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Abstract: In this study, one presents a method for determination of 

kinetostatic parameters in dyad 3R. It starts with the determination of the 

forces in the joints: RB, RD, R23. To generalize the method including for the 

2R robots, enter both the moments M1, M2. This module (2R) is the main 

module found in all rotating anthropomorphic robotic structures and similar 

mechatronic structures. If there are additional external forces such as 

technological resistances, they will also be added. The forces acting within 

a mechanism are of particular importance in that they give the dimensions 

of the mechanism, the elements of the mechanism so that it can withstand 

all the static and dynamic loads during its operation. For this reason, it is 

important to know all the forces acting on the elements but especially on 

the kinematic couplers, both for the correct dimensioning of these elements 

and for the proper functioning of the respective mechanism. Forces together 

with kinematics are, on the other hand, basic components of dynamic 

calculations for that mechanism. This is also true for robots. Science that 

deals with the determination of forces within a mechanism is called 

Kinetostatic. The calculations within a mechanism are made on the pieces 

of this mechanism called structural groups or structural modulus. The 

structural modules of a mechanism are determined on the basis of the 

principle of eliminating the mobility of the respective group in the 

desmodromic mechanisms. The mobility of the mechanism is given either 

by other movable input elements that are added to the structural groups or 

to the robots by adding some actuators to the elements of a module. 
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Introduction  

The forces acting within a mechanism are of 

particular importance in that they give the dimensions of 

the mechanism, the elements of the mechanism so that it 

can withstand all the static and dynamic loads during its 

operation. For this reason, it is important to know all the 

forces acting on the elements but especially on the 

kinematic couplers, both for the correct dimensioning of 

these elements and for the proper functioning of the 

respective mechanism. Forces together with kinematics 

are, on the other hand, basic components of dynamic 

calculations for that mechanism. This is also true for 

robots. Science that deals with the determination of 

forces within a mechanism is called Kinetostatic 

(Antonescu and Petrescu, 1985; 1989; Antonescu et al., 

1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 

2000b; 2001; Aversa et al., 2017a; 2017b; 2017c; 2017d; 

2017e; 2016a; 2016b; 2016c; 2016d; 2016e; 2016f; 

2016g; 2016h; 2016i; 2016j; 2016k; 2016l; 2016m; 

2016n; 2016o; Berto et al., 2016a; 2016b; 2016c; 2016d; 

Cao et al., 2013; Dong et al., 2013). 

The calculations within a mechanism are made on the 

pieces of this mechanism called structural groups or 

structural modulus. 
The structural modules of a mechanism are 

determined on the basis of the principle of eliminating 

the mobility of the respective group in the desmodromic 

mechanisms. The mobility of the mechanism is given 

either by other movable input elements that are added to 

the structural groups or to the robots by adding some 

actuators to the elements of a module (Fig. 1). 
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Fig. 1: The kinetostatic parameters to a 3R dyad (2R module) 
 

Materials and Methods  

In this study it presents a method able to determine 
the kinetostatic parameters to a 3R dyad (Fig. 1) 
(Comanescu, 2010; Franklin, 1930; He et al., 2013; Lee, 
2013; Lin et al., 2013; Liu et al., 2013; Mirsayar et al., 
2017; Padula and Perdereau, 2013; Perumaal and 
Jawahar, 2013; Petrescu, 2011; 2015a; 2015b; Petrescu 
and Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 
2000a; 2000b; 2002a; 2002b; 2003; 2005a; 2005b; 
2005c; 2005d; 2005e; 2011; 2012a; 2012b; 2013a; 
2013b; 2016a; 2016; 2016c; Petrescu et al., 2009; 2016; 
2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 
2017h; 2017i; 2017j; 2017k; 2017l).  

To generalize the method and to the 2R robots, are 
introduced and the two moments M1, M2. This 2R 
module, is the principal from the android rotation robotic 
structures and mechatronic structures. 

The 3R dyad has two elements, noted with 2 and 3. 
Their lengths are l2 and l3. 

If the 3R dyad is coupling to a 4R mechanism, we note 
the forces which give the entry into dyad, with R12 and R03. 
In case the structure 2-3 is using to a robot or to another 
mechanism, we note the entrance forces, with RB and RD. 

One proposes to determine the forces from joints: RB, 

RD, R23. 
Figure 1 shows a schematic diagram of the 3R dyad 

minimum kinetostatic (loaded with the inertia forces, 
considered external forces). 

For if there are additional external forces, such as 
technological resistances will be added as well. 

One can consider and the forces of gravity, if 
mechanism operates strictly vertically and working speeds 
are low. 

Determining the Forces from Joints 

The joints forces represent the interior loads 

(internal forces). 

One proposes to determine these (internal) forces. 

We start with the internal force RB, which is divided 

in two components in a Cartesian planar system: x

B
R , y

B
R . 

