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Abstract: Autism Spectrum Disorder is a lifelong neurodevelopmental 

condition which affects social interaction, communication and behaviour of 

an individual. The symptoms are diverse with different levels of severity. 

Recent studies have revealed that early intervention is highly effective for 

improving the condition. However, current ASD diagnostic criteria are 

subjective which makes early diagnosis challenging, due to the 

unavailability of well-defined medical tests to diagnose ASD. Over the 

years, several objective measures utilizing abnormalities found in EEG 

signals and statistical analysis have been proposed. Machine learning based 

approaches provide more flexibility and have produced better results in 

ASD classification. This paper presents a survey of major EEG-based ASD 

classification approaches from 2010 to 2018, which adopt machine 

learning. The methodology is divided into four phases: EEG data 

collection, pre-processing, feature extraction and classification. This study 

explores different techniques and tools used for pre-processing, feature 

extraction and feature selection techniques, classification models and 

measures for evaluating the model. We analyze the strengths and 

weaknesses of the techniques and tools. Further, this study summarizes the 

ASD classification approaches and discusses the existing challenges, 

limitations and future directions. 
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Introduction  

Autism Spectrum Disorder (ASD) is a heterogeneous 
neurodevelopmental condition characterized by 
behavioural impairments in social interaction and 
communication, along with restricted and repetitive 
behaviours (APA, 2013). ASD is called a spectrum 
disorder as the symptoms and their severity are unique for 
each individual. Common symptoms include difficulty in 
understanding facial expressions, delayed speech and poor 
comprehension skills. The symptoms start to appear in 
early childhood within the first three years. A recent report 
of the Centers for Disease Control (CDC) identifies 
having siblings with ASD, having older parents and 
certain genetic conditions as general risk factors of ASD.      

The motivation behind this survey is the lack of 
well-defined automated approaches for ASD 
diagnosis. In order to support studies on automated 
ASD classification, it is important to explore various 
techniques along with the diagnostic processes. This 
paper explores and analyzes the techniques for EEG 

pre-processing, feature extraction and classification, 
which enables to automate the diagnostic process. 
Moreover, this paper identifies the existing 
limitations, challenges and suggests future research 
directions. Hence, the researchers and practitioners can 
utilize the suggested techniques and address the 
limitations in the course of the possible research area.      

The methodology of the ASD diagnosis is divided into 
four phases: (1) EEG data collection, (2) pre-processing, (3) 
feature extraction and (4) classification using learning 
models. Under EEG data collection we have discussed EEG 
metadata and challenges due to its diversity. Pre-processing 
phase discusses different techniques for noise removal, data 
transformation and popular EEG pre-processing tools. 
Commonly used EEG-based features for ASD 
classification, feature extraction techniques and feature 
selection techniques are discussed under the feature 
extraction phase. The classification phase states different 
machine learning algorithms and different evaluation 
metrics.  Finally, the paper discusses the existing 
challenges, limitations and potential areas for future work.  
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Current Practices in Clinical ASD Diagnosis  

Overview of the Current Diagnostic Criteria 

The etiology of ASD is still under research and 

lacks a well-defined medical test for ASD diagnosis. 

Current diagnostic criteria are behaviour dependent, 

which utilizes direct observation and standardized 

interviews (Newschaffer et al., 2007). They are based 

on the presence or absence of specific behaviours. 

These practices are generalized as a comprehensive 

developmental approach, where several characteristics 

of a child’s development are evaluated. These 

characteristics include different levels of functioning, 

the child’s developmental progress, genetic, family, 

medical and educational histories and child’s ability 

to apply the skills in everyday life. DSM-IV-TR 

(Diagnostic and Statistical Manual of Mental Disorders, 

Fourth Edition, Text Revision), ADOS (Autism 

Diagnostic Observation Schedule), Autism Diagnostic 

Interview-Revised (ADI-R), The Diagnostic Interview 

for Social and Communication Disorders (DISCO) and 

Developmental, Dimensional and Diagnostic Interview 

(3di) are some techniques used for clinical diagnosis. 

Among them, ADOS and ADI-R are considered as the 

main standards (Reaven et al., 2008).  

In addition to determining ASD or no-ASD, another 

key aspect is the autism severity rating. ADOS score is 

widely used for ASD severity measurement. Besides 

ADOS and ADI-R, several other scales including 

Childhood Autism Rating Scale (CARS), Gilliam Autism 

Rating Scale (GARS) and Autism Behaviour Checklist 

(ABC) also provide autism severity ratings  (Gotham et 

al., 2009). Severity scores assist in providing specific 

individualized interventions rather than more general 

treatment plans. It would also help monitor the change in 

risk profiles as the child’s development progresses and 

how the subject is responding to intervention. 

Behaviour-Independent Diagnostic Practice 

According to a recent CDC report, one in 59 

children in the United States has been diagnosed with 

ASD (Baio et al., 2018). In 2010, it was calculated to 

be 1 in 68. Thus, it is evident that the prevalence of 

ASD is increasing over the years. ASD might not be a 

fatal disease, yet the daily activities of autistic people 

are extremely challenging. Even though ASD cannot 

be cured, the symptoms can be improved through 

proper individualized treatment. An early diagnosis 

would facilitate starting the medication, therapies and 

social skills training at an early age which enhances a 

child’s response to treatment.  

A significant challenge is that the current clinical 

diagnosis practices are subjective, especially 

behaviour dependent. Current diagnostic procedures 

require input from a team of multi-disciplinary 

professionals. Besides, a complete profile of the 

child’s abilities is required for an accurate diagnosis. 

Such comprehensive evaluations sometimes take 

several months or even years, delaying the diagnosis 

and the treatment. Also, current nosological systems 

and ASD severity measures work well for children 

above the age of three, however not so accurate for 

children younger than two years of age.  

Early diagnosis of ASD is difficult as the defining 

behaviours often become significant only after the first 

three years and routine well-baby check-ups do not 

contain simple, reliable measures to identify them. Early 

diagnosis of milder forms of ASD is even harder as the 

symptoms tend to overlap with several other diagnoses. 

Moreover, the early diagnosis needs to be re-evaluated 

because of rapid development in early ages and the impact 

of the intervention (Hollander et al., 2011). There also 

exists the problem of misdiagnosis (Mandell et al., 2007). 

The symptoms for ASD being diverse and several 

symptoms being overlapped with other diagnoses similar 

to ADHD (Mayes et al., 2012) are the major causes for 

the misdiagnosis.  

The fact that etiology and developmental course are 

getting more diverse with time makes future diagnosis 

even more challenging. By developing behaviour-

independent diagnostic approaches which are simple, 

affordable and easy to implement in the routine well-

baby check-ups, these challenges can be resolved.  

EEG as a Diagnostic Test 

A behaviour-independent approach can be designed 

based on Electroencephalography (EEG). EEG records 

the electrical activity of the brain by recording the 

electrical impulses of different frequencies used by neurons 

for communications through electrodes attached to the 

scalp. EEG is being studied for a long time to support 

medical diagnosis (Niedermeyer and da Silva, 2005). The 

abnormalities in EEG signals have been found to be 

reliable biomarkers for medical conditions such as 

epileptic seizures (Tzallas et al., 2009) and Alzheimer’s 

disease (Jeong, 2004). In addition to diagnosis, novel 

approaches to facilitate treatment plans using EEG have 

also been proposed (Fan et al., 2015).   

Literature reveals that two different types of EEG based 

approaches were proposed in the past to diagnose ASD: (1) 

comparison method and (2) pattern recognition and 

classification approach (Hashemian and Pourghassem, 

2014). In the first approach, EEG signal characteristics of 

typically developing individuals are compared with that of 

individuals with ASD. This paper focuses on the second 

approach which adopts machine learning algorithms to 

analyse the EEG signal and classify ASD.   
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Phase 1: EEG Data Collection 

Recording the EEG data is the first step in the 

classification methodology. Our focus is not on the 

technical details of EEG data collection but on the 

metadata. The metadata of EEG datasets plays a crucial 

role in deciding the processes carried out in the next 

phases of classification. The metadata of an EEG dataset 

generally includes details regarding the sampling 

frequency, number of electrodes, electrode locations, 

EEG montage, recording duration, the activities in which 

the subjects were involved while recording the data and 

data types. The EEG output is a relative value. The 

values are generated based on a reference point. The 

montage provides information about the point of 

reference. Different EEG montages include bipolar, 

common electrode reference, average reference, 

weighted average reference and Laplacian.  

