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Abstract: Originally developed for probability and statistic purposes, 

Multiple Dice Rolling (MDR) game turns out to be useful for many 

other applications such as complex biological systems and medical 

research. It has been mainly used to estimate system states that cannot 

be observed directly. MDR game is affected by noise and fluctuations. 

It is widely agreed that noise in dynamic systems is captured by using 

the available computational and experimental technics, which provide 

information on the dynamics, size and entropy. Recently, computational 

advances have used algorithmic strategies and focused on stochastic 

accuracy to predict noise level in a given systems. It is known that 

experimental techniques can fully characterized the noise pattern and in 

some cases predicted relatively good outcomes for the MDR game. In 

this research, we developed a stochastic theory based on the MDR game 

and applied real data from to the Ciona and Beer-Tavazoie datasets. We 

found that the Ciona data (cell biometry) was relatively stable and the 

Beer-Tavazoie data (gene expression) was noisy. These facts support 

the well-known biologists’ theories that “cells are stable, but genes 

which are components of cells are unstable”. Furthermore, we have, for 

the first time, demonstrated quantitatively the molecular biology dogma. 

This result can be further developed in a novel direction to further 

understand the disease prediction, control and aging monitoring at the 

molecular and genetic levels.  

 

Keywords: Dynamic Systems, Noise, Biodynamics, Simulation, Cell 

Biometry, Gene Expression, Cell Dynamics, Data, Analysis, Entropy, 

Diseases Modelling, Predication and Control 

 

Introduction 

Noise in Biology is a product of interdisciplinary 

revolution that is touching nearly every scientific field 

where system behavior emerges from complex 

interactions of inhomogeneous cellular components 

(Backwell and Girshick, 1954; Feistel and Ebeling, 

1989; Aumann, 1989). In biodynamic systems, for 

example, the benefits of low noise compete with those of 

low population and the result is the evolution of the 

architecture that produce an uneven distribution of 

“stochasticity” across the components and in some cases 

the beneficial use of noise. Therefore, the frontiers of 

noise Biology lie across two interconnected fronts: (i) 

Understand the source, processing and consequences of 

stochastic fluctuations in biological systems and (ii) 

characterize the system architecture that has evolved to 

produce robust function within these noisy 

environments. Assuming that noise in random 

biodynamical systems can be effectively captured by 

MDR games, we consider a hypothetical model 

describing a collection of N cells by N generated spins 
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on natural collusions of dice sides in a particular games. 

We define the MDR game as longstanding and pervasive 

due to the infinite richness such a game (Krasovskij, 

1970; Mayerson, 1991). Quantitative understanding of 

dice games, both in terms of probability theory and 

statistical laws, remains difficult and unclear 

(Krasovskij, 1970). Investigations are complex due to 

the shortage of reliable data on the one hand and the 

captured randomness on the other hand. Information 

about outcomes of the game is often difficult to quantify 

and not available in large numbers (Nelson, 1985; Pearl, 

1988). While for a single dice rolling game the 

probability mass function (p.m.f) and the statistic of the 

game could be easily calculated, not much is known 

about mechanism of formation of these probabilities in 

the case of MDR games (Jimbo et al., 2017). With the 

recent advances in computer science and the appearance 

of extensive databases, it is now possible to design MDR 

games with reasonably high numbers of dice accessible 

to quantitative analysis even for large numbers of throws 

(Iverson et al., 1971; Knizer, 1999). As has pointed out 

in (Murray, 2002), one of the major problems with the 

MDR game is the difficulty to simultaneously follow the 

dynamic of all sides of the dice over time. To overcome 

such a limitation in this study, we assume without loss of 

generality that we throw the dice and follow the dynamic 

separately. By studying the dynamic of the probability 

distribution of each side of a die over many throws, we 

intend to estimate the Average Probability Value (AVP) 

of each side of the dice at a fixed number of throws. 

