

© 2018 Mustafa Al-Fayoumi, Ruba Haj Hamad and Jaafer Al-Saraireh. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

SSOAM: Automated Security Testing Framework for SOA

Middleware in Banking Domain

Mustafa Al-Fayoumi, Ruba Haj Hamad and Jaafer Al-Saraireh

Department of Computer Science, Princess Sumaya University for Technology, Amman, Jordan

Article history

Received: 0402-2018

Revised: 17-05-2018

Accepted: 11-07-2018

Corresponding Author:

Mustafa Al-Fayoumi

Department of Computer

Science, Princess Sumaya

University for Technology,

Amman, Jordan
Email: m.alfayoumi@psut.edu.jo

Abstract: In the banking domain, a high level of security must be

considered and achieved to prevent a core-banking system from

vulnerabilities and attackers. This is especially true when implementing

Service Oriented Architecture Middleware (SOAM), which enables all

banking e-services to be connected in a unified way and then allows

banking e-services to transmit and share information using simple Object

Access Protocol (SOAP). The main challenge in this research is that SOAP

is designed without security in mind and there are no security testing tools

that guarantee a secure SOAM solution in all its layers. Thus, this paper

studies and analyzes the importance of implementing secure banking

SOAM design architecture and of having an automated security testing

framework. Therefore, Secure SOAM (SSOAM) is proposed, which works

in parallel with the banking production environment. SSOAM contains a

group of integrated security plugins that are responsible for scanning,

finding, analyzing and fixing vulnerabilities and also forecasting new

vulnerabilities and attacks in all banking SOAM layers.

Keywords: SOA Middleware, BPEL, Automation Security Testing

Framework, Orchestrated Business Process, SOAP Protocol, Secure

Banking Architecture

Introduction

Service-Oriented Architecture Middleware (SOAM) is

considered a paradigm shift in designing banking

infrastructure that allows core banking to integrate

heterogeneous and legacy systems or e-services to

innovate a bank’s service delivery and guarantee efficient

business process management and orchestration.

In the banking domain, the real competition is to stay
innovative, competitive and cost-effective and to fulfill
customers’ needs, in order to achieve greater
profitability. SOAM is an open, extensible and
compassable architecture that provides services
interoperability and reusability. Furthermore, SOAM

allows enterprises to apply the agile methodology and
become flexible during their application development
cycle (Hariharan and Babu, 2014).

Banking solutions are rarely implemented in a

standalone way and must have the ability to securely,

inter-operate and integrate different data sources and

their systems such as mobile banking, internet banking,

electronic check clearing (ECC), ATMs and others. Each

of these e-services will have been built by various

vendors using different programming languages such as

.NET and JAVA, so managing and controlling these e-

services is a serious challenge for any bank, especially

when the bank wants to achieve service quality, high

performance, availability, customer’s satisfaction and a

high level of security. Thus, having an integration layer

is a must in the banking domain: This is SOAM. The

SOAM integration layer allows banks to deploy new

services quickly and with lower cost (Early and Free,

2002; Keen et al., 2017).

The study in this study is based on a real example of

an SOAM banking project. A similar approach may be

taken in another integration projects to an extent

depending on the e-services and the requirements of the

banking system.

The rest of the paper is organized as follows. Section

2 discusses the literature review and their considerations.

An overview of service oriented architecture is presented

in section 3. Section 4 discusses the motivation of the

current study. The proposed SSOAM architecture design

and its related work mechanism is presented in section 5

and section 6 discusses SSOAM security analysis and

evaluations then finally section 7 contains the conclusion

and suggestions for future work.

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

958

Literature Review

With regard to SOAM security there are many

suggested plugins, patterns, framework and automated

tools for achieving a high level of security. The most

popular was proposed by Erl (2009). This considers

data confidentiality and data origin authentication,

which is used for message security level; it also

considers direct and brokered authentication that uses

an access control concept to allow specific users to

access services with special permissions. However, the

author did not study security issues related to the

communication channel or data encryption pattern and

did not consider the idea of building a secure banking

architecture by using SOAM (Erl, 2009).

WS Attacker

Web Service Attacker was proposed by Morris et al.

(2010). This tool is used for penetration tests for XML

based web services. It mainly checks any new

vulnerability in the SOAM and supports the building of a

secure service. This plugin focuses on the individual

business process by analyzing the Web Service

Description Language (WSDL) file. The main weakness

in this plugin, which the author did not consider is that

the orchestrated services, located in business process

execution language (BPEL) component, could not

prevent XML interpreting tags and replay attacks

(Hariharan and Babu, 2014; Mainka et al., 2012).