If external forces are known in general (are given, 
determined, calculated), internal forces (reactions of 
kinematic couplings) results from the balance of forces 
and moments of the dyad. 

To start we are writing an equation representing the 
sum of the moments from element 2 in relation to the 
point C and another relationship which represent the sum 
of all moments from entire dyad, in relation to the point 
D (system 1).  
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The two equations are rewritten in the form of the 

system (2): 
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System (2) can be arranged as a linear system (3) by 

two equations with two unknowns
12 12

;
x x y y

B B
R R R R≡ ≡ , with 

the coefficients, given from system (4): 
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Solutions of the system (3) will be given by system (5): 
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Further determine other two internal forces,
03 03

x y
R si R , 

or ( )x y

D DR si R . 

Next we write the sum of all forces on the dyad (2, 3) 

designed separately, first on the x axis and then on the y 

axis, (see the system 6). 
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For the last two scalar components of the internal 

force from the joint C, one writes a new balance of 

forces on element 2 (for example), designed separately 

on axes x and y (system 7). 

We obtained directly the internal forces
23 23

x yR and R . 

Their opposites,
32 32

x yR and R , they will be equal but 

opposite directed their, or in other words will have the 

same value but opposite sign. 

For that all kinetostatic calculations of the 3R dyad 

to be possible, must be determined in advance, the forces 

and moments of inertia, separately for each element of the 

dyad. These are called, the group of the inertial forces” 

and are expressed with the relations system (8). 

Results  

The joints forces can be determined and represented 

by the two diagrams below (Fig. 2 and 3). 
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Fig. 2: The six internal forces of joints; ω = 200 [s
−1
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  Fig. 3: The six internal forces of joints; ω = 300 [s
−1
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Below you can see the six forces (internal forces) of 

joints from dyad 3R, depending on the angle of the crank 

FI, when the dyad is linked together with a crank, 

forming a mechanism 4R.  

Variation is represented on an entire cycle kinematic, 

for an angular velocity of crank, 200 or 300 [s
−1

]. 

Discussion  

T I-The first use of the reaction forces from 
couplings, is sizing of the kinematic couplings. 

II-At the mechanisms with a degree of mobility, with 

the forces from driving coupling ( ),

x y

B BR R , it determines 

the required motor torque (M
m
). We illustrate by the 

mechanism articulated quadrilateral (Fig. 4 and 

relationships 9): 
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Usually the torques M1 and M2 are null. But they can 

be and an external torque. III-At the mechanisms with 
two degree of mobility, with the forces from driving 
coupling (Fig. 5), it determines the required motor 
torques: M1 ≡ M

m2, M2 ≡ M
m3.  

This scheme is used in anthropomorphic robots. 
Coupling B is denoted by O2. Coupling C is denoted by 
O3. Coupling D become an end effector point M. Basic 
structure 3R of anthropomorphic robot (Fig. 6) can be 
decomposed into 2R planar structure (Fig. 5) which 
also possesses an additional rotating around a vertical 
axis (O0O1). 

It is more convenient to study the structure plan O2O3 

M system (elements 2 and 3). But since this system 

(plan, 2R) using balanced, it's good to study in its 

balanced form (Fig. 7). 

Masses and lengths of the system are calculated using 

the Equation 10. Forces from the driveline balanced plan 

can be seen in the Fig. 8: 
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Fig. 4: The forces at a mechanism articulated quadrilateral 
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Fig. 5: The forces at a mechanism with two degree of mobility 

 

 
 

Fig. 6: The basic structure 3R 
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Fig. 7: The basic, balanced, structure 2R 
 

 
 

Fig. 8: The forces of the basic (balanced) structure 2R 
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Now, it still writing inertial forces (relations system 

11) of the point O3: 
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Now we are writing and the inertial forces of the 
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Now we can write the equilibrium equations on the 

element 2 projected on the x (system 14) and y (system 15): 
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It can be seen that the torque loads are minimal 

precisely because balancing. Effect given inertial forces 

(torques produced by these forces) cancel (balance due).  

Torques produced by the forces of gravity is canceled 

and they all balance due.  

Balanced final weight also makes the power train 

only one effect, a vertical load (causes a vertical reactor) 

in fixed coupling. 

At a total balanced, even the horizontal load disappears. 

It will still write an amount of moments to the fixed 

point O2, on the element 2 (system 16): 
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Mass moment of inertia (or mechanical) of the 

element 2, is calculated with relation 17. 
 

2 2

* 2 2 2 2

3' 2 2 2 2 3' 2O O II
J J m d m s m m dρ= + ⋅ = ⋅ + ⋅ + ⋅   (17) 

 
One can determine now the torque required (Mm2), 

which must be generated by the actuator 2 (mounted in 
coupling O2); see the relation (18). 
 