These values may then be used to predict the future 

outcome of the game. The MDR game problem is 

subject to stochastic perturbations that may produce 

delays that are experienced by individual dice during 

throws. Those delays can be due to the existence of 

random collisions and/or propulsions of sides in such 

dynamic process. Additionally, we believe that the way 

the stochastic fluctuations propagate to dice is the result 

of the propensity allocation and parameterization of the 

model. In such conditions, the noise will no longer be 

independent across dice. On that account, the effect of 

stochastic fluctuations cannot simply be understood as to 

be redundant. As we study the distribution of dice sides 

subject to constant stochastic fluctuations that randomly 

affect the delays experienced by individual side over 

throws, we must not forget about parsimony in designing 

the model. Our model is presented in detail in the next 

sections of the paper. We develop a game-theoretic 

model by introducing a modified version of the 

“dynamic probability concept” of dice sides over time 

and examine its statistical properties. The central aim of 

this work is to formulate the dice game problem in the 

framework of Markov processes also known as 

stochastic games (Maitra and Sudderth, 1996). While 

many methods could be applied to this task, we chose 

the probabilistic approach because of its natural way to 

deal with games and ability to encode arbitrary 

dependencies between variables (Backwell and Girshick, 

1954). Many authors have dealt with stochasticity in 

game theory; (Kolmogorov, 1950) built the fundament of 

probability theory and developed the dynamic concept of 

probabilistic games. (Feller, 1957; Erdös, 1961: 

Ferguson, 1969; Conway, 1976) introduced, respectively, 

the formulation of stochastic games and developed a 

more general and comprehensive approach to such 

games. (Kac and Logan 1976; Nelson, 1985; Morris, 

1994), the Bellman equation of the problem and the 

computation of optimal states were formulated.  

In the present work, we follow the idea of 

Kolmogorov and develop a probabilistic approach to 

MDR game. We extend the Chapman-Kolmogorov 

concept of “dynamic probability”, which in this case 

includes not only the state and time dependence but also 

the model parameter updates (Kolmogorov, 1950). This 

will enable our model to adapt to the changing condition 

of the game. We were able to draw a significant 

conclusion on how often individual sides of dice may 

appear after a large number of throws. Another important 

remark is that if the initial data is less noisy, after a 

reasonably large number of iterations (1000, for 

example), the Central Limit Theorem (CLT) can be 

applied. But in contrast, if the initial data is unstable, the 

CLT is only partially achieved, or in some cases, it will 

never be achieved (Jimbo, 2004). Again to support the 

choice of our approach, it is important to mention that 

although in many studies, we are scientifically more 

concerned in obtaining the entire distribution of the 

stochastic game. Rather in this study, we will focus in 

obtaining the distribution of each random variable. 

While the computation of the marginal probability 

distribution of a die is useful in evaluating the stochastic 

model, we believe that information regarding such 

distribution may not be good enough for individual side 

prediction. In this respect, we need to develop an 

approach, which could precisely evaluate the probability 

of all sides at a given throw for an optimal 

characterization of the game (Nelson, 1985; Morris, 

1994; Roth and Sotomayor, 1990; Alon and Krilievich, 

2006; Jimbo et al., 2017). 

Methodology 

Based on the computed probabilities, the game-

theoretic model can now be formulated in terms of the 

Chapman-Kolmogorov Equations (CKEs), also called 

the master equation. The transition state reflects the 

change in the outcome after each throw. Until now, 

such modelling approaches used in many problems do 
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not take into account the changes in the allocation of 

preferences over time; such changes can be efficiently 

captured by the propensity of the game. In this study, 

we proposed a new version of the CKEs. We assume 

that the drift term in the equation has an independent 

dynamic, which can be captured by a simple 

regression model and that each dynamic is 

conditioned on the initial state and time. The model is 

called the Extended Chapman-Kolmogorov Equations 

(ECKEs) and is given by:  
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Where: 

n: Total number of dice (unbiased) 

N: Total number of throws (rolling) 

k: Number of sides of a die 

j: Number of throws in the game 

x = xk: Event “side k appears over throws” 

f(.) = fk(.): Probability mass function of side k 

f
⊥
(.): Transpose of f(.)  

aj(x): Propensity for side k of the j-th throw 

a0(x): Initial propensity of side k; 

vj(x): State change associated with a single event at 

the j-th throw  

aj(x)dt: Probability that k-th side appears in the 

interval [t, t + dt] at the j-th throw 

ρ(x, aj(x)): Correlation between an event at the j-th throw 

and the corresponding propensity 

 