ATLIST

Attentive Listener was proposed by Lowis and Accorsi

(2011). This plugin performs vulnerability analysis on

orchestrated business processes within SOAM, but was

tested in a test lab not in parallel with a banking

production environment for 24 h per 7 days a week. The

authors did not run this plugin on the production

environment and did not consider any performance issues

while transmitting data (Lowis and Accorsi, 2011).

TulaFale

This plugin was proposed by Bhargavan et al. (2004).

It is effective for standards XML files such as WSDL

files, but the authors did not consider how to handle

some headers security functions such as OASIS

UsernameToken authentication (Bhargavan et al., 2004;

Bhargavan and Gordon, 2017; Bhargavan et al., 2007;

Lux et al., 2005).

SOFIA Oracle

A new security plugin was proposed by Ceccato et al.

(2016). This is related mainly to the communication

channel with the database to protect any system from

SQL injection attack (SQLi). This plugin needs to

improve its performance to speed up its work cycle.

In addition, a group of research papers studied
different testing types for SOAM technology such as
unit, functional and regression testing but did not
directly discuss automated security testing, did not focus
on the importance of scanning the production
environment to report vulnerabilities and attackers
dynamically and did not connect the complete solution
with a business intelligence tool to forecast and predict
new vulnerabilities and attackers (Kajtazovic et al.,
2017; Inaganti and Aravamudan, 2008).

Nevertheless, there are groups of commercial tools

that execute security testing for SOAM, although they

actually have several weaknesses and issues:

• Executing traditional security testing on SOAM

technology may force the project to run over budget

• Traditional security testing does not work in parallel

with the banking production environment

• Traditional security testing tools do not cover all

SOAM layers

Service Oriented Architecture Overview

SOAM is a group of related services and applications

that communicate with each other to achieve certain

advantages for enterprises. It is a client-server architecture

which contains two major concepts services and

consumers. SOAM has additional features to the

traditional client-server approach such as a loose coupling

feature between service components and separately

standing interfaces (Natis, 2003). Additionally, SOAM

architecture supports banks to innovate and maintain their

business processes and strengthen their IT infrastructure

(Early and Free, 2002; Bhuvaneswari and Jujatha, 2011).

SOA Architecture Layers

In general, SOAM architecture contains the following

major layers. (The number refer to items in Fig. 1).

Application and System Layer [1]

This layer contains all the connected bank’s e-
services such as the internet, mobile banking, ECC,
ATMs and others. These published systems serve the
bank’s clients through the internet (HTTPS secure URL)
(Oracle, 2017).

Service Orchestration Layer [2]

This layer is located in the middle of the SOAM

architecture and is considered the source of

functionalities containing all the common and unified

bank’s business rules and operations. For example, a

request for transaction is a common function between

internet banking, mobile banking and others, so it will be

defined and upgraded and will then be used by all other

e-services (Bhargavan et al., 2004; Lowis and Accorsi,

2009; Ye and Yang, 2013).

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

959

Fig. 1: SOA conceptual architecture

Network and Communication Layer [3]

This layer works in parallel with all other layers that
are transferring messages and binding services through
SOAP or any other protocols.

Database Layer [4]

This layer is considered as the source of truth. It is

main purpose is to obtain all required information for the

bank’s e-services such as user transactions, client details,

client account, credit card status, history and others.

SOA Architecture Components

It is important to highlight the major components of
SOAM conceptual design. These are as follows (The
letters refer to items in Fig. 1).

Business Process Execution Language (BPEL) [A]

BPEL is an XML based markup language that allows
services within SOAM to interconnect, inter-operate and
share both common business rules and data between core
banking and e-services. It enables easy and flexible
configuration for services into business processes and
has recently become a major component in SOAM.
BPEL is described as a WSDL (Oracle, 2017).

Enterprise Service Bus (ESB) [B]

ESB is the core of SOAM architecture. It is
considered as a single point of entry for all connected e-
services and systems. Each system needs to
communicate with ESB to influence all other e-services
and each system is required to create special interface to

interact and connect directly with ESB instead of
creating several interfaces to communicate with many
other systems (Oracle, 2017).

Adaptive Messaging [C]

Adaptive messaging provides a communication
pattern between orchestrated services and also between
all clients and available e-services, such as requestor
response, both synchronous and asynchronous. It helps
in handling messages and manipulate them between
different services through different protocols: SOAP,
HTTP, REST and others (Oracle, 2017).