The datasets used in the related studies are unique. 

They have diverse metadata. Different file formats of 

the EEG data include but not limited to BrainVision 

file formats (.vhdr, .vmrk, .eeg), European data format 

(.edf) and BioSemi data format. EEG signals were 

sampled at different frequencies of 128 Hz, 250 Hz, 

256Hz and 500 Hz. While recording the EEG signals 

subjects were involved in a different set of activities 

such as blowing bubbles to control the subjects’ 

attention, carrying out ADOS assessment and keeping 

the subjects in a resting state. 

EEG dataset with a different number of channels 

and different electrode placement locations were also 

used. International 10-20 system is an internationally 

recognized electrode placement standard. Placement 

of electrodes in the locations Fp1, Fp2, F7, F3, Fz, F4, 

F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2 

according to International 10-20 system is shown in 

Fig. 1. One major limitation is that because of the 

diverse EEG datasets, the proposed approach becomes 

specific to the dataset. None of the studies has tested 

their approaches over different datasets with varying 

metadata. Hence it is challenging to measure how well 

the approaches can be generalized. 

Phase 2: Pre-Processing 

Overview of EEG Signal Pre-Processing 

Data pre-processing is a crucial step for any 

machine learning based approach because real-world 

datasets contain incomplete, noisy and inconsistent 

data. Poor data quality will result in poor classification. 

According to (Han et al., 2011), major tasks in data pre-

processing include data cleaning, data integration, data 

transformation, data reduction and data discretization. This 

paper emphasizes the noise elimination techniques because 

of its significance in the context of classifying ASD.

 

 

 
Fig. 1: Electrode placement in the international 10-20 system 
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Fig. 2: Decomposition of EEG signal into frequency bands using the discrete wavelet transform 
 

The noise in the EEG signal is induced by both non-
physiological factors (external environment) and 
physiological factors (because of the subject being 
examined). Several external artefacts are discussed in 
(Tandle and Jog, 2015). The artefacts that depend on the 
subjects are of three main types: electrooculogram (EOG), 
electromyogram (EMG) and cardiac activity. EOG is the 
noise generated by eye blink and cornea movement, while 
EMG is the noise generated by muscle activity around the 
electrodes, specifically in the neck, face and scalp.  

EEG Pre-processing Techniques      

Independent Component Analysis 

Independent Component Analysis (ICA) is a 

multivariate analysis which decomposes the original 

signal into a set of Independent Components (ICs). It 

separates the signals from different sources from a set of 

mixed signals. Two important assumptions are made in 

ICA: (1) the signals from different sources are 

independent of each other and (2) independent 

components have non-gaussian distribution. Artefact 

removal in EEG signals using ICA is a three-step 

process: (1) decomposing into ICs, (2) discarding stand-

alone ICs and (3) concatenating the remaining ICs to 

form an artefact-free signal (Lai et al., 2018).  

Popular EEG signal processing tools including 

EEGLAB provide functionalities to perform ICA 

(Delorme and Makeig, 2004). Even though multiple ICA 

algorithms exist, FastICA, Infomax and JADE are being 

widely used (Azlan and Low, 2014). Several studies 

report second-order blind identification (SOBI), an ICA 

algorithm, as a successful technique to remove all types 

of artefacts from the EEG signal (Urigüen and Garcia-

Zapirain, 2015). ICA has been used as a pre-processing 

technique for ASD classification in (Djemal et al., 

2017). It has also been used in (Abdulhay et al., 2017) as 

a pre-processing step to detect abnormal EEG activities 

and neural connectivity in autistic individuals.      

Principal Component Analysis 

Principal Component Analysis (PCA) converts a set 

of possibly correlated variables into a set of linearly 

uncorrelated variables using orthogonal transformation. 

The linearly uncorrelated variables are called the 

principal components. The principal components are 

constructed in such a way that they maximize the 

variance and the i
th
 principal component is orthogonal to 

the (i-1)
th
 principal component. The principle behind 

using PCA as a denoising technique is that the principal 

components with relatively higher variance compared to 

the effect of the noise are relatively less noisy. Denoising 

techniques based on PCA have been presented in (Kang 

and Zhizeng, 2012; Turnip and Junaidi, 2014). However, 

the survey done in (Urigüen and Garcia-Zapirain, 2015) 

reveals that recent works prefer ICA over PCA since 

artefacts are better modeled as independent components 

rather than orthogonal components. 

Wavelet-based Analysis   

Wavelet is a rapidly decaying oscillation with a zero-

mean value. There are two types of wavelet transforms, 

continuous wavelet transform (CWT) and discrete wavelet 

transform (DWT). DWT has been frequently used for 

denoising signals. Denoising using DWT is a three-step 

process: (1) decompose, (2) discard and (3) reconstruct.  

Initially, the signal is filtered using a low pass and a high 

pass filter and the outputs are called approximation 

coefficients and detail coefficients, respectively. Signal 

decomposition using DWT is shown in Fig. 2.  

0 − 256 Hz 

0 − 128 Hz 128 − 256 Hz 

0 − 32 Hz 

64 − 128 Hz 0 − 64 Hz 

32 − 64 Hz 

0 − 16 Hz 16 – 32 Hz 

Gamma 

Beta 
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Table 1: Separating 5 frequency bands and noise using DWT 

Frequency Band (Hz) Signal type 

128 – 256 Noise 
64 – 128 Noise 
32 – 64 Gamma 
16 – 32 Beta 
8 – 16 Alpha 
4 – 8 Theta 
0 – 4 Delta 

 

Table 2: Data pre-processing techniques used for EEG signal processing 
 Data Pre-processing Techniques 
 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

     Makoto’s 
     Pre- Band- Voltage  Synchrostate Source  Empirical 

 Visual    processing pass Thres- Adaptive Generation Component Multivariate Mode            Fourier 

Related study Inspection DWT ICA I-FAST pipeline Filter holding Filtering Algorithm Techniques Regression Decomposition     Transform 

A data-driven approach to 

classify ASD (Bosl et al., 2018)  O    X        

ASD classification using EEG and 

eye movement (Thapaliya et al., 2018) X    X         
Classifying ASD using MS-ROM/I- 

FAST algorithm (Grossi et al., 2017)    X          

ASD diagnosis using DWT, Shannon 

entropy and ANN (Djemal et al., 2017)  O X   X   X      
Wavelet-based ASD classification 

(Cheong et al., 2015)  O    X X       

ASD diagnosis utilizing brain 
connectivity (Jamal et al., 2014)      X X   O     

Fuzzy synchronization likelihood 

methodology for ASD diagnosis 
(Ahmadlou et al., 2012a)  O            

ASD diagnosis based on improved 

visibility graph fractality 

(Ahmadlou et al., 2012b)  O    X        
EEG as a biomarker for distinguishing 

ASD children (Bosl et al., 2011)      X        

Classification of ASD using fractal 
dimensions (Ahmadlou et al., 2010)  O    X        

Frequency 3D mapping and inter- 

channel stability of EEG as indicators 

towards ASD diagnosis 
(Abdulhay et al., 2017)   X   X      O           O 

Diagnosing ASD utilizing EEG 

spectral coherence (Duffy and Als, 2012)      X    X    X            X 
ASDGenus: channel optimised classification  

using EEG (Haputhanthri et al., 2019) X O     X 

 

The high-frequency band (detail coefficients) 

contains most of the noise and useful information as 

well. The useful information needs to be preserved while 

removing the noise. A threshold value is chosen and the 

coefficients with magnitudes less than the threshold value 

are discarded. The signal is then reconstructed based on 

the new coefficients (inverse DWT). The low pass sub-

band is decomposed further at multiple levels for further 

analysis. Table 1 states the five frequency bands and noise 

separated using DWT, as the initial step of noise removal. 
In (Kumar et al., 2008) and (Zhou and Gotman, 

2004), techniques based on wavelet transformation to 
denoise ASD using EEG signals have been proposed. 
Daubechies wavelet was used in (Bosl et al., 2018; 
Djemal et al., 2017) and Coifman wavelet was used in 
(Ahmadlou et al., 2012a), to perform DWT. CWT was 
used in (Jamal et al., 2014). However, in these studies, 
wavelets were used for signal decomposition instead of 
noise removal.    

Visual Inspection 

Manual noise removal using visual inspection is an 
easy and reliable approach. However, it is hard to 
perform when the dataset contains long duration 

signals from many subjects. Visual inspection was 
used in (Thapaliya et al., 2018) as a pre-processing 
step in classifying ASD.    