We assume for convenience that each side of each 

dice is correlated with the parameter of the game over all 

iterations and set the following: 
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As the choice of the propensity will closely depend 

on the related event, we assume that the absence of 

such boundary conditions on the correlations will 

affect the probability values, but yet we cannot 

confirm whether they will decrease or increase. This 

will be investigated in our next work. Furthermore, if 

for certain values of time t the function f is too hard to 

obtain, we propose a simple approximation by 

assuming the random variable x = xk has 

approximately an exponential distribution: x∼exp(-λk), 

or p.m.f of f(x,t)∼e
−λk

, for every t, where we λk>0 is 

the rate parameter of the distribution. Since λk 
is not 

constant over time, we can also approximate the first 

derivative of f(x,.) to λke
−λk

. Based on some 

consideration of the Fréchet Derivatives (Frechet 

derivative is the derivative of a function in a given 

direction) (Pearl, 1988), the Equation 1 becomes: 
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After simplification, this system of equations becomes: 
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From the above formula, we compute λk as a 

function of the side number k and the iteration period 

j; that is λk = λk(j). We have that ϑ1 and θ1 are the 

constant parameters of the game, which are assumed 

to be known. In this particular case, we set ϑ1 = -0.05 

and θ1 = +0.05 for convenience. Also we assume that 

the initial propensity ak(x) is known and vj is a vector 

with a finite number of elements. Since Equation 1 

cannot be solved analytically for f(x, t), we propose a 

numerical approach using (4); thus, the algorithm in 

explained in the next section.  

Algorithm 

As the analytical solution to (1) is hard to obtain even 
for a moderate number of throws, a numerical algorithm 
using adapted stochastic simulation approach on 
Equation 4 is proposed in this study. In our algorithm, 
two random variables determine the temporal evolution 
of the game. The variable τk is the time for the next event 
to occur (next side appearance of dice) and k, as before, 
is the side of the dice. 

Furthermore, the probability density of an event x = 
xk is then evaluated based on the propensity of the game 
on the event involved. Overall, this will give a better 
flexibility and applicability of the algorithm in some 
sense. The main purpose of creating such an algorithm is 
to simultaneously simulate the game and predict the 
online probability mass functions of each event in the 
game process using model 1. 

One important remark here is that the probability 
mass function f at each throw is a vector because we 
throw many dice at once and each side has a certain 
probability of appearance. We use f transpose instead of f 
to ensure better readability of our outputs, but all 
properties remain the same. In addition, our algorithm 
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facilitates evaluation of the Average Probability Value 
(APV) of each side after a certain number of throws; this 
is important if we want to study the general trend of the 
game. Our algorithm is presented as follows: 

 

Start. Input: Initial data x0 

Outputs: f(x,t), λ 

1. Set a0 := x0. 

2. For t = 1: nt (nt = number of iterations) do 

a. Let τ∼Po(10) be the time until the next event, 

which changes over time 

b. Let vj∼N(2,0.05) be the change associated to a 

single event 

c. Compute xt = θxt-1 +ϑ and at = ϑat-1 + θ. 

d. Compute the value of the pmf f(x,t) based upon (4) 

e. Compute λt = |a(x-v)e-v-a(x)| 

3. Output f(x,t)λ 

End 

 

In the next section, we will present some MDR game 

limitations and weaknesses. 

Limitations 

 The main problem with the MDR game model is 

the lack of robust test data in which the dynamic 

interactions are known in advance. We need the data in 

which the true correlations are known in advance if we 

want to compare our approach with the existing 

methodology. It is not possible to find the exact values for 

the probabilities first because the propensity is not unique 

and secondly because of the lack of clear error 

measurements in such a dynamic system. One way to relax 

these requirements is to introduce additional parameters, 

which will influence the generation of probabilities over 

time. Afterward, we build a new generation of flexible 

algorithms, which create test data sets and accurately 

predict outcomes of the game over time.  

Furthermore, we propose a propensity allocation 

based approach using liner regression in order for our 

model to generate and predict the state of the game, but 

other researchers may prefer more complex models. 

Finally, we present the test datasets created by our 

technique, which can be used to assess future 

performance of algorithms that attempt to determine the 

underlying predicted states. The above algorithm is 

available and can be provided under requests. The cell 

biometry (Ciona Data) and gene expression (Beer and 

Tavarzoe Data) are used to test our results. However, as 

mentioned in (Iverson et al., 1971; Nelson, 1985; 

Kreps, 1990; Jimbo, 2004; Jimbo et al., 2017) the 

number of observations remain relatively low, which 

contradicts further generalization.  