( )
2 2

* 2 2 2

2 2 2 2 3 ' 2 20m O II
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We now sum of the moments of all forces on item 3 

in relation to swivel O3 (relationship 19): 
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  (19) 

 
One determines now and the vertical component, of 

the reaction, from the mobile (internal) coupling O3; (see 
the relations of the system 20). 
 

(3) 3' 23

23 3 '

32 23 3 '

0 0
y y

y

y y

F m g R

R m g

R R m g

 = ⇒ − ⋅ + = ⇒
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∑
  (20) 

 
Horizontal component (of the reaction from the 

kinematic coupling O3) is zero (21). 
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23 32
0

x y
R R= − =  (21) 

 
There is no unanimously accepted definition of the 

robot. According to some specialists, this is related to the 

notion of movement and others associate the robot with 

the notion of the flexibility of the mechanism, its ability 

to be used for different activities or the notion of 

adaptability, the possibility of its operation in an 

unpredictable environment. Each of these notions taken 

separately can only characterize the robot partially. 

The robot combines mechanical and electronic 

technology as an advanced automation component that 

encompasses cybernetic electronics with advanced drive 

systems to produce independent, highly flexible equipment. 

The word "robot" first appeared in the R.U.R. 

(Rossum's Universal Robot) written by Czech playwright 

Karel Capek in which the author parodies the word 

"robot" (work in Russian and Czech choreography). In 

1923 the song was translated into English, the word 

robot passed unchanged in all languages to define 

humanoid protagonists of science fiction stories. 

The history of robotics begins in 1940 with the 

realization of synchronous manipulators for handling 

objects in radioactive environments. In 1954, Kenward 

of England patented a two-arm manipulator. 
The concept of industrial robots was first established 

by George C. Deval, who patented in 1954 an automatic 
transfer device, developed in 1958 by American firm 
Consolidated Control Inc. 

In 1959, Joseph Engelberger acquired Deval's patent 

and in 1960 he made the first R.I. Unimate at 

Unimation Inc. 
The epic of industrial robots began in 1963 when the 

first industrial robot at General Motors' Trenton (US) 
plant was put into operation. 

The first industrial success occurred in 1968 when 
the first car welding line was installed at the Lordstown 
plant, equipped with 38 Unimate robots. It turned out 
that the robot was the best spot welding machine. 

By associating with Kawasaki N.I. in 1968, Japan 

began manufacturing the Unimate robots, their 

implementation in the automotive industry taking place 

in 1971 at Nissan-Motors. 

In the same year, Unimate robots entered Italy, 

equipping the bodywork welding line at FIAT points in 

Turin. 

Unimation and General Motors launched the PUMA 

(Programmable Universal Machine for Assembly) robot 

in 1978. 
A.S.E.A. in Sweden, in 1971, the Irb6 industrial 

electric robot is designed for electric arc welding. 
In 1975, the Cincinnati Milacron Machine Tool 

Company (USA) builds a family of industrially-powered T3 

(The Tomorrow's Tool) industrial robots, today widespread. 

In our country, in 1980, the first RIP63 robot was 

manufactured at Automatica Bucharest according to the 

model of A.S.E.A. and the first industrial application with 

this electric arc welding robot of a chassis component of a 

bus was carried out in 1982 at the Bucharest Bus. Two 

years later, the robots were also implemented at the 

Bucharest Seminary. Scientific Coordination belonged to 

the "MEROTEHNICA" team from the "Theory of 

Mechanisms and Robots" Department of " the Politehnica 

University of Bucharest" under the leadership of the late 

Christian Pelecudi, the father of Romanian robotics and the 

founder of SRR (Romanian Society of Robotics) today 

ARR (Romanian Association of Robotics). The TMR team 

had 80 collaborations with the Japanese companies (and 

thanks to the late Prof. Bogdan Radu, many years 

ambassador of Romania to Japan); have been brought in 

and implemented in the country Fanuc robots (at the time of 

the last generation). 

Another native robot is REMT-1 used in a flexible 

manufacturing cell at Electromotor Timisoara for chip 

cutting of electric motors. The Timisoara University 

Center has greatly expanded its applicative research 

(with micro-production of industrial robots) and thanks 

to the strong support of Romanian specialists of German 

nationality it benefited, having collaborative contracts (in 

research and production) even with Germany. Today 

ROMAT robots are manufactured in Timisoara. 

Robots have developed by increasing the degree of 

equipment with artificial intelligence. To gather the 

information of an environment, the robots have tactile, 

force, video moments, etc. With this, the robot can create 

an image of the environment in which it evolves, relying 

on artificial perception. 

The robot population in 1988 was: 109,000 RIs in 

Japan, 30,000 RIs in the US, 34,000 RIs in Western 

Europe, of which 12,900 RIs in Germany, 3,000 RIs in 

Russia (Approximately 190,000 industrial robots 

globally and about 10 million in 2010). 