Table 2 summarizes different pre-processing techniques 
used to process the EEG signal. Even though the last two 
studies are not related to classifying ASD using machine 
learning algorithms, they have been included to introduce 
new techniques for noise removal as noise filtering is 
independent of the application. The “X” symbol indicates 
techniques used for noise filtering and the “O” symbol 
indicates other pre-processing techniques used for data 
transformations. Even though DWT can be used for 
removing noise, the studies have used it primarily to 
decompose the signal into different frequency bands. 
Frequencies outside the range of the frequency bands were 
filtered using band-pass filters in most of the researches. 
Band-pass filters are simple and easy to implement. 

I-FAST and Makoto’s pre-processing pipeline 

combine several techniques for EEG signal pre-
processing. Apart from the techniques discussed 
earlier, adaptive filtering, Fourier transform, source 
component technique, multivariate regression and 
empirical mode decomposition have also been used 
for artefact removal. The source component 

techniques are a combination of two approaches for 
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artefact removal based on brain electric source 
analysis and principal component analysis proposed in 
(Lins et al., 1993; Berg and Scherg, 1991).  

The studies done in (Khatwani and Tiwari, 2013; 

Urigüen and Garcia-Zapirain, 2015; Lai et al., 2018) 

have presented surveys of denoising techniques. 

Khatwani and Tiwari (2013) have discussed denoising 

techniques based on PCA, ICA, wavelet and wavelet 

packet in their work. The effectiveness of these 

techniques was measured based on Mean Squared Error 

(MSE), signal to noise ratio (SNR) and peak signal to 

noise ratio (PSNR). High SNR and PSNR values and low 

MSE values are indicators for less noisy signals. They 

conclude that the wavelet-based method produces better 

results based on the MSE, SNR and PSNR values 

calculated in different studies. Besides the work done in 

(Lai et al., 2018), has presented ICA and wavelet-based 

analysis that uses statistical analysis methods and 

additional artefact removal techniques. 
Urigüen and Garcia-Zapirain (2015) presented a 

detailed survey of denoising techniques in their work. 
Their study explores the noise removal techniques under 
the following major categories: linear regression 
methods, EOG correction methods, filtering methods, 
blind source separation (BSS) methods, source 
decomposition methods, the combination of different 
algorithms and other methods. ICA and PCA were 
categorized under BSS methods with several other 
techniques. Wavelets were categorized under source 
decomposition methods. Methods suitable for removing 
specific artefact types such as ocular artefacts, muscle 
artefacts, cardiac artefacts and mixed artefacts were also 
discussed. Their study concludes that the best technique 
for a given scenario should be chosen considering the 
type of EEG signal, artefacts that are present and the 
signal to contaminant ratio. There is no best technique 
which can be applied to all scenarios. 

EEG Pre-Processing Tools 

Several tools with user-friendly graphical user 

interface (GUI) have been developed to facilitate the 

analysis of EEG recordings. This section summarises 

some of the widely used tools. 

EEGLAB 

EEGLAB was initially developed as a MATLAB 
toolbox with a GUI to process EEG data (Delorme and 
Makeig, 2004). New tools and plugins for EEGLAB 
have been continuously developed over time making it a 
versatile pre-processing tool.  In (Delorme et al., 2011), 
the authors have summarized several pre-processing 
tools which can be integrated with the EEGLAB. 
Some of the tools are EEGLAB STUDY Design, SIFT 
(source information flow toolbox), NFT 
(neuroelectromagnetic forward head modelling toolbox), 
BCILAB (brain-computer interface LAB) and ERICA 

(experimental real-time interactive control and analysis). 
These tools are freely available with a GUI/CLI 
(Command Line Interface) environment.  

Recent versions of EEGLAB can process EEG, 

magnetoencephalography (MEG) and other 

electrophysiological data. Some of the useful features 

are a user-friendly GUI, the privilege for experienced 

MATLAB users to interact using MATLAB scripts, 

ability to handle multiple data formats, effective data 

visualization, ICA functionality, time/frequency 

transforms, continuous upgrades with new tools and 

plugins and availability of ample tutorials. 

Brainstorm 

Brainstorm is an opensource application for 

MEG/EEG analysis (Tadel et al., 2011). This 

application is intended to provide user-friendly tools 

to the scientific community. Hence, Brainstorm 

provides a rich and intuitive GUI (Graphical User 

Interface). It is written using MATLAB scripts and 

Java which makes it a portable, cross-platform 

software (a stand-alone version for users who do not 

own a MATLAB license is also available). The end 

users without any programming knowledge can use 

the software easily as well. Besides, advanced users have 

the privilege to interact using MATLAB scripts similar to 

EEGLAB. It is well documented with enough support 

online. Apart from the inbuilt pre-processing pipeline, other 

tools such as EEGLAB can be used for pre-processing and 

the results can be imported. Brainstorm supports different 

file formats including Neuroscan (cnt, eeg, avg), 

Brainvision BrainAmp, EGI (raw), EEGLAB, Cartool and 

Generic ASCII text files.  

Phase 3: Feature Extraction 

Overview of EEG Feature Extraction 

After pre-processing the EEG signal, the next step is 

to extract features to train the learning model. Noise 

filtering techniques for EEG are generally independent 

of the application. We can use the same noise filtering 

techniques regardless of the considered disorder type. 

However, feature extraction techniques are often 

application specific. Depending on the features that we 

need to extract, the feature extraction techniques vary. In 

general practice, features which have a strong 

correlation with the target class are selected. If the root 

cause of ASD is known, features can be easily selected 

utilizing the available background knowledge. Since the 

etiology of ASD is yet to be discovered, the feature 

extraction is a trial and error approach. Even though the 

etiology is unknown, several studies have focused on the 

abnormality identification in EEG signals of autistic 

individuals. Such abnormalities can be used as features 

in the classification task.  
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EEG-based Features for ASD Classification 

Power, Hemispheric Asymmetry and Coherence 

Wang et al. (2013), have reviewed abnormal power, 

abnormal hemispheric asymmetry and abnormal 

coherence in resting state EEG. EEG power is further 

categorized into relative and absolute power. Relative 

power measures the activity in one band compared to 

other bands while absolute power measures the activity 

in one band independent of the others. Their work has 

summarized the variations in absolute and relative 

powers of different frequency bands (delta, theta, alpha, 

beta and gamma) of different brain regions. They have 

identified a U-shaped profile where high-frequency bands 

(beta, gamma) and low-frequency bands (delta, theta) 

display excessive power while middle range frequency 

bands (alpha) display reduced power as shown in Fig. 3.  

Enhanced power in delta and theta bands has been 

found in both relative and absolute powers in multiple 

regions. Similarly, the alpha band also shows reduced 

power in both relative and absolute powers. However 

excess power is seen in relative beta and absolute gamma 

only. Their work also highlights that according to most 

of the existing literature, the left hemisphere exhibits 

enhanced power than the right hemisphere in ASD 

patients. Separate studies report the dominance of left 

hemisphere in the delta, alpha and beta powers over the 

right hemisphere. Finally, the presence of weaker long-

range coherence patterns has also been pointed out. 

Statistical Features 

Standard deviation and mean are the commonly 

used statistical features. Statistical features were used 

in (Bosl et al., 2018; Cheong et al., 2015; Djemal et 

al., 2017; Thapaliya et al., 2018) to classify ASD. 

Entropy  

Entropy is one of the frequently used features in ASD 

classification. Entropy is a measure of uncertainty of 

random variables. If X is a discrete random variable, its 

entropy is calculated according to Equation 1: 

 

2
( ) ( ) log ( )H X p x p x= −∑  (1) 

 

where, p(x) is the probability mass function of X.  There 

are many entropy-based methods such as sample 

entropy, Shannon entropy, multiscale entropy and 

modified multiscale entropy. Entropy has been used in 

(Bosl et al., 2018; 2011; Djemal et al., 2017; Thapaliya et 

al., 2018) for the diagnosis of ASD. Several EEG-based 

features for ASD classification including EEG rhythm, 

absolute and relative power, coherence, mu wave 

suppression, cordance and multiscale entropy have been 

discussed in (Hashemian and Pourghassem, 2014).  