Gaussian Process for the MDR Game 

Let fk(t) be a function that a side k of a die appears 

after t throws. We define such a function as a Gaussian 

process, i.e., the probability distribution over the 

function fk that takes values fk(t) at time t (probability 

mass function, p.m.f, of a given side k of a die). 

Analogous to the Gaussian distribution, which is fully 

characterized by a mean and covariance, a Gaussian 

process is characterized by a mean function E[fk(t)] and a 

covariance function cov(k, k') = E[fk(t) fk(t')]-E[fk(t)] 

E[fk(t')] where the expectation is over function 

evaluations at time t with side k and time t' with side k'. 

We notice that t may be equal to t'. Furthermore, we 

assume that the functions fk(t) are stationary, 

differentiable and bounded. The outcome of the game is 

highly stochastic. In the next section, we will show how 

we consider a variant of the Chapman-Kolmogorov 

equations for the dynamic of fk(n) over time. 

Test Dataset 

 The main motivation for creating a Test Dataset 

was to have a benchmark dataset for which we may 

presume to know certain regulatory rules. This dataset 

will be necessary to compare outcomes of games with 

various other datasets and the accuracy can be easily 

checked. This is because there is no experimental data 

of multiple dice rolling games for which the true 

underlying interaction and propensity allocation are 

exactly known. We, therefore, create a sample data set 

by permuting in a random manner the numbers 1 to 6 

as many times as we need. We anticipate that the 

availability of the test dataset will allow researchers to 

evaluate their own methods and compare their 

methods against commonly used algorithms. With the 

test data, what we provide will be useful for 

researchers who want to get started right away testing 

their algorithms; we emphasize that the real power of 

the proposed algorithm is the capability it provides to 

quickly produce necessary outcomes for a game when 

a good allocation of propensity is made. Researchers 

can now use their own test datasets to compare the 

dependency of any method on any particular 

parameter (number of side of dice, type of correlation, 

type of data and type of propensity). 

Experiments 

We throw 1000 dice, six sides each, 1000 times. Each 

side will randomly appear over time with some 

probability p.m.f = fk(x,t)∼ fk(x,n) with t→n. 

In the tables below, we will present some results of 

the simulations.  
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Table 1 shows the minimum and maximum average 

probability values for each side of a dice to occur over time 

were obtained by our algorithm. As can be seen, side five has 

the smallest variance, but side two has the smallest mean. Sides 

four and six have the highest mean. From Table 1, we observe 

that the best Average Probability Value (APV) of the 

occurrence of a given side after n throws is pav = 0.265. 

Table 2 represents variance - covariance matrix of a die, 

where each non-diagonal entry (i,j) gives the covariance 

between sides i and j. The diagonal entries are the variance of 

each side over all iterations. We observe evidence of weak 

correlation among all sides, which is reasonable and acceptable 

as expected for such game. 

Figure 1 represents sample paths of the probability values for 

all dice sides with the Permutation Dataset. We assign a color to 

each side; the blue color represents side 1, green side 2, red side 

3, grey side 4, violet side 5 and finally, yellow side 6. 

 

Table 1: Minimum and maximum average probability and variance of data 

Side Min Max Variance APV 

1 0.2428 0.2838 0.00004642 0.2651 

2 0.2446 0.2948 0.00004867 0.2649 

3 0.2447 0.2882 0.00004598 0.2650 

4 0.2442 0.2918 0.00004428 0.2653 

5 0.2456 0.2917 0.00004322 0.2650 

6 0.2410 0.2893 0.00004391 0.2653 

 

Table 2: Variance - covariance matrix of a die 

0.007248     0.006986 0.006919 0.007226 0.007438 0.007014 

0.006986 0.006682 0.006861 0.007246 0.007062 0.006616 

0.006919 0.006861 0.006733 0.006895 0.006930 0.006694 

0.007226 0.007246 0.006895 0.007161 0.007128 0.006842 

0.007437 0.007062 0.006930 0.007218 0.007274 0.007105 

0.007013 0.006616 0.006694 0.006642 0.007105 0.006723 

 

 

 

Fig. 1: Sample paths and probability values of all dice sides 
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Fig. 2: Histogram of each side of a dice over generation 

 

 