Simple Object Access Protocol (SOAP) [D]

SOAP is an exchange messaging framework within
different web services and systems. SOAP is the heart of
web services schema, while web services are loosely
coupled software components and standard methods for
connecting web-based applications such as internet
banking to the core-banking system by using XML,
SOAP, WSDL and Universal Description, Discovery and
Integration (UDDI) over Internet protocol backbone
(Mainka et al., 2012):

• XML: For tagging the data
• SOAP: A message format for communication

between systems involved in a web-service for
transferring the data.

• WSDL: A mechanism for describing the services

available

• UDDI: For listing what services are available within

the architecture

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

960

Fig. 2: SOAP protocol

SOAP is the master leader in communications. Its
main purpose is to send and receive XML information to
allow a successful communication between service
requestor, service registry and provider. As shown in
Fig. 2, SOAP is used to publish the descriptor into a
service registry to:

• Send a service request from a requestor to the registry

• Send information from the registry to the requestor;

• Allow the requestor to bind to the service provider and

run the web service (Mainka et al., 2012; Al-Jaroodi

and Al-Dhaheri, 2011; Bhargavan et al., 2007)

It is important to mention that SOAP is essential for
all web services and communication between banking e-
services (Hariharan and Babu, 2014; Lux et al., 2005;
Keen et al., 2017).

SOA Middleware Unified Security [E]

SOAM unified security is responsible for establishing
trust or handshaking relationship between two entities,
such as core banking and mobile banking. In practice, in
order to access secured e-services it must first provide
information that express its origin of issuing or asserting.
This process is referred to as making a claim, it may
happen by providing credentials which are stored in a
security token to allow claims to be asserted by sender
authentication, to establish the identity service consumer
by confirming this claim to be a true claim (Al-Jaroodi
and Al-Dhaheri, 2011; Bhargavan et al., 2007):

• Authenticating means determining what the

requester is allowed to do and authorization
typically occurs after authentication

• Authorizing the consumer will require verifying the
identity claim against predefined setup access rules

• Confidentiality is focused on protecting the privacy
of information and making sure this information is

available only to the authorized services when a
message is being transmitted. A confidentiality
mechanism is responsible for protecting the content
throughout the message path

• Integrity is responsible for protecting the message

from any alteration by unauthorized parties. The

integrity mechanism ensures that the message

remains un-attacked since its creation and

transmission by the original sender (Bhargavan et al.

2007; Lowis and Accorsi, 2009; Keen et al., 2017)

Motivation

This section discusses two major motivations which

related to the current banking architecture, the available

security testing tools and its problems and issues.

In Fig. 3 it is clear that all e-services are directly

connected to core banking using web-services. These

web services are built using different programming

languages such as .NET, JAVA and others and different

standard types, so it is more likely that an attacker will

be able to modify or read the credential information for

any web service or e-services.

Furthermore, web-services transmit data using SOAP.

Unfortunately, this is not designed with a focus on

security; so there is a possibility that the SOAP messages

will be interfered during transmission. It is highly

probable that an attacker or unauthorized user could act as

the original sender then resend any critical communication

to the original destination using network traffic. This

scenario is called a replay, playback, rewrite attack, or

XML rewriting attack. In web services it is possible for an

attacker to record, modify, replay and redirect SOAP

messages. There is a chance that attackers could inject

malicious information which saved in XML files in order

to modify or change business process and flow.

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

961

Fig. 3: Banking current architecture

Additionally, some banking e-services use a file

transfer mechanism for transmitting data file between

core banking and e-services or with the central bank,

such as Visa, FATCA services and others.

Unfortunately, this communication channel is not

sufficiently secure and it is highly recommended that

File Transfer Protocol (FTP) be converted to Secure

File Transfer Protocol (SFTP).