 

 

 

 

Fig. 3: Illustration of a U-shaped profile of abnormal power 
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Table 3: Feature extraction and feature selection techniques used in ASD classification methodologies 
 Feature Extraction Techniques/Algorithms         Feature Selection Techniques 
 --------------------------------------------------------------------------------------------------------------------------------------------------     -------------------------------------------------------------------------------------------------------- 

   Modified    Brain  Fuzzy SL PSVG Higuchi’s/ Principal Sequential Recursive  Fisher’s  

 Shannon Multiscale Multiscale Statistical   Connectivity Generation Generation Katz’s Fractal Component Feature Feature TWIST Discriminant                     

Related Study Entropy Entropy Entropy Methods RQA DFA Measures Algorithm Algorithm Dimension Analysis Selection Elimination  Ratio ANOVA     CFS 

A data-driven approach 

to classify ASD  

(Bosl et al., 2018)  X   X X        X    

ASD classification 

using EEGand  

eye movement 

(Thapaliya et al., 2018) X   X         X X     

Classifying ASD using 

MS-ROM/I- 

FAST algorithm 
(Grossi et al., 2017)  X             X   

ASD diagnosis using 

DWT, Shannon 

entropy and ANN 

(Djemal et al., 2017) X   X               

Wavelet-based ASD 

classification 

(Cheong et al., 2015)    X               

ASD diagnosis utilizing 

brain connectivity  

(Jamal et al., 2014)       X         X  

Fuzzy synchronization 
likelihoodmethodology 

for ASD diagnosis 

(Ahmadlou et al., 2012a)         X        X 

ASD diagnosis based on 

Improved visibility graph  

fractality 

(Ahmadlou et al., 2012b)           X                                    X 

EEG as a biomarker for 

distinguishing ASD children 

(W. Bosl et al., 2011)   X                

Classification of ASD 
using fractal dimensions 

(Ahmadlou et al., 2010)            X                             X 

ASDGenus: channel optimized 

classification using EEG 

(Haputhanthri et al., 2019)    X                 X 

 

Feature Extraction Techniques 

Feature extraction techniques are used to compute the 

selected features. However, there are techniques which 

are applied during pre-processing the signal to facilitate 

feature extraction such as ICA, PCA, DWT and adaptive 

filtering. For instance, instead of calculating the standard 

deviation of the original signal, DWT can be applied to 

decompose the signal at multiple levels. Then standard 

deviation can be calculated for the decomposed signals. 

Most of these algorithms split the original signal into 

multiple components and they can also be used for noise 

filtering. These techniques only pre-process the signal to 

facilitate feature extraction but do not extract any features 

(Lakshmi et al., 2014; Azlan and Low, 2014). 

Table 3 summarizes different techniques used for 

feature extraction in the related studies. Statistical 

feature extraction and entropy-based techniques are more 

common compared to other techniques. Standard 

deviation and mean are the common statistical features 

that are extracted. Among several entropy-based 

techniques Shannon entropy, multiscale entropy and 

modified multiscale entropy have been used in the 

related studies. One noteworthy aspect is that unlike pre-

processing techniques, feature extraction techniques are 

sparsely distributed. Because of the unknown etiology, 

studies intend to discover new features which have 

strong correlations with ASD classification. Almost all 

the studies use a unique set of features and as a result, a 

different set of feature extraction techniques were used.  

Feature Selection Techniques 

After the feature extraction phase, often many 

features will be available. For example, suppose the EEG 

dataset contains data from 128 channels and after 

decomposing the signal into five frequency bands, 

standard deviation, mean and entropy were calculated. 

At the end of the process, 1920 features (128 channels x 

5 frequency bands x 3 features) would be generated. 

Training a model with 1920 features requires a larger 

number of training samples. However, in many of the 

previous studies, only less than 100 samples were 

available. In addition, irrelevant features will negatively 

impact the classification. One challenge after feature 

extraction is to select the best features which contribute 

to the classification process. Feature selection reduces 

overfitting, improves accuracy and reduces training time. 

Some of the commonly used feature selection techniques 

are correlation-based feature selection (CFS), analysis of 

variance (ANOVA), PCA and training with input 

selection and testing (TWIST) algorithm. 

Different feature selection techniques used in related 

studies are summarized in Table 3. Here, RQA denotes 

Recurrence Quantitative Analysis and DFA indicates 

Detrended Fluctuation Analysis. ANOVA has been used 

in several related work by the same author. Feature 

selection techniques that were used are also unique to 

different studies. However, there is no significant reason 

behind and often it is a choice based on which technique 

produces the best results.  
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There are no best features, best feature extraction or 

feature selection techniques. Often, it is a trial and error 

approach. Besides, since the etiology of ASD is 

unknown, there is a high possibility for discovering new 

features with a strong correlation to ASD classification. 

The best approach is to try different combinations of 

feature sets and techniques and select the one which 

produces the best results. 

Phase 4: Classification  

Introduction to Classification 

The selected features from the feature extraction 

phase are fed as input to the fourth phase, which is the 

final phase in diagnosing ASD. In this section, we have 

summarized different machine learning algorithms which 

have been used frequently in the context of ASD 

classification and different techniques to evaluate the 

correctness of the trained model. 

For the classification task, the dataset is divided into 

two mutually exclusive sets, one for training the model 

and the other one to test the model. Any machine 

learning based classifier functions in the following 

manner. Initially, a classification model is built based on 

the training data. Then its correctness is measured by 

applying the model on the test set. If the obtained 

accuracy is not satisfactory, the model will be retrained 

and retested. It is impossible to universally define an 

algorithm as the best fit for a specific problem. Finding a 

suitable algorithm is an empirical task. 

In this section, our intention is not to provide an in-

depth understanding of the learning algorithms but to 

give an abstract idea about the algorithms, their pros and 

cons and their applications in the context of ASD.   

Machine Learning Algorithms 

Support Vector Machine 

The idea of support vector machine was introduced in 

the 1990s by Boser, Guyon and Vapnik. The original 

SVM is a supervised, non-probabilistic, binary classifier. 

It can classify only linearly separable data. Using the idea 

of kernels, SVM can classify data which are not linearly 

separable by mapping them to a higher dimensional space 

(Burges, 1998). SVM classifies the data points by 

constructing a hyperplane that separates the data points of 

available target classes as shown in Fig. 4.  

Some of the advantages of using SVM are the ability 

to handle high dimensionality (>10
6
), efficient memory 

usage and versatility (due to the ability to apply new 

kernels). If the number of features is greater than the 

number of training samples, it will lead to low results. 

Besides, SVM does not offer a direct probabilistic 

interpretation. Yet, the distance from the hyperplane can 

be used as an indirect measure of the probability. SVM 

was used in (Bosl et al., 2018; 2011; Jamal et al., 2014; 

Thapaliya et al., 2018) to classify ASD. 

Logistic Regression 

Logistic regression has been used in the field of 

statistics starting from the 19th century. In machine 

learning, logistic regression is a popular algorithm for 

binary classification problems, similar to classifying ASD 

and no-ASD (Dreiseitl and Ohno-Machado, 2002). When 

the model is trained, values for the weights and bias are 

learned. The core function used is a sigmoid function. 

The output value will be in the range of 0 to 1. By 

setting a threshold value T0, output values above T0 

are classified to be class and output values below T0 

are classified to be the other class. In this context, the 

two classes are ASD and no-ASD. Logistic regression is 

simple, easy to implement and does not require extreme 

computational power. Authors of (Thapaliya et al., 2018; 

Grossi et al., 2017) have used logistic regression to 

diagnose ASD.    

Naïve Bayes 

Naïve Bayes classifier is considered as the gold 

standard against which other algorithms are compared. It 

is based on the Bayes’ theorem and considered naïve 

because of its class conditional independence assumption 

(Rish, 2001). Even though the assumption does not hold 

in many real-world problems, it produces reasonable, 

satisfactory results. Unlike SVM, it can predict the 

probability for a given sample to belong to a specific 

target class. Naïve Bayes classifier requires relatively 

less amount of training data and it is scalable, simple, 

easy to implement and fast. Among the proposed ASD 

classification approaches, Naïve Bayes has been used in 

(Thapaliya et al., 2018; Grossi et al., 2017).  