0.1 

250 

 
200 

 
150 

 
100 

 
50 

 
0 

250 

 
200 

 
150 

 
100 

 
50 

 
0 

Histogram of die 1 face 1 Histogram of die 1 face 5 Histogram of die 1 face 6 

300 

 
250 

 
200 

 
150 

 
100 

 
50 

 
0 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

f 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

f 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

f 

F
re

q
u
en

cy
 

F
re

q
u
en

cy
 

F
re

q
u
en

cy
 

250 

 
200 

 
150 

 
100 

 
50 

 
0 

250 

 
200 

 
150 

 
100 

 
50 

 
0 

F
re

q
u
en

cy
 

300 

 
250 

 
200 

 
150 

 
100 

 
50 

 
0 

F
re

q
u
en

cy
 

F
req

u
en

cy
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

f 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

f 

1 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

Histogram of die 1 face 1 
Histogram of die 1 face 2 Histogram of die 1 face 3 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

f 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

f 

0.1 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 

f 

0.65 0.7 0.75 

25 

 
20 

 
15 

 
10 

 
5 

 
0 

25 

 
20 

 
15 

 
10 

 
5 

 
0 

30 

 
25 

 
20 

 
15 

 
10 

 
5 

 
0 

F
re

q
u

en
cy

 

F
re

q
u

en
cy

 

F
re

q
u

en
cy

 

Histogram of row 1 column 1 Histogram of row 1 column 5 
Histogram of row 1 column 4 

f 



Jimbo Henri Claver et al. / Journal of Computer Science 2018, 14 (7): 969.981 

DOI: 10.3844/jcssp.2018.969.981 

 

975 

 
 

Fig. 3: Histogram of six biometries of Ciona cells 

 

Figure 2 shows histogram of each side of a dice. It also 

highlights the change in the pmf over throws. The overall 

sample paths of the probability values and the pmf of each 

side at each throw are available in additional file that can 

be downloaded on to test our model, we decide to apply it 

to two real biological datasets in the next section. 

The sample paths of probability values, the pmf and 

all histograms are available upon request (Fig. 3). 

Application to Real Biological Data 

We applied our stochastic based-modelling 
approach to the MDR game to predict the likelihood 
of the outcome of each dice side over time. At the 
beginning, we use six-sided regular dice to generate 
synthetic initial data and create a benchmark set of 
probable values of the outcomes. We, further, test our 
results using the Ciona and Beer-Tavazoie datasets as 
initial data. We observed that our model may fit very 
well to the Ciona data, but there was a slight overfit 
when applied to the Beer-Tavazoie data suggesting 
some specificity in such data. The overfitting in the 
case of the Beer-Tavazoie data was explained by the 
presence of excessive noise in such data. Furthermore, 
we examined the dynamic correlation and stability of 
various sides of a chosen die in the game and found 
that in the Ciona data were more stable than Beer and 
Tavazoie data over iterations. Another advantage of 
our approach was speed, especially as we tested it by 
running many simulations, for real biological data, 
which takes more time to generate than synthetic data; 
we sacrificed some speed for higher accuracy and 
reliability. We concluded that our approach works well 
on our synthetic data generated according to the 
simulation of a real dice game. We also obtained an 
indication of its ability to find highly statistically 

significant results in real biological datasets. The main 
motivation for using real biological data is to test the 
efficiency of our approach in the application. We 
applied our algorithm respectively to the Ciona 
embryo biometry and Beer-Tavazoie gene expression 
datasets; the results are presented below. 

A. Cell Biometry - Ciona Embryo Biometry Data 

We used the Ciona embryo data from the link below: 

 

http://crfb.univ-mrs.fr/aniseed/embryo-collection.php. 

Remark 1 

We can clearly observe that varav(cio) and varav are in 
the same range, indicating a perfect match in the 
measure of variability for both datasets. Where varav(cio) 
and varav represent respectively the average variance of 
gene expression dataset and the average variance of the 
simulated data set. 

In the Table 3 it can be seen that, the best average 

probability value “avp” of the occurrence of a given side 

after n throws is pav = 0.2708. This result indicates that if we 

were to bet on the outcome of a given dice after n throws, 

we must choose a probability value around  pavc. Comparing 

pav 
to pav, we then obtain a marginal error of 0.72%, 

suggesting that our model can be effectively used to explain  

and capture the randomness in the Ciona biometry data. 