Classification of R.I. 

Japan Industrial Robot Association (JIRA) classifies 

industrial robots according to the following criteria. 

After input and learning: 

 

1. Hand manipulator, which is directly man operated 

2. A Sequential robot that has certain steps that obey a 

predetermined procedure that can be either fixed or 

variable as it cannot or can be easily changed 

3. Robot playback - which is first learned by a man, 

he memorizes it and then repeats it as many times 

as necessary 

4. A robot with numerical control (N.C. robot) - which 

performs the required operations according to the 

numerical information it receives about positions, 

sequences of operations and conditions 

5. Intelligent robot - is the one who decides its 

behavior based on the information received from its 

sensors and its possibilities for recognition 
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Remarks: 

 

a) Simple manipulators (groups 1 and 2) generally 

have 2-3 degrees of freedom, their movements being 

controlled by different devices 

b) Programmable robots (groups 3 and 4) have a 

number of degrees of freedom greater than 3 being 

independent of mediums, i.e., lacking sensory 

capabilities and working in open loop 

c) Smart robots are equipped with sensory capabilities 

and work in a closed loop 

 

After order and degree of development of artificial 

intelligence: Industrial robots are classified into 

generations or levels: 

 

1. R.I. from generation 1, acts on a flexible but pre-

programmed program that can’t be changed during 

the execution of operations 

2. R.I. of the 2nd generation is characterized by the 

fact that the flexible program preset by the 

programmer can be modified to a limited extent 

following specific environmental reactions 

3. R.I. of the third generation has the ability to adapt 

themselves by means of logical devices, to a limited 

extent their own program to the specific conditions 

of the environment in order to optimize the 

operations they perform 

 

After the number of degrees of freedom of movement 

of the robot: they can be 2 to 6 degrees of freedom, plus 

the additional movements of the prehension device (end-

effector), for guiding the grip, detachment of the 

manipulated object, etc. 

The six degrees of freedom that a robot can have are 

three translations along the coordinate axes and three 

rotations around them. 

Anthropomorphic robots are today increasingly used 

in almost all industrial fields because of their ability to 

work without stopping without damage, including 

repetitive, tedious work that a man could not carry out. 

On the other hand, they can work 24 hours a day, 365 

days a year, if needed without breaks, what no worker 

would be able to do.  

Anthropomorphic robots can also work in toxic, 

chemical, nuclear, radioactive, or even mined fields. For 

this reason, they now have multiple applications in 

almost all fields of activity, industrial and not only. If at 

first they started because of the need to manipulate parts 

in the road vehicle industry and have developed 

especially due to the construction of industrial machines 

and especially the cars, today the anthropomorphic 

robots have entered all industrial, commercial and 

military fields with all kinds of applications, performing 

heavy, repetitive, dangerous work, without breaks. 

Figure 1 shows a schematic diagram of 3R dyad 

kinetostatic (determination of static forces, loaded with 

inertial forces, considered external forces).  

If there are additional external forces such as 

technological resistances, they will also be added. The 

forces acting within a mechanism are of particular 

importance in that they give the dimensions of the 

mechanism, the elements of the mechanism so that it can 

withstand all the static and dynamic loads during its 

operation. For this reason, it is important to know all the 

forces acting on the elements but especially on the 

kinematic couplers, both for the correct dimensioning of 

these elements and for the proper functioning of the 

respective mechanism.  

Forces together with kinematics are, on the other hand, 

basic components of dynamic calculations for that 

mechanism. This is also true for robots. Science that deals 

with the determination of forces within a mechanism is 

called Kinetostatic. The calculations within a mechanism 

are made on the pieces of this mechanism called structural 

groups or structural modulus.  

The structural modules of a mechanism are 

determined on the basis of the principle of eliminating 

the mobility of the respective group in the desmodromic 

mechanisms. The mobility of the mechanism is given 

either by other movable input elements that are added to 

the structural groups or to the robots by adding some 

actuators to the elements of a module. 

Anthropomorphic robots have a very fast working 

speed and high travel speeds with good dynamics and 

high positioning precision, being preferred to other 

mobile mechanical systems. They are serial mobile 

mechanical structures. Parallel or mixed moving 

mechanical structures are particularly useful when more 

robust and stable work systems are needed and ultra-

precise positioning, such as in the case of space stations, 

including telescopic, of medical devices used in 

operating groups, microchips, or in areas requiring very 

high precision of motion and positioning. 

Conclusion 

The work presents a method for determination of 

kinetostatic parameters in dyad 3R. It starts with the 

determination of the forces in the joints: RB, RD, R23. To 

generalize the method including for the 2R robots, enter 

both the moments M1, M2. This module (2R) is the main 

module found in all rotating anthropomorphic robotic 

structures and similar mechatronic structures. 
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