Random Forest 

Random forest is an ensemble algorithm which builds 

multiple models and combines the results of each 

model to generate the overall result (Liaw and 

Wiener, 2002). It creates a collection of decision trees 

from randomized subsets of the training data and during 

classification, results from each decision tree are 

combined and a result is generated. Building several 

models increase the accuracy of the result by reducing the 

effect of noise and other biases. However, many decision 

trees will slow down the algorithm. In (Bosl et al., 2018; 

Grossi et al., 2017) random forest technique has been used 

to classify ASD.  
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Fig. 4: Illustration of classification using SVM 

 

 
 

Fig. 5: Model of a neural network 
 

K-Nearest Neighbour (KNN) 

Classification algorithms can be divided into lazy 
learners and eager learners. Lazy learners simply store 
the training data and do not build any models. They wait 
until a sample is provided for the classification. Eager 
learners construct a classification model using the 
training data and use the model for classification. Lazy 
learners are relatively slow during prediction. KNN is a 
lazy learning algorithm. Given a data sample, it would 
find K number of nearest neighbours from the training 
set and target class of the given sample will be decided 
based on the most common target class of the neighbours 

(Peterson, 2009). Among the proposed machine learning 
based ASD diagnosis approaches, KNN was used in 
(Bosl et al., 2018; Grossi et al., 2017).      

Neural Networks  

A single node in a neural network (Haykin, 2009) 

imitates a neuron in the human nervous system. They 

consist of an input layer, one or more hidden layers and an 

output layer. Each layer consists of one or more nodes. A 

model of a neural network is shown in Fig. 5. Each node is 

a computational unit which calculates the weighted sum of 

inputs from the previous layer. 

l1 

l2 

Input Layer Hidden Layers Output Layer 

Output 



Gunavaran Brihadiswaran et al. / Journal of Computer Science 2019, 15 (8): 1161.1183 

DOI: 10.3844/jcssp.2019.1161.1183 

 

1171 

In order to add non-linearity, activation functions are 

introduced into the nodes. The weighted sums are fed as 

parameters for the activation functions. The activation 

function decides the output of a node. Some of the common 

activation functions are ReLU (Rectified Linear Unit), 

sigmoid and linear functions. Given enough amount of 

training samples, neural networks can classify most of the 

complex relationships. However, it requires a considerably 

large amount of training data for learning. Majority of the 

proposed approaches use a neural network. Some of them 

are (Thapaliya et al., 2018; Ahmadlou et al., 2012a; Cheong 

et al., 2015) and (Djemal et al., 2017).  

Different algorithms used for classification in the 

related studies are summarized in Table 4. As the table 

illustrates, the neural network has been most frequently 

used for classification. Next to neural networks, SVM is 

the most common algorithm. Compared to other techniques 

discriminant analysis, sequential minimal optimization and 

k-contractive map have been seldom used. However, we 

cannot define one algorithm as the best since it depends on 

several factors. ASD classification being a medical 

application, interpretability of the decision is important. 

Algorithms such as decision trees generate classification 

models with better interpretability. 
Models generated by algorithms similar to SVM and 

neural network are black boxes which are difficult to 
interpret. However, they can model complex 
relationships unlike simpler methods such as decision 
trees and Naïve Bayes. Further, if sufficient data is not 
available neural networks will not produce satisfactory 
results since it requires a large amount of data to train the 
model. Similarly, not all algorithms can handle noisy 
data. It is a standard practice to start with simpler models 
and if the results are not satisfactory then move on to 
more complex models to avoid overfitting. If many 
samples are available choosing neural networks has a 
high probability for producing more accurate results. 

Evaluation Techniques 

Evaluating the learning model is an essential step in 
any classification task. Choosing evaluation techniques 
and evaluation procedures which are not suitable can 
lead to biased and misleading results. Two popular 
evaluation techniques are the holdout method and cross-
validation method.   

Holdout Method 

It is widely known as the training-testing approach. 
In the holdout method, the dataset is randomly 
partitioned into a training set and a test set which is 
mutually exclusive. The rule of thumb is to allocate two-
thirds of the data for training and one-third for testing. 
Random subsampling is a variation of the holdout 
method in which several iterations of training-testing are 
carried out and the overall accuracy is obtained by 
combining the accuracy of each iteration.  

One drawback of this approach is that when there is not 

enough data, the produced accuracy values are not reliable. 
Besides, if the same training set is used for several 
iterations, there is a high tendency for overfitting, where the 
model classifies the training sets well, however, performs 
poorly when classifying new samples.  

Cross-Validation 

Cross-validation is very useful when only a limited 
number of data samples are available. In k-fold cross-
validation, the dataset is divided into k partitions of 
approximately equal size. In each iteration, one partition 
is used for testing and all others are used for training. 
The overall accuracy is the number of correctly 
classified samples from all the iterations divided by the 
total number of samples. 10-fold cross-validation and 
leave-one-out cross-validation (only one sample is used 
for testing in each iteration) are commonly used k-fold 
cross-validation approaches.  

 
Table 4: Machine learning algorithms used for classification in ASD diagnosis 
 Classification Techniques           Evaluation Techniques  
 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------    ------------------------------------ 

 Support       Sequential 
 Vector Logistic Random K-Nearest Neural Naïve Discriminant Minimal K-Contra- Holdout Cross- 
Related Study Machine Regression Forest Neighbour Network Bayes Analysis Optimization ctive Map Method validation 

A data-driven approach to classify ASD X  X X       X 
(Bosl et al., 2018) 
ASD classification using EEG and eye  X X      X X    X X 
movement (Thapaliya et al., 2018)  
Classifying ASD using MS-ROM/I-FAST 
algorithm (Grossi et al., 2017)  X X X X X  X X X X 
ASD diagnosis using DWT, Shannon  
entropy and ANN (Djemal et al., 2017)     X      X 
Wavelet-based ASD classification 
(Cheong et al., 2015)     X     X 
ASD diagnosis utilizing brain connectivity  X        X         X 
(Jamal et al., 2014) 
Fuzzy synchronization likelihood methodology      X         X 
for ASD diagnosis (Ahmadlou et al., 2012a) 
ASD diagnosis based on improved visibility      X         X 
graph fractality (Ahmadlou et al., 2012b) 
EEG as a biomarker for distinguishing ASD X    X   X        X 
children (Bosl et al., 2011) 
Classification of ASD using fractal      X         X 
dimensions (Ahmadlou et al., 2010) 
ASDGenus: channel optimised classification  
using EEG (Haputhanthri et al., 2019)     X X X   X     X 
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Evaluation techniques used in the related works are 

also summarized in Table 4. Most recent studies carried 

out after 2017 have used cross-validation while the 

holdout method had been popular among the initial 

studies. Since the number of samples in the dataset are 

often limited in most of the studies, using cross-

validation would produce more reliable results. Further, 

compared to the holdout method a larger fraction of the 

dataset can be used for training.    

ASD Classification Approaches  

Thapaliya et al. (2018), aim to identify ASD using a 
combination of EEG and eye movement data. They have 
also compared different machine learning classifiers. 
EEG data were recorded from 128 channels at a 
sampling rate of 500Hz while subjects were watching 
videos. Among the data collected from 52 participants, 
data of 34 participants were used in the study. Since the 
scope is limited to EEG, eye movement metrics are not 
discussed in detail. In the pre-processing stage, Makoto’s 
pre-processing pipeline was used paired up visual 
inspection. For feature extraction, mean, standard 
deviation and entropy values were used. Fig. 6 shows the 
workflow of the classification process using EEG data.  

The results were obtained after running the tests 200 
times, except for DNN due to its computationally 

exhaustivity. Here, the ratio between the training and test 
set was 80:20. Based on the results of 10x2 cross-
validation, 100% accuracy has shown for the combined 
dataset using Naïve Bayes and Logistic Regression 
Classifiers. Using only the eye movement data, Logistic 
Regression and DNN have achieved 100% accuracy. 

A data-driven approach is followed by Bosl et al. 
(2018), to classify ASD subjects as shown in Fig. 7. 
Unlike most of the other studies, EEG data collected 
from 188 participants were used. It includes 89 Low-
Risk Controls (LRC) (among which 3 were diagnosed 
with ASD) and 99 High Risk for Autism (HRA) (among 
which 32 were diagnosed with ASD). In addition, the 
participants were in between the ages of 3 to 36 months 
of age and were scheduled several visits in that period. 
During the collection period, bubbles were blown to 
control the child’s behaviour. EEG data from either 64 or 
128 channels were recorded but only the channels in the 
International 10-20 system were used for the analysis. 

They have extracted features using Sample Entropy, 

DFA and Recurrence Quantitative Analysis (RQA). For 

each channel, the 9 features: sample entropy, detrended 

fluctuation analysis, entropy derived from recurrence 

plot, max line length, mean line length, recurrence rate, 

determinism, laminarity and trapping time were 

generated. The features of interest were filtered using the 

feature ranking methods (Recursive Feature Selection).
 