In the Table 4 the non-diagonal entries are: the 

covariance between side i and biometry j. The diagonal 

entries are the variance of the i -th biometry of cell. 

Comparing Min and Max values of p.m.f., we found that 

Min (Min) and Max (Max) are always in the same ranges. 

These findings suggest that the order can be formed from 

disorder, especially in biodynamic systems. Also, capturing 

randomness in the Ciona biometry data is essential. 
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Table 3: Dynamic of “avp” values over time for Ciona dataset 

Side Min Max Variance APV 

1 0.2460 0.7510 0.00250800 0.2697 

2 0.2491 0.2899 0.00005115 0.2656 

3 0.2511 0.4211 0.00030000 0.2669 

4 0.2459 0.4995 0.00063040 0.2667 

5 0.2473 0.8280 0.00335700 0.2700 

6 0.2489 0.3906 0.00020870 0.2656 

7 0.2487 0.7667 0.00265500 0.2708 

8 0.2517 0.2832 0.00005105 0.2656 

 

Table 4: Variance - covariance and matrix of cell biometry prediction after 100 iterations 

0.006330 0.006759 0.007390 0.005933 0.005761 0.006912 0.006635 0.005501 

0.006759 0.006149 0.007286 0.006379 0.006572 0.005942 0.006489 0.005702 

0.007390 0.007286 0.007560 0.006869 0.006706 0.007245 0.006931 0.006578 

0.005933 0.006379 0.006869 0.006362 0.006636 0.007858 0.006776 0.006436 

0.005761 0.006572 0.006706 0.006636 0.006414 0.006844 0.006052 0.005669 

0.006912 0.005943 0.007145 0.007858 0.006844 0.007160 0.006491 0.006729 

0.006635 0.006489 0.006931 0.006776 0.006052 0.006491 0.006751 0.007334 

0.005501 0.005702 0.006578 0.006436 0.005669 0.006729 0.007334 0.006029 

 
Table 5: Minimum and maximum average probability values 

Side Min Max Variance APV 

1 0.2528 0.2746 0.00003715 0.2638 

2 0.2551 0.2827 0.00005207 0.2653 

3 0.2547 0.2825 0.00006549 0.2654 

4 0.2503 0.2742 0.00003441 0.2643 

5 0.2510 0.2766 0.00005161 0.2641 

6 0.2504 0.2807 0.00006210 0.2663 

7 0.2534 0.2789 0.00004886 0.2658 

8 0.2544 0.2808 0.00005535 0.2660 

 
Table 6: Variance - covariance matrix of genes expression levels/conditions 

0.006451 0.005405 0.007751 0.007778 0.006855 0.009141 0.007652 0.007923 

0.005405 0.004138 0.005522 0.004195 0.005579 0.006986 0.004782 0.008410 

0.007751 0.005522 0.008101 0.006632 0.008874 0.007422 0.005767 0.007410 

0.007778 0.004195 0.006632 0.005630 0.007684 0.006929 0.006274 0.006479 

0.006855 0.005579 0.008874 0.007684 0.008483 0.007586 0.006447 0.007643 

0.009141 0.006986 0.007422 0.006929 0.007586 0.007812 0.006327 0.001051 

0.007653 0.004782 0.005767 0.006274 0.006447 0.006327 0.005167 0.006448 

0.007923 0.008410 0.007410 0.006479 0.007643 0.001051 0.006448 0.008233 

 

Table 5 shows that minimum and maximum average 

probability values obtained from our algorithm are 

respectively 0.260 and 0.2638 for eight gene expression 

conditions over generation time. As can be seen, all 

average probabilities are around 0.2650 with a margin 

error of 0.22%. This result shows that margin errors in 

gene expressions are far smaller than in cell biometry. 

Table 6 shows variance, covariance and matrix of 

genes expression levels/conditions, where the non-

diagonal entries are the covariance between the i-th and j-

th expression conditions. The diagonal entries are the 

variances of expression conditions over time. Also values 

are in the same range of 3 digits. 
Figure 4 presents the histogram of each expression 

condition of six genes. Additionally, the sample paths of 
probability values and the pmf of each expression 

condition over many throws are available in the 
supplementary materials, available upon request. 

