

vector matrix (consisting of three elements) undergoes a 

minimal transformation receiving a fourth fixed value 1 

if it is only used for matrix products. The convenient 

form of matrix A12 is A12

c
. 
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