 
 

Fig. 6: Classification pipeline employed in Thapaliya et al. (2018) 
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Fig. 7: High-level classification design used in Bosl et al. (2011) 
 

 
 

Fig. 8: Structure of the I-FAST algorithm 
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For the classification of ASD or no-ASD, only the data 
from ASD and LRC subjects were used for training with 
leave-one-out cross-validation scheme. The HRA 
subjects (test set) were classified using data from the 
ASD and LRC subjects as the training set. SVM was 
used for classification. The distance from the hyperplane 
which is used as the decision boundary in SVM is used 
to calculate the severity score between the range of 1–10. 
Classification using SVM achieved 100% accuracy in 
distinguishing ASD subjects from the LRC subjects. 
However, when classifying HRA subjects, classifier’s 
accuracy depreciated as it was challenging for SVM to 
classify HRA subjects who were placed close to the 
decision boundary. Another prominent feature of this 
study is that severity scores were calculated, and they 
had a strong correlation with the actual severity score. 

Multi-Scale Ranked Organizing Map coupled with 
Implicit Function as Squashing Time algorithm (MS-
ROM/I-FAST) is an Artificial Neural Network based 
system with the capability to extract valuable features from 
EEG. Mainly it does not require any preliminary pre-
processing. The algorithm was able to distinguish Mild 
Cognitive Impairment and/or Alzheimer’s Disease with an 
accuracy of 94%-98%. The work done in (Grossi et al., 
2017), has tried to measure its effectiveness in identifying 
autistic people. Their work involves 25 participants, 15 
ASD (13 males and 2 females; 7-14 years of age; mean - 
10.4) and 10 typically developing (4 males and 6 females; 
7-12 years of age; mean-9.2) individuals.  

The collected data were resting state EEG obtained 

while the participants were opening and closing their 

eyes. Data were collected for 3 minutes at a sampling 

rate of 256Hz based on the International 10-20 system. 

The structure of I-FAST is demonstrated in Fig. 8. It 

consists of 3 phases: squashing phase, noise elimination 

phase and classification phase. In normal practice, noise 

filtering is followed by feature extraction.  

However, the I-FAST algorithm transforms the EEG 

channels into feature vectors first using MSE and MS-ROM 

in the unsupervised squashing phase. Then in the noise 

elimination phase, irrelevant features are considered as 

noise and are filtered. The outputs of the MS-ROM are fed 

into the TWIST algorithm (Buscema et al., 2013) to select 

the best features.  

Finally, with the help of machine learning algorithms, 

the classification phase classifies the data. A novel 

algorithm, MS-ROM, based on the Self Organizing Map 

(SOM) neural network is presented. It consists of three 

steps: sampling, projection and ranking. In the sampling 

phase, EEG signals are sampled many times at different 

scales and using SOM, the generated subsamples are 

projected into a two-dimensional grid. In the ranking 

phase, the generated grids are ranked based on cell 

frequency. Seven learning algorithms have used for the 

classification process: sine net neural networks (Sn), 

logistic regression (LR), sequential minimal optimization 

(SMO), K-NN, K-Contractive Map (K-CM), Naïve 

Bayes and Random Forest. This approach was able to 

produce 100% accuracy consistently with the training-

testing protocol (11 ASD and 6 control subjects for 

training and the rest for testing) and with leave-one-out 

protocol best results were produced by Random Forest 

with an accuracy of 92.8% and K-Contractive Map and 

k-Nearest Neighbours with the accuracy of 87.3%. 

A Computer Aided Diagnosis (CAD) system for 

ASD diagnosis using DWT, Shannon entropy and 

Artificial Neural Network (ANN) was proposed in 

(Djemal et al., 2017). EEG data were recorded from 19 

subjects, 9 autistic subjects (six males and three females) 

between 10 and 16 years of age and 10 typically 

developing males between 9 and 16 years of age. Data 

were recorded in a relaxing state from 16 channels based 

on the international 10-20 acquisition system, sampled at 

256 Hz and filtered using a band-pass filter. To remove 

ocular artefacts ICA was applied to the channels located 

close to the eyes (Fp1, Fp2, F7 and F8). Next, the signals 

were filtered using an elliptic band-pass filter and 

segmented into 10 minutes long segments. For better 

feature extraction, the EEG signal was decomposed into 

approximation and detail coefficients using DWT. A 

four-level DWT decomposition with Daubechies-four 

(db4) wavelet was used and the first four detail 

coefficients (D1, D2, D3 and D4) and the approximation 

coefficient (A4) were calculated. Then five statistical 

features (mean, standard deviation, variance, skewness 

and kurtosis) and four entropy features (log energy, 

threshold entropy, Renyi entropy and Shannon entropy) 

were extracted from all the DWT coefficients and the 

original EEG signal as demonstrated in Fig. 9. Two-layer 

Artificial Neural Network (ANN) was used for 

classification. Using 10-fold cross-validation, accuracy, 

sensitivity and specificity were measured.  
The classification was carried out in several stages. In 

stage one, statistical features and entropy features were used 
separately as inputs to ANN keeping the segment length 
fixed. After identifying standard deviation and Shannon 
entropy as the best features, further optimizations were 
carried out in the next stages. Tests were carried out to 
find the optimum segment length and frequency band 
(wavelet coefficient). Results obtained using 
overlapping and non-overlapping segments were also 
analysed. Best segment length was found to be 50 sec. 
Similarly, detail coefficients D1, D2, D3 and D4 
produced the best accuracy of 98.9%. The test results 
for overlapping and non-overlapping segments revealed 
that 60 sec long segments with half-segment 
overlapping produce the best accuracy of 99.7%. The 
results conclude that the best approach for the CAD 
system is to extract standard deviation and Shannon 
entropy from the detail coefficients using 60 sec long 
half overlapping segments. 
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Cheong et al. (2015), have proposed a classification 
technique based on DWT. The EEG dataset, used in this 
research was recorded during stimulation of three tastes 
(salty, sour and sweet). Data were recorded from 30 
ASD subjects between 3 and 10 years of age based on 
the International 10-20 system at a sampling rate of 
500Hz. They were identified with 3 levels of autism, 5 
subjects with mild autism, 11 subjects with moderate 
autism and 14 subjects with severe autism. Only the 
channels related to the taste sensory (C3, C4 and Cz) were 
selected for analysis. Fig. 10 shows the process.  

Noise filtering was performed using voltage 

threshold method and bandpass filter with band 

frequency 0.4Hz to 60Hz was applied. In the feature 

extraction phase, DWT was applied using db4 as the 

mother wavelet. Standard deviations of the alpha 

frequency band (8Hz – 16Hz) of the three channels for 

three different tastes were calculated and used as inputs 

to the classification phase. A two-layer ANN was used 

for classification. Through trial and error data division of 

65% for training, 10% for testing and 15% for validation 

was found to be producing the best results of accuracy 

92.3% with a mean squared error of 0.0362. One 

significant feature of this methodology is the usage of a 

validation set. Other related studies only used training 

and test sets. When we adjust the model continuously 

based on the results obtained by evaluating the model on 

the test set, most likely we would end up overfitting the 

model to the test set. By using a validation set, the model 

can be evaluated for overfitting to the test set.  

The authors of (Jamal et al., 2014) analyzed the 

functional connectivity of the brain using phase 

synchronization to find a reliable biomarker for 

diagnosing ASD. Studies suggest that inactivation of 

brain circuitry associated with face processing might 

be the cause for the challenges faced by autistic 

children to understand facial expressions.

 

 
 

Fig. 9: System model used in Djemal et al. (2017) for the diagnosis 
 

 
 

Fig. 10: Workflow diagram used in (Cheong et al., 2015) 
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Fig. 11: Classification of ASD using synchrostates 

 

 
 

Fig. 12: The workflow of ASD classification approach based on fuzzy synchronization likelihood 
 

Hence, the connectivity of the brain was explored in order 

to find differences between ASD and normal children 

during face perception. Data were collected from 24 

subjects, 12 children with ASD between 6 and 13 years of 

age (average = 10.2) and 12 typically developing children 

between 6 and 13 years of age (average = 9.7) while 

performing face perception tasks. Data were obtained from 

128 channels at a sampling rate of 250 Hz and filtered 

within the range of 0.5 Hz to 50 Hz using a band-pass filter. 

Fig. 11 shows the methodology proposed in the study. 

Continuous Wavelet Transform (CWT) was applied and 

phase synchronized states (synchrostates) were obtained. 