In practice, to achieve a high level of security with

this current architecture, it is strongly recommended that

the following major points be considered:

1. Convert FTP into SFTP to allow transfer files within

a secure channel

2. Group all file transfer services and unify them into

one secure channel

3. Take into account that the lack of applied security

standards for e-services means that it is easy for an

attacker to modify or read the credential information

for such services

4. Conduct full security testing to prevent the current

architecture from different attacks

5. Conduct security testing with a third parties contract,

this may cause any banking project to run over budget

6. Repeat the security testing after making several

changes, applying upgrades or fixing bugs

7. Protect and keep scanning the network layer to

avoid any vulnerabilities and attacks

8. Manage the network firewall in a secure way to

monitor both income and outcome network traffic

9. Prevent the database from SQL injection attack

10. Increase the awareness of developers about how

to write secure code over a possibly

untrustworthy network

11. Consider how to mitigate the risk when converting

current and traditional banking architecture into

SOAM architecture

12. Consider how to have an automated security tool for

the SOAM live banking environment without

affecting performance

13. Follow a methodology to investigate the SOAM

features and what are the most secure plugins that

integrated successfully with SOAM architecture,

also need to conduct several proof of concepts to

check the implementation of SOAM with core

banking, then finally propose a complete

architecture with its related security analysis and

evaluation

Proposed SSOAM Architectural Design and

Work Mechanism

The proposed work in this research provides a secure

banking design architecture by implementing SOAM

technology. It also provides an automated security

framework working in parallel with the banking SOAM

solution namely SSOAM.

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

962

The proposed SSOAM is an architectural design and

a group of an integrated security plugins and tools. These

plugins are responsible for scanning, finding, analyzing

and fixing vulnerabilities which directly related to

SOAM layers: The application and system layer; the

service orchestration layer; the network and

communication layer; and the database layer.

The SSOAM starts security scanning on an individual

banking process to prevent both spoofing and denial of

service attacks. After that, it is strongly recommended

that the security of banking orchestrated processes and

services be checked using ATLIST plugin. Then, since a

high level of security will have been achieved, it is time

to use TulaFale (Bhargavan et al., 2004) to simulate

playback attack on the network layer. Finally, it is

necessary to prevent banking SOAM from SQLi

injection, where an attacker is able to change banking

business rules and workflow that are stored in the BPEL

component while transferring SOAP messages and affect

the database layer. This protection can be achieved using

SOFIA Oracle plugin.

After running all these security plugins, it is

important to run automated functional scripts to

automatically double check the correctness of banking

business rules within the BPEL component. It is also

important to study and analyze vulnerabilities and

attackers’ behavior by using a business intelligence tool

to predict and forecast new vulnerabilities and attacks

in the near future.
As is clear from Fig. 4, SOAM technology is an

integrated layer between core banking and e-services and
the BPEL component stores all common banking
business rules and processes using a unified
programming language, in the case JAVA.

This proposed banking architecture mainly
considered the following major points (The number refer
to the items in Fig. 4):

1. No direct connection or communication is permitted

between e-services and the core banking; any kind

of communication must be through SOAM

2. Grouping all file transfer services into one channel

will allow banks to focus on file security mechanism

such as decryptions, encryptions, purging transfer

instances and files, compression and decompression

to achieve a high level of security on this channel. It

will also be very easy to use SFTP instead of FTP

3. In the file transfer section in this scenario, Oracle

Managed File Transfer 12c is a potential technology

to be used for file transfer services to design an end

to end secure transfer and this is successfully

integrated with Oracle SOAM 12c. It has three

sections, design, monitoring and administration and

consolidates data file transfer into a centralized

architecture to give complete visibility of all the file

transfer mechanism. This architecture is clusterable,

schedulable and available 24 h in 7 days per week

4. The proposed automated security testing

framework, as mentioned previously contains a

group of integrated security plugins. Each plugin

should focus on one or more types of attacks to

cover all SOAM layers and these plugins should

work in sequence and in parallel with the production

SOAM banking environment

Here are brief descriptions of these plugins:

[A] WS-Attacker

One of the most important security tools to test an

individual XML based web services (alone), this is a

framework that uses SoapUI advanced API testing tool

as the backend. This plugin is responsible for XML

security especially XML signature which guarantees data

integrity and authenticity within banking services. As

shown in Fig. 5, this plugin works as below steps:

1. Load and scan an individual XML based web

services (WSDL) by using SoapUI in the backend

2. Test the service by generating common attacks

3. Check the returned integer response from the SOAP

4. If the service is secure enough it will resist these

generated attackers

5. Else, the web service needs to be improved and have

a code review to fix the code related bugs from a

security point of view

6. Return security testing result/report

The WS-attacker plugin was implemented in the

proposed banking architecture (SSOAM) and the results

has been showed that the proposed framework is secure.