B. Gene Expression - Beer-Tavazoie Data 

We used the gene expression data from the following 

website:  
 
http://genomics.princeton.edu/tavazoie/web/Beer_Tavaz

oie_Supp_Mat/expression_data.TXT. 
 

We rearranged the data in a matrix form, rows 

representing genes (dice) and columns the expression 

conditions (sides of dice). We obtained a data matrix 

with 6189 rows and 255 columns, meaning 1,578,195 

total entries. We next applied our mathematical model 

and computational algorithm to the data, obtaining the 

following results: 
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Fig. 4:  Histograms of each expression condition of six genes 
 

Remark 2 

We can easily observe that varav(ge) and varav are in 
the same range indicating a perfect match in the measure 
of variability for both datasets. Where varav(ge) and varav 
represent respectively the average variance of gene 

expression dataset and the average variance of the 
simulated data set. 

Now, comparing pavBT with pav, we obtain a marginal 

error of 0.03%, suggesting that our model can be used to 

explain and capture the randomness in the Beer-Tavazoie 

gene expression data with a small error (as we 

preferentially focus on the most frequent outcomes). 

Measures of Dynamic Correlation and 

Stability 

To understand the level of stability in each biological 

process (cell biometry and Gene expression), we 

introduce two new measures: 

 

i. Dynamic Correlation: 

 

( ) ( )( )corr , '; corr , '; 1td k k nt k k n t= − −  (5) 

where, corr(k,k';nt) is the correlation between even k 

and k' at time t over n throws. 

ii. Dynamic Stability  

 

( )
( )

S

S

S

M d
d

Var d
=  (6) 

 

1,........,s N=  

 

Comparison of the Stability in Ciona and 

Beer-Tavazoie Data 

 All cases presented in this section are representative; 

full details are presented in the supplemental material on 

stability. We calculate dt and ds for both the Ciona and 

Beer-Tavazoie data. The above figures confirm that cell 

biometry is more stable than gene expression. It can be 

seen that the Beer-Tavazoie data is a mixture of stable 

and unstable genes, even if the whole system is unstable. 

Now, we wish to understand the level of fluctuations in 

our MDR game and for that end we need a measure to 

evaluate noise strength. 
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Noise Strength Analysis 

 We define noise strength as NS(k) of the dynamic 

system (or game) as follows:  

 

 
( )11

( ) k

k

p
NS k

n p

−
=  (7)  

 

 with: 

 

1,........,k N=  

 

where, n is the number of throws, k is a die side and f 

= pk is the probability that side k appears on the n–th 

throw. The derivation of the above formula is 

presented in the supplemental material. We use the 

formulation of NS(k) to understand how the number of 

iterations and the probability values affect the noise 

strength. The obtained figures with n=1000, n=500, 

n=100 and p=0.95, p=0.50, p=0.25 show that as n 

increases, the noise strengths overall decreases. 

Characterization of MDR Game 

Robustness 

The proposed model will not be robust against a game 

that predicts or influences a dice. If we assume that the 

roller can influence the throw of the dice or use any 

other trick to influence the outcome, such games will 

not be robust. But, if we consider that the rolling 

conditions remain the same and the dice are identical, 

then the game becomes robust. 

Simplicity 

Our model for MDR game is extremely 

straightforward. Additional constraints on some 

properties of the game may decrease simplicity, but the 

MDR game is very clear at the beginning. 

Efficiency 

Our model efficiency will depend on the initial 

condition of the game, the propensity, the number of 

iterations and the number of dice rolled. 

As the number of throws or iteration of dice 

decreases, the noise strength increases for presumably 

fixed probability. As the probability of appearance of a 

side of dice decreases, the noise strength increases for a 

fixed number of iterations (Fig. 5). 

Figure 6 Ciona entropy is generally within the interval 

(2.4, 2.9) and Beer-Tavazoie entropy varies within the 

interval (86, 89). Clearly Ciona has lower entropy over all 

iterations and, therefore, higher probability values or less 

randomness in contrast to the Beer-Tavazoie  data which 

has higher randomness. 