Since obtaining synchrostates is a long procedure, we 

have omitted the details. The brain connectivity graph 

was built where the EEG electrodes are the nodes and 

the synchronization values between them are the weights 

of the edges. Modularity, transitivity, characteristic path 

length, global efficiency, radius and diameter of the 

brain connectivity graph were selected as features for the 

classification task. These six features were calculated 

corresponding to the three facial stimuli (fear, happy and 

neutral) with minimum and maximum occurring states. 

Thus 36 features were obtained in total. Fisher’s 

discriminant ratio was used for feature ranking. Nine 

different subsets of the features were created and used 

for classification separately. Discriminant analysis and 

SVM with polynomial kernel were used for 

classification. When using all the min and max state 

features for all three stimuli and all the max features for 

all three stimuli, classification using SVM with second-

order kernel produced the best accuracy of 94.7% with 

sensitivity 85.7% and specificity 100%. 

 Ahmadlou et al. (2012a), have proposed an approach 

which uses Fuzzy Synchronization Likelihood (Fuzzy 

SL). This approach analyses the functional connectivity 

of the brain of normal and autistic children using Fuzzy 

SL and diagnoses ASD based on that. An abstract 

workflow of their approach is demonstrated in Fig 12. 

EEG data were collected from 18 subjects, 9 autistic 

children between 7 and 13 years of age (average = 10.8) 

and 9 typically developing children between 7 and 13 

years of age (average = 11.1), according to International 

10-20 system at a sampling rate of 256 Hz.  

Applying Butterworth filter EEG is filtered within the 

range of 1-60Hz and using the wavelet transform signal 

was divided into 5 frequency bands: gamma, beta, alpha, 

theta and delta. The electrode locations were categorized 

into 7 regions: prefrontal, frontal, right temporal, left 
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temporal, central, parietal and occipital. Fuzzy SL values 

were calculated within and between these regions. 

Discriminative Fuzzy SL values were determined using 

Analysis of Variation (ANOVA) as a statistical tool. By 

setting the p-value threshold as 0.0005, four features 

were obtained. The selected features are Fuzzy SLs 

within the right temporal, between occipital and frontal, 

between parietal and right temporal and between 

occipital and central regions. Enhanced Probabilistic 

Neural Network (EPNN) was used for classification. 

Performing training testing (14 subjects for training, 4 

subjects for testing) 100 times and obtaining the average, 

an accuracy of 95.5% was obtained with a variance of 

1.2%. Since the number of subjects involved in the study 

is low, using cross-validation would have increased the 

reliability of the results and allowed more data to be used 

for training. In addition to the classification, the authors 

also claim that measured regional Fuzzy SLs can be used 

in the neurofeedback treatment as well.  

Another study by the same authors to diagnose ASD 

using improved visibility graph (VG) fractality is 

presented in (Ahmadlou et al., 2012b). Power of scale-

freeness of VG (PSVG) and improved PSVG were 

evaluated in their study for effectiveness in classifying 

ASD. Visibility graphs convert a fractal time series to a 

scale-free graph characterized by P(k) = k
-r
, where P is 

the probability distribution of the edges, k is the order of 

the nodes and r is the power of scale-freeness. A scale-

free graph is a graph whose degree distribution follows a 

power law. PSVG is the value of the slope when 

log2[P(k)] is plotted against log2[k]. The same data used 

in their previous study (Ahmadlou et al., 2010) was used 

for this study and the same methodology as in the 

previous study was followed until wavelet 

decomposition. The details of their previous study will 

be discussed later in this section. The classification 

methodology is presented in Fig. 13.  

PSVG and improved PSVG values were calculated 

for all 5 sub bands. Using ANOVA features with p-

values less than 0.01 were selected as inputs to the EPNN. 

PSVG computed for the beta band and improved PSVG 

computed for beta and alpha bands were selected. About 

80% of the data were selected for training and 20% were 

used for testing. The classification was performed 200 

times. Classification based on improved PSVG achieved an 

average accuracy of 95.5% with 1.7% variance, while 

classification based on PSVG achieved an average accuracy 

of 84.2% with 1.8% variance. 

The diagnosis approach proposed in (Bosl et al., 2011) 

is one of the initial attempts which utilized analysis of EEG 

data to produce a biomarker for children at high risk for 

ASD. The goal of their study was to demonstrate that 

mMSE (modified multiscale entropy) can be used as a 

biomarker to distinguish typically developing children 

from children at high risk for ASD. The children with an 

older sibling diagnosed with ASD were categorized as 

high risk for ASD. The workflow of the approach is 

presented in Fig. 14. 
Their study included 79 participants, among which 

46 were at high risk for ASD and 33 controls. Similar to 
the other studies, the control subjects were defined on 
the basis that they have a typically developing older 
sibling and no family history of neurodevelopmental 
disorders. The participants were between 6 to 24 months 
of age. From some participants, data were collected 
multiple times at different ages. Those data were 
considered as independent datasets, hence even though 
there were only 79 participants, a total of 143 sets of data 
were included in the study. EEG data were collected 
using a 64-channel Sensor Net System while blowing 
bubbles. Signals were band-pass filtered at 0.1 to 100.0 
Hz and sampled at a rate of 250Hz. Out of the 2 minutes 
long recordings, only 20 seconds long continuous 
segments were used for the analysis. As the first step for 
calculating the mMSE values, coarse-grained series from 
scales 1 to 20 were computed for each channel. Then the 
entropy values were calculated using modified sample 
entropy (mSE). The entropy values calculated using 
mSE are more robust to noise and consistent with short 
time series. Finally, for each coarse-grained series from 
scales 1 to 20, mMSE is defined as a series of mSE 
values. SVM, K-NN and Naïve Bayes algorithms were 
used for classification. The models were evaluated using 
10-fold cross-validation. Unlike the other studies, boys 
and girls have been classified separately and as a unified 
complete set as well. Moreover, classification was 
performed separately for different age groups, at 6, 9, 12, 
18 and 24 months of age. For the dataset combining both 
boys and girls, K-NN achieved the maximum accuracy 
of 90% for 9 and 18 months age groups. For the boys, 
SVM produced 100% accuracy for the 9 months age 
group and for the girls, SVM produced the maximum 
accuracy of 80% for the 6 months age group. 

Ahmadlou et al. (2010), have proposed a 

methodology based on fractality and a wavelet-chaos-

neural network for diagnosis of ASD as illustrated in 

Fig. 15. They introduced the idea of using Fractal 

Dimensions (FDs) as features. FD is a non-integer 

dimension which shows the degree of complexity and 

self-similarity of a signal. Eye-closed EEG data were 

collected from 17 subjects, 9 ASD children (6 to 13 

years old) and 8 typically developing children (7 to 13 

years old). International 10-20 standard was used for 

electrode placement and data were recorded from 19 

channels at a sampling rate of 256Hz. This dataset was 

used by the authors in (Ahmadlou et al., 2012b) as well. 

Applying bandpass filters, signals were filtered within 

0-60Hz and using wavelet decomposition gamma, beta, 

alpha, theta and delta bands were obtained. After pre-

processing the signal, Higuchi’s Fractal Dimension 

(HFD) and Katz’s Fractal Dimension (KFD) algorithms 

were   used   for  FD   computation of  the EEG signals. 
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Fig. 13: Diagnostic system model that utilizes the power of scale-freeness of the visibility graph 
 

 
 

Fig. 14: The process followed in (Bosl et al., 2011) 

 

 
 

Fig. 15: Steps involved in fractality based ASD classification 

 
Statistically significant FDs with a p-value less than 0.01 
were selected using ANOVA. Three features were 
obtained and were used for classification using a two-
layer Radial Basis Function Neural Network (RBFNN). 
82% of the data were used for training and 18% were 

used for testing. The classification was performed 100 
times using random subsampling. RBFNN produced 
results with 90% average accuracy and 0.15% variance. 
Table 5 summarises the usefulness and limitations of 
the considered ASD classification approaches

DWT 

Low-pass Filter EEG Signal 

PSVG Calculation Improved PSVG Calculation 

Feature Selection 

ANOVA 

Classification 

EPNN 

EEG Signal Band-pass Filter 

Modified Multiscale Entropy Generation 

SVM Naive Bayes K-NN 

EEG Signal Low-pass Filter 

Discrete Wavelet Transformation 

HFD KFD ANOVA 

Feature Selection Classification 

RBFNN 

Compute FDs 

Classification 
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Table 5: Summary of the related studies on ASD diagnosis based on learning models 
    No. of 