Moreover, WS-attacker has been evaluated and tested

by using a widely deployed web services frameworks such

as Apache Axis2, JBossWS Native 6.0, JBossWS CXF

7.08 and .NET Web Services. The presented final results

have been proved that WS-attacker can protect web

services from SOAPAction, WS-Addressing spoofing,

XML rewriting attacks and others refer to Table 1

(Hariharan and Babu, 2014; Mainka et al., 2012).

[B] TLIST

This plugin is to detect, analyze and manage

vulnerabilities in banking orchestrated services and

composite business processes. It also derives

vulnerabilities types and pattern, which helps in

preparation of any prevention actions.

 In practice, this helps developers to write better and

more secure code to avoid future vulnerabilities.

Additionally, it tracks several types of attacks, such as

those stopping and steering the business processes within

SOAM standards, such as WSDL, SOAP and XML

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

963

(Lowis and Accorsi, 2011). It is important to note that

ATLIST helps in checking both local and remote

services and allows the checking of remote services

without knowing their specific details, also helps in

protecting PBEL business processes confidentiality and

integrity.

Moreover, ATLIST plugin has been tested and

evaluated then used for identifying the vulnerabilities in

orchestrated business processes. This plugin has been

developed for message alteration attack and the XML

injection attack in WS-attacker.

ATLIST allows to check remote services without

knowing the details about it, the below steps are related

to its work mechanism:

1. Full scan for orchestrated services and business

rules to find vulnerability and attack

2. Build and examine analysis tree

3. Use different kind of element as an input to build its

analytical tree which help in vulnerabilities and

attacks analysis

4. Refinement of vulnerability and attacks details

5. Return security test result / report

One of the most crucial attacks may face SOAM

business processes is lost control of the services, when

the attacker steer or stop the process and have the full

control over it by message alteration attack, XML

injection or SOAP injection by changing the header of

transmitted message between services, ATLIST as a part

of SSOAM architecture can protect banking services

from SOAP injection attack and also many other attacks,

refer to Fig. 6.

[C] TulaFale

is a security testing plugin to verify the authentication

properties of SOAP protocols, this is considered a

specification language for defining a complete machine-

checkable description of SOAP security protocols and

checking BPEL business processes’ authentication and

help in verifying the authentication properties of SOAP,

it has been tested and evaluated. (Bhargavan et al., 2004;

Hariharan and Babu, 2014).

Fig. 4: SSOAM proposed architecture

SSOAM: Secure SOA middleware

automated security resting framework

6

A
Business intelligence tool

WS-Attacker
MB IB

B

4

ATLIST IVR ATM
D

SOFIA SOA

database
ECC TulaFale

C

5

Automation

functional test

Core Banking

Facilities

Deposit

Card and

payments

1

1

Security

Plugins

IVR

Mobile

Banking

ATM

Internet

banking

ECC

Mortgage

Others

Banking
database

Central

Bank ACH

2 Visa

FATCA
3

MIPS

MasterCard

EMP Visa

Other

Systems FATCA

Visa

ACH

S
O

A
 m

id
d

le
w

ar
e

S
ec

u
re

 f
il

e
tr

an
sf

er

U

n
if

ie
d
 S

ec
u

ri
ty

 L
ay

er

E-services

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

964

Fig. 5: WS-Attacker Work Mechanism (Mainka et al., 2012)

Fig. 6: Steering Process Attack (Lowis and Accorsi, 2011)

WS-Attacker

Framework Plugins Architecture

Loading a WSDL

Holds N Plugin

Selecting an operations

Attack Plugin 1

Attack Plugin 2

Generate request content

Submitting a test request

Configure attacks

Start attacks

Present results Attack Plugin N

Steer process

Attack effect

Active components BPEL engine XML parser

XML WSDL
Involved

standards

XML WSDL SOAP BPEL SOAP BPEL

Amount Amount Amount Amount

Size Size Size Size

Order/

nesting
Order Order Order

Content Content Content Content

Some

properties

as on the

left

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

965

Table 1: Defeated attack per plugin

Plugins Defeated Attack SOAM Layer

1 WS-Attacker ✓ SOAPAction Spoofing Service layer

 ✓ WS-Addressing Spoofing

 ✓ XML-based DoS

 ✓ XML signature wrapping

 ✓ New Adaptive and Intelligent Denial-of-Service Attacks

 ✓ XML Encryption attacks

 ✓ Attacks on Symmetric Encryption Scheme.

2 ATLIST ✓ Prevents attackers from stopping, starting, splitting, spotting, steering Service orchestration

 and having any controls on banking business processes inside BPEL. layer

 ✓ Protects both service integrity and confidentiality.