 

 
 

 
 

Fig. 5: Noise Vs number of throws and evaluation results of noise strength 
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 (a) 

 

 
 (b) 
 

Fig. 6: Ciona and  Beer-Tavazoie entropy of data (a) Ciona Entropy (b) Beer-Tavazoie Entropy 
 

Entropy over Iterations 

By definition, dice entropy H(xk) is the measure of 

uncertainty or energy associated with the appearance of 

the side xk after n throws; it is given by the formula: 

 

( ) ( )
1

( ) log
n

k j k j k

j

H x f x f x
=

=∑  (8) 

 

where: 

 

1,......,k N=  

and: 
 

1,......,max( )n iterations=  

 
In this study, we calculate the entropy for Ciona and 

gene expression datasets and present the results in the 

figures that follow: 

Remark 1 

We observe in general that HCio(xk)<30 and 

HB&T(xk)<90 indicating that there are more fluctuations 

in Beer - Tavazoie gene expression data comparing to 

Ciona cell biometry data. 
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Discussion 

We have shown using a mathematical model that the 

stochasticity in the system game can be captured by 

MDR game. The extended version of the Chapmann-

Kolmogorov Equations (CKEs) we used is still a 

simplification and could even be unrealistic for certain 

designs of the game, but it can capture the randomness 

of the game if we use good initial conditions and 

reasonably stable parameters. The main novelty of our 

approach is the use of the extended CKEs and the 

propensity of the game applying our algorithm to predict 

the average probability of appearance of each side of a 

die after a fixed number of throws. However in practice, 

when using MDR game to solve real world problems, it 

is not enough to find the average probability value and 

fix it. Again, all outcomes in our model depend on the 

initial inputs and the parameters. We, then, have to 

continuously update new probability values as dice are 

thrown. We face the challenge of iteratively improving 

the solution to a series of problems that change over time 

and we must do this in light of unanticipated events and 

incomplete knowledge. The fact that uncertainty and 

inaccuracy enter into our model, prediction must be 

accepted and even used to the great possible benefit. 

In summary, we conclude that our method can 

efficiently predict the future evolution of biological 

systems, which are not chaotic. We have limited ourselves 

to evaluating the average probability of sides of a die with 

preset parameters and fixed initial conditions. The 

Gaussian process approach can also be used to compute 

the likelihood for the model (Kac and Logan, 1997; 

Knizer, 1999), but since our model is inherently nonlinear, 

the likelihood is no more tractable. Therefore, Bayesian 

inference and even more sophisticated statistical methods 

could be required. However, it seems doubtful that a more 

complex mathematical model or techniques may be 

needed to calculate the probability or likelihood that a face 

of dice appears after a fixed number of throws. We are 

pursuing a number of extensions of the current results 

because it is unlikely that these probabilities will remain 

the same over time (iteration) due to possible external 

(initial conditions, additional parameters) and internal 

(dynamic correlation, noise strength and entropy) 

variabilities at each throw. 

Conclusion 

The proposed algorithm has made it possible to 
detect interactions among all dice sides as dynamic 
correlations and evaluates the p.m.f of a side to appear 
over many throws. We use the variance-covariance 
matrix to extract such information in the game over time. 
The input of our algorithm is associated to a matrix of 
columns, which represent the dice thrown and rows 
representing the faces of dice. The outcome of games in 

terms of the prediction or p.m.f values greatly depends 
on the propensity and the parameters of our model. We 
found that the time complexity of the proposed algorithm 
was polynomial of order O(n

2
) where n is the number of 

data points. We showed the performance of the method 
by applying it to two typical real datasets. We found 
similarities in p.m.f values obtained from synthetic and 
real datasets. This suggests that it is possible to predict 
the dynamic of the real dataset using our method. 
Finally, we calculate the entropy and evaluate stability in 
the Ciona and Beer-Tavazoie datasets and observed that 
the Ciona data was more stable (less variable) with low 
entropy, which means higher probability values and, 
therefore, lower uncertainty. In contrast, the Beer-
Tavazoie data was noisier with high entropy and, 
therefore, low probability values and higher uncertainty. 

In conclusion, we have developed a stochastic theory 

for the MDR game. This novel theory was for the first 

time applied to the Ciona and Beer-Tavazoie real datasets. 

We found that the Ciona data (cell biometry) was 

relatively stable and the Beer-Tavazoie data (gene 

expression) was noisier. These facts confirm the well-

known biologists’ intuitions that cells are stable, but genes 

which are components of cells are unstable. Furthermore, 

we demonstrated quantitatively the cellular dogma. Future 

direction to our work will be to develop a unified theory 

between game theory and stochastic theory. 
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