Related study Usefulness Limitation Accuracy channels  

(Bosl et al., Calculates severity score, Difficult to classify  100% 19 

2018) Applicable to subjects in age HRA subjects 
 between 3 and 36 months, 

 Identifies ASD abnormalities, 

 Classify separate age groups. 
(Thapaliya et al., Combines EEG with eye movement Needs a relatively high 100% 128 

2018)  number of EEG channels 

(Grossi et al., Does not require initial pre-processing, Complex implementation 100% 19 
2017) use a system combining I-FAST process 

 and MS- ROM algorithms 

(Djemal et al., Evaluates different segment lengths, Needs large dataset 99.7% 16 
2017) overlapping and non-overlapping segments 

(Cheong et al., Evaluate using a validation set, Needs large dataset, evaluated 92.3% 3 

2015) Non-complex implementation, using only the holdout method. 
 Classify ASD at 3 severity levels, 

 Use a taste-based EEG data 

(Jamal et al., 2014) Classification approach based on Complex implementation 94.7% 128 
 synchrostates process 

(Ahmadlou et al., Diagnosis of ASD based on Fuzzy SL, Needs large dataset, evaluated 95.5% 19 

2012a) Ability to measure the effects of using only the holdout method 
 treatments using Fuzzy SL 

(Ahmadlou et al. Improves visibility graph fractality Needs large dataset, evaluated 95.5% 19 

2012b) based ASD classification, using only the holdout method. 
 Better noise robustness 

(Haputhanthri et al., 2019)  Uses a smaller number of channels Need to be evaluated on a larger  93.33% 5 

 ensuring simplicity and channel optimisation population to ensure statistical  
  significance of the results 

(Bosl et al., Uses modified multiscale entropy as a Needs many EEG channels 90% 64 

2011)  biomarker for ASD,  
 Age is between 6 and 24 months, 

 classify based on gender, age groups. 

(Ahmadlou et al., Classification approach-based Needs large dataset, evaluated 90% 19 
2010) on fractal dimensions using only the holdout method. 

 

The considered ASD diagnostic approaches were 

selected based on the recent studies, that have applied 

machine learning approaches for ASD classification, 

between the year 2010 and 2018. We have explored the 

details of EEG datasets, techniques used, the methodology 

followed, significant aspects and the results of each of the 

related study. We have compared the pre-processing, 

feature extraction and classification techniques used by 

each of the studies in identifying ASD subjects. Thus, 

researchers and practitioners can use this survey to 

understand the useful and effective techniques. 

Discussion  

Current Limitations 

Small Training Sets 

The datasets of most of the related studies contain 
data from less than 36 subjects. Although, it is 
challenging to acquire EEG data of autistic subjects, 
from a statistical point of view the results will be 
biased and less reliable. Thus, there is a limitation in 
building solid relationships using the available small 
dataset.   

Less Real-World Practice 

Most of the proposed approaches have not been 

tested practically in real-world applications. Many 

unexpected issues may arise, when deploying an 

automated system in clinical practices.   

Unavailability of a Benchmark Dataset 

Although several ASD classification models have 

been proposed, there is a lack of a standard measure to 

compare the models. If a benchmark dataset with an 

adequate amount of data exists with global accessibility, 

the models can be applied, and selected the best model. 

Dataset-Specific Classification Models 

Each of the proposed models was trained and tested 

on specific EEG data. For instance, the equipment and 

infrastructure used to record data, electrode locations, 

number of channels, sampling rate, activities done by 

each of the subjects during the data collection are 

specific a given study. They were not tested on multiple 

EEG datasets with different properties. Thus, there is a 

limitation of assessing the effectiveness of those models, 

in classifying other EEG data with varying metadata.     
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Challenges in ASD Classification 

Limited access to data 

In general, it is challenging to acquire and access 

personal health records or medical data due to ethical 

issues, health care policies and regulations. Thus, the real 

data accessibility is limited in ASD diagnosis researches.   

Difficulty in Classifying Mild Forms of ASD 

The severity of ASD varies from person to person. 

Many studies have reported difficulties in diagnosing 

milder forms of ASD compared to severe cases. When the 

predicted results are close to the decision boundary 

separating ASD and no-ASD, it is challenging to conclude 

the results with an acceptable level of confidence. 

Unknown Etiology 

A clear understanding of the relationship between the 

connectivity of neurons in different regions of the brain 

and ASD is yet to be discovered. Thus, it is challenging 

to design a classification framework. Researchers are 

forced to follow the empirical/trial and error approaches 

to overcome this barrier. If the etiology is clear, better 

features can be extracted and optimal classification 

models can be built. 

ASD being a Spectrum Disorder 

Unlike most of the typical disorders, identifying ASD 

or no-ASD is not entirely sufficient because ASD 

represents a combination of neurodevelopmental 

conditions including high functioning autism, Asperger’s 

syndrome, pervasive developmental disorder and Rett 

syndrome. The type and severity of symptoms vary from 

person to person. Hence, in addition to classifying ASD, 

the learning model should calculate the severity and if 

possible, the specific type of disorder. 

Future Research Directions 

Predicting Severity Scores 

Majority of the studies were aimed towards 

classifying ASD but generating severity scores similar to 

ADOS was explored by only a few. Developing an 

approach which could predict the severity of ASD and if 

possible, explore the specific type of ASD would 

facilitate more individualized treatment. 

Building a Generic Decision Support System 

Another possible research direction is designing a 

generic decision support system which supports EEG 

data with different characteristics (differences in devices 

used for data collection, data types, sampling rate) and 

with a simple, user-friendly GUI to facilitate non-

technical users. It can easily be deployed for real-world 

testing and if successful, can be adopted for general use.  

Real-World Deployment of the Models 

It is important to deploy an ASD diagnosis system in 

real-world clinical practice. This can be used in parallel 

with the manual diagnosis process and verified the 

reliability and correctness of the system. 

Optimization Techniques 

After achieving the goal of real-world deployment of 

the models, different measures to optimize performance, 

resource utilization and accuracy can be explored. 

Integrating Different Types of Data 

Along with EEG, a model can be built integrating 

different data sources including eye movement, 

Functional Magnetic Resonance Imaging (fMRI) and 

thermal imaging. Combining EEG and eye movement 

data has already been proven to be an effective measure 

to classify ASD. A model based on different data sources 

will be more flexible, robust, reliable and accurate. 

Study Importance for the Future Researchers 

Research who are involving in EEG based ASD 

classification can utilize this study to obtain a detailed 

understanding of the evolution of the proposed 

classification approaches over the past decade. 

Moreover, this study helps to identify the techniques and 

features that have already been used and their 

effectiveness. Further, for clinical practitioners who are 

interested in developing a decision support system to 

diagnose ASD and utilize it for clinical diagnosis, this 

study will be helpful to select the optimum approach 

based on the expected accuracy, available resources and 

complexity of the methodology.    

Conclusion 

ASD is a lifelong neurodevelopmental condition that 

requires early intervention. This paper is explored the 

related studies of ASD diagnostic approaches, discussed 

the applicability of the techniques, identified the 

limitations in the current clinical diagnostic practices and 

the need for a behaviour-independent diagnostic 

approach. Studies reveal that the prevalence of ASD is 

increasing every year. By identifying the shortcomings in 

current ASD diagnostic criteria, we have emphasized the 

need for behaviour independent diagnostic approaches to 

facilitate early intervention. Dividing the classification 

methodology into four phases, this paper has discussed 

EEG data collection, pre-processing, feature extraction and 

classification. We have summarized different techniques, 

their strengths and weaknesses.  
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Concluding one technique as the best for one phase is 

impossible, because each technique has its own 

advantages and disadvantages. The suitable technique for 

the approach needs to be chosen based on the 

requirement. However, there are some techniques which 

produce satisfactory results, not the optimum, in general. 

For instance, noise filtering technique SOBI is widely 

used to remove noise from the EEG signal. Similarly, 

given sufficient data to train, the neural network can 

classify the subjects with reasonable accuracy. 

Further, we have discussed the diagnostic approaches 

proposed after 2010, providing the workflow of the 

methodology and significant aspects. Even though most 

of the related studies have achieved accuracies close to 

100%, only a few studies have calculated severity scores 

similar to ADOS. Additionally, a combination of 

psychophysiological data such as EEG, fMRI, eye 

movement data and thermal images can be considered to 

diagnosis ASD. Further, we have presented the identified 

limitations, challenges and future research directions of 

ASD classification. Thus, researchers and practitioners 

can use this survey to facilitate their work.    
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