3 TulaFale ✓ XML Re-writing attack. Network and

 ✓ Web service session attack. communication layer

 ✓ SOAP traffic attack.

4 SOFIA Oracle ✓ SQLi Attack Database layer

5 Functional Testing Main Functionalities All SOAM layer

 ✓ Record functional test scripts and scenarios.

 ✓ Prepare both positive and negative test data to be used as an

 input for functional scenarios.

 ✓ Execute functional test cases

 ✓ Return security test result and report.

6 Business intelligence tool Main Functionalities All SOAM Layers

 ✓ Study and analyze vulnerabilities and attacker’s behavior.

 ✓ Predict and forecast new vulnerabilities and attacks.

Mainly, two types of standards are used:

• WS-Security Standard: Specifies a mechanism to

secure SOAP protocol traffic only for one message a

time

• WS-Secure Conversation: Specifies security

contexts, to secure sessions between two web

services or parties

The main advantage of using Tulafale library as a

formal model is to make sure that the level of security

for SOAP traffic within SSOAM architecture are

guaranteed by using those standards WS-Trust and

WS-Secure Conversation. Practically, Tulafale works

as the below steps:

1. Check and verify the authentication properties of

SOAP protocols and describe SOAP processors

2. Check the web services authentication

3. Return security test result/report

The level of security of authentication property

within proposed SSOAM is more secure when

implemented TulaFale tool.

[D] SOFIA the Security Oracles

An automated security oracle that is integrated with

several attack generation tools, to protect the banking

database from SQL injection attack (SQLi). The

accuracy of SOFIA oracle has been tested and evaluated

successfully with three different attack generation tools

on PHP and Java systems, no attack was missed and the

rate of false positives was very low, which makes

SOFIA a reliable and cost-effective approach.

As shown in Fig. 7, SOFIA work mechanism

contains two major phases:

• Training: A group of legitimate SQLi are chosen

from the safe model which contains all SQL

executions log

• Testing: SOFIA oracles assesses tests new SQL

statements then have a decision if this statement is

legitimate or not

The main idea of using SOFIA is as a specific

database firewall for production environment to help

in filtering SQL statements and blocking any injection

or attack. This can protect sensitive data from any

insertion, alteration or deletion by unauthorized users

and prevent such users from gaining control of the

database server or performing arbitrary actions.

SOFIA is used to catch real SQLi vulnerabilities with

many inputs generated from attack-generation tools.

The proposed frame work was filtering SQL

statement and blocking any SQL injection when SOFIA

plugin is used in our approach. So, any amendment for

data between entities will be detected and prevent any

users from gaining control of the database server.

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

966

Fig. 7: SOFIA Oracles (Kajtazovic et al., 2017)

• Functional automated testing tools such as IBM

Functional Tester, Selenium or any other potential

automation tools, simulate all banking critical

scenarios and business rules in an executable

functional test case. These functional test cases

must be executed dynamically when there is a

possibility of finding an attack or facing risks,

with the result of the execution either pass or fail.

‘Pass’ means that there is no change in the

banking business rules, while ‘fail’ means that

there is a change and more investigation is needed

to double-check whether or not there is an

attacker and what actions must be taken to

mitigate or avoid this risk

• Business intelligence tools such as Tableau

which are connected directly to both SOAM and

security framework databases containing all

historical transactions. This tool is used to study

and analyze SOAM’s attackers and vulnerability

behaviors in previous years and forecast further

behavior (Last, 2015)

SSOAM Security Analysis and Evaluation

 This section discusses the working mechanism of the

proposed framework as well as analyses and evaluates its

potential security features by using a banking business

case then presented the defeated attacks which is

summarized in the Table 1.

 One of the common banking business scenario in

SSOAM is related to get an approval for credit card

transaction. It’s worth to mention that such scenario will

be securely protected within SSOAM framework.

The Banking business case has the following steps

within SSOAM layers that already defined in Fig. 1

“SOA Conceptual Architecture” and in Fig. 4. SSOAM

Proposed Architecture:

1 In the service layer the customer uses his credit card

to start an online shopping transaction or point of

sale mechanize

2 In SOAM unified security component, the customer’s

authentication, authorization and identity are approved.

This is considered as the first line of defense

Testing Training

SQL

execution

logs

New SQL
statements

Parsing

Parse

Trees

Pruning

Pruned

Parse Trees

Computing

distance
Distance

matrix

Clustering Classification

Safe model
Safe/Attack

Legend: Process flow I/O

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

967

3 Then, all details are written within the customer

module such as credit card, account number, expiry

date etc. These details are written in SOAP format

4 This SOAP message is sent through the network

layer from the web application to orchestrated

services in BPEL processes

5 In the service orchestration layer the related process

called Credit Card Approval unpacks the SOAP

message and converts it into a command that the

application can understand

6 The application gets the credit approval/ declined

status in SOAP message after contacting the core-

banking system through the service bus

7 This SOAP message is sent back to the customer

8 After unpacking the SOAP message, the customer

gets the required information

9 Finally, all these steps are executed within a high

level of security and protected from a crucial attack.

Table 1 analyzes and summarizes what kind of

attacks can be defeated when using SSOAM and on

which specific layer

Additionally, in SSOAM there are potential points

should be considered when implementing this security

framework:

i. Each network packets should have two major

countermeasures, namely timestamp and unique

sequence number. This helps SOAM to accept or

reject any packet received

ii. It is useful to generate a quality report indicating

the severity and risk of vulnerabilities and the

degree of impact in terms of how such

vulnerabilities will damage or affect SOAM

security (high, medium, or low)

iii. A business intelligence tool enables attackers’

behavior to be studied and future vulnerabilities and

attacks predicted

iv. This framework must run 24 h, 7 days per week, to

check all messages communications between e-

services and core banking and all packets through

the network

Additionally, this SSOAM can prevent core-

banking and harden its applications, BPEL business

processes and database against Man-in-the-Middle

(MITM) attacks. MITM is an unauthorized user sits

between all parties’ communications and tries to view

and modify the most important messages between

them. By having SSOAM, it will prevent core-banking

and its services from steering services, also prevent

from SOAPAction spoofing, which allows Man-in-the-

middle attack to modify the ‘SOAPAction’ element in

a HTTP header to execute an action that is not

predefined by SOAM services, such as modifies

access controls for banking business processes inside

BPEL component. SOAPAction spoofing and MITM

attacks can be mitigated by strictly verifying if the

action in the SOAP body matches the action in the

HTTP header. If they do not match, the incoming

message will be rejected.

Conclusion and Future Work

Achieving a high level of security in the banking

domain is a challenging topic. This research discusses

and promotes SSOAM, which contains two major ideas

that should be applied in the banking domain to increase

the security level. Firstly, at the level of SOAM

architecture, it is highly recommended that all file

transfer service mechanisms be grouped together and solid

security features put in place to avoid any crucial attack.

The recommendation is to use the Oracle managed file

transfer product, which is an integrated component within

Oracle SOAM 12c. Secondly, at the level of security

testing, the study highlights the importance of having an

automated security testing framework by grouping together

different security plugins, automated functional testing and

business intelligence tools to guarantee a high level of

security for banking SOAM and then to use it in parallel

with the production environment of SOAM core banking

and its e-services 24 h, 7 days per week. This will also

predict what kind of vulnerabilities and attacks may affect

the banking SOAM.

The future work suggested by this research is to

conduct a case study to validate the proposed secure

architecture design in the banking domain; to validate

the suggested automated security testing framework and

the integration of security plugins, automated testing

tools and business intelligence tools and to study and

analyze any performance issues, also need to conduct

performance and load testing for the SSOM by using

IBM Rational Performance Tester.

Acknowledgment

The authors would like to thank the reviewers for

their valuable comments and suggestions that

contributed to the improvement of this work.

Author’s Contributions

Mustafa Al-Fayoumi: Design the research plan

and organized the study, coordinated the data-

analysis, contributed to the writing of the manuscript

and give final approval of the version to be submitted

and any revised version.

Mustafa Al-Fayoumi et al. / Journal of Computer Science 2018, 14 (7): 957.968

DOI: 10.3844/jcssp.2018.957.968

968

Ruba Haj Hamad: Design the research plan and

organized the study, coordinated the data-analysis,

design architecture and contributed to the writing of the

manuscript and revised version

Jaafer Al-Saraireh: Prepared the study and

elaborate the methodology. Critical review of each

version and correction.

Ethics

This article is original and is not published in whole

or in part elsewhere. There is no ethical issue involved in

this article.

References

Al-Jaroodi, J. and A. Al-Dhaheri, 2011. Security Issues

of service-oriented middleware. IJCSNS Int. J.

Comput. Sci. Netw. Security, 11: 153-160.

Bhargavan, K. and A.D. Gordon, 2017. Secure sessions

for web services.

Bhargavan, K., C. Fournet, A.D. Gordon and R. Corin,

2007. Secure sessions for web services. ACM Trans.

Inform. Syst. Security, 10: 8-8.

 DOI: 10.1145/1237500.1237504

Bhargavan, K., C. Fournet, A.D. Gordon and R. Pucella,

2004. TulaFale: A security tool for web services.

Proceedings of the 2nd International Symposium on

Formal Methods for Components and Objects, (MCO’

04) Springer, Berlin, Heidelberg, pp: 197-222.

 DOI: 10.1007/978-3-540-30101-1_9

Bhuvaneswari, N.S. and S. Jujatha, 2011. Integrating

SOA and Web Services. 1st Edn., River Publishers,

ISBN-10: 8792329659, pp: 330.

Ceccato, M., C.D. Nguyen, D. Appelt and L.C. Briand,

2016. SOFIA: An automated security oracle for

black-box testing of SQL-injection vulnerabilities.

Proceedings of the 31st IEEEACM International

Conference on Automated Software Engineering,

Sept. 03-07, ACM, Singapore, pp: 167-177.

 DOI: 10.1145/2970276.2970343

Early, A. and D. Free, 2002. SOA: A ‘must have’ for

core banking (ID: SPA-17-9683).

Erl, T., 2009. SOA Design Patterns. 1st Edn., Prentice

Hall, Upper Saddle River, ISBN-10: 0136135161,

pp: 814.

Hariharan, C. and C. Babu, 2014. Security testing of

orchestrated business processes in SOA. IEEE

International Conference on Advanced

Communications, Control and Computing

Technologies, May 8-10, IEEE Xplore Press,

Ramanathapuram, India, pp: 1426-30.

 DOI: 10.1109/ICACCCT.2014.7019337.

Inaganti, S. and S. Aravamudan. 2008. Testing a SOA

application. BPTrends.

Kajtazovic, N., A. Höller, T. Rauter and C. Kreiner, 2017.

A lightweight framework for testing safety-critical

component-based systems on embedded targets.

Keen, M., R. Kaushik, K. Singh, B.A. Aghara and S.

Simmons et al., 2017. Case study: SOA banking

business pattern.

Last, D., 2015. Using Historical Software Vulnerability

Data to Forecast Future Vulnerabilities. Proceedings

of the Resilience Week, Aug. 18-20, IEEE Xplore

Press, Philadelphia, PA, USA, pp: 1-7.

 DOI: 10.1109/RWEEK.2015.7287429

Lowis, L. and R. Accorsi, 2009. On a classification

approach for SOA vulnerabilities. Proceedings of

the 33rd Annual IEEE International Computer

Software and Applications Conference, Jul. 20-24,

IEEE Xplore Press, Seattle, WA, USA, pp: 439-44.

DOI: 10.1109/COMPSAC.2009.173

Lowis, L. and R. Accorsi, 2011. Vulnerability analysis in

SOA-based business processes. IEEE Trans.

Services Comput., 4: 230-42.

 DOI: 10.1109/TSC.2010.37

Lux, K.D., M.J. May, N.L. Bhattad and C.A. Gunter, 2005.

WSEmail: Secure internet messaging based on web

services. Proceedings of the IEEE International

Conference on Web Services, Jul. 11-15, IEEE Xplore

Press, Orlando, FL, USA, pp: 75-82.

 DOI: 10.1109/ICWS.2005.138

Mainka, C., J. Somorovsky and J. Schwenk, 2012.

Penetration testing tool for web services security.

Proceedings of the IEEE 8th World Congress on

Services, Jun. 24-29, IEEE Xplore Press, Honolulu,

HI, USA, pp: 163-170.

 DOI: 10.1109/SERVICES.2012.7

Morris, E.J., W.B. Anderson, S. Balasubramanian, D.J.

Carney and J. Morley, 2010. Testing in service-

oriented environments.

Natis, Y.V., 2003. Service-oriented architecture scenario.
Gartner Inc.

Oracle, 2017. Oracle SOA suite 12c – a detailed look.

Ye, Y. and C. Yang, 2013. Privacy protection for RBAC

in service oriented architecture. Proceedings of the

26th IEEE Canadian Conference on Electrical and

Computer Engineering, May 5-8, IEEE Xplore

Press, Regina, SK, Canada, pp: 1-6.

 DOI: 10.1109/CCECE.2013.6567854

