

© 2018 Slamet Sudaryanto Nurhendratno, Sudaryanto, Fikri Budiman and Maryani Setyowati. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Case Reports

Query Optimization on Distributed Database Dengue Fever

by Minimizing Attribute Involvement

1
Slamet Sudaryanto Nurhendratno,

1
Sudaryanto,

1
Fikri Budiman and

2
Maryani Setyowati

1Faculty of Computer Science, Dian Nuswantoro University, Semarang, Indonesia
2Faculty of Health, Dian Nuswantoro University, Semarang, Indonesia

Article history

Received: 25-01-2018

Revised: 12-03-2018

Accepted: 05-04-2018

Corresponding Author:

Slamet Sudaryanto

Nurhendratno

Faculty of Computer Science,

Dian Nuswantoro University,

Semarang, Indonesia
Email: slametalica301@dsn.dinus.ac.id

Abstract: Query optimization is an important task in a client/server

environment of a distributed database, whereas a health epidemiologist data

distribution based on DBD data on Geographic Information Systems (GIS).

A proper method for a particular query process function is needed to

generate query optimization on a distributed database. The query process

requires important attention especially in distributed databases because the

result of a cost-based query process is accessed by involving a number of

attributes and visited sites. A query operation typically will search for data

from various attributes in a scattered database table, although the processes

do not require all table attributes. Query optimization requires minimum

query operating costs (communication costs and access fees). The query

cost can be optimized by separating attributes that are not required by the

query. This can reduce the amount of communication and access time. The

attributes should not be divided indiscriminately to obtain the best result of

the query process and a vertical fragmentation method can be used to

perform such attribute separation. In this research, attributes separation

using vertical fragmentation method for a database health table is studied

by comparing Bond Energy Algorithm (BEA) and Graphic Based Vertical

Partitioning (GBVP) algorithm. The initial result of vertical fragmentation

in both algorithms is the determination of types of attributes separated from

a number of specific query process. The result of the separation of

attributes from each algorithm is compared and evaluated using Partitioned

Evaluator (PE) in order to achieve the access cost of several attributes. The

results show that GBVP algorithm is more optimal for use in vertical table

fragmentation process applied as query operation on distributed DBD

database in a health field. The GBVP algorithm has less computational

complexity, results a higher partition evaluator value and has lower query

execution time than BEA.

Keywords: Query Distribution Process, Vertical Fragmentation,

Optimization, BEA, GBVP, PE

Introduction

An increase of a large and complex database can

decrease the performance and cost overruns of data

access information system. Performance reduction and

cost overruns occur due to function query accesses data

retrieval from various attributes contained in a database

table in which not all the attributes in the table are

required. A distributed database can be implemented to

improve the performance and reduce the cost of data

access on a database. The process of designing a

Distributed Databases is complex, so a data

fragmentation (partitioning) scheme was used to

facilitate a design process of a Distributed Databases

(Al-Sayyed et al., 2014).
Fragmentation is a process of division or mapping of

tables based on the columns and rows of data into the
smallest unit of data. Data fragmentation is a process of
division or mapping of a database where it is broken
down by columns and rows stored in a computer site or a
different unit in a data network, allowing for decisions to
divided data (Abdalla and Amer, 2012). Data

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

467

fragmentation can be accomplished in several ways,
including horizontal and vertical fragmentation.
Horizontal fragmentation consists of a global fragment
tuple subdivided or partitioned into several sub-sets. A
blocking for this type is very useful in a distributed
database, where each sub-sets can contain data that
generally have a property. Vertical fragmentation
subdivides the attributes of an available global fragment
into several groups or subclass (Bhaskar and Sharma,
2012). The simplest form of vertical fragmentation is
decomposition, where a row of unique-id can be
included in each fragment to ensure and enable the
reconstruction process through join operations. This
fragmentation divides data into multiple tables which
form interrelated attributes. This study was limited to
test vertical fragmentation efficiency with Bond Energy
Algorithm (BEA) and Graph-Based Vertical Partitioning
(GBVP) algorithm. The main purpose of fragmentation
is to minimize the number of access-related and share a
relationship based on the efficiency of queries that are
most frequently accessed (Al-Sayyed et al., 2014). To
make the process of vertical fragmentation in the
database to be tested, is based on the calculation of the
algorithm Bond Energy (BEA) and the algorithm Graph-
Based Vertical Partitioning (Rahimi and Riahi, 2015).
BEA is an algorithm used for a vertical fragmentation

process. Information given about the use of attributes
with initial transaction is converted into a square matrix
referred to as the attribute affinity matrix which then is
diagonalized by a cluster algorithm as the basis for
calculating the bond energy algorithm. GBVP algorithm
has less complexity in computing and produces meaning
fragments with graphs. The affinity matrix is transformed
into an affinity graph in order to partition the fragment
based on defined rules and steps (Fung et al., 2002).
A vertical fragmentation design is initialized by

building an Attribute Affinity matrix (AA). This matrix
is used as the input generated from a multiplication of an

attribute usage matrix with attribute query access matrix.
The affinity matrix is then calculated using BEA to
generate a clustered affinity matrix (Hoffer and Severance,
1975). The clustered affinity matrix determines attributes
fragmentation. The calculation in GBVP algorithm has the
same initial steps with BEA which is to perform an

affinity matrix as the input. The matrix is then
converted into a graph and the table is fragmented
following the GBVP algorithm rules. Further, the rules
for candidates identify a fragmentation of forming a
cycle. The cycle can be extended to improve a decision
fragmentation. The process runs until reaching at the

end of a node. The results of the fragmentation of these
algorithms are compared and evaluated using Partition
Evaluators (PE) to determine which algorithm has
performance that is more optimal.
In this research, an optimization of queries vertically

generated on a fragmented table relationship using

GBVP algorithm and BEA is analyzed and compared,

where the implementation of BEA has been previously

studied on a database in medical records management

information system (Nurhendratno and Budiman, 2017).

Related Research

A clustering method based on vertical fragmentation

to increase the system performance has become trend in

a distributed database study, especially in determining

the cost of query access. An implementation of vertical

fragmentation by performing attributes clustering in a

process of fragmentation in a distributed database was

proposed by Rahimi and Haug (2010).

The method comprises two main algorithms. The first

algorithm is used to place a set of data by simultaneously

allocating the relevant elements and separating irrelevant

elements. The second algorithm is used to cluster in

which groups are created to determine a point to make

pieces of a dataset. The main part of making vertical

fragmentation in a distributed database is to find groups

which contain relevant attributes in a relation table based

on the affinity matrix value.

Affinity matrix contains a number of attributes with

other attributes (the number of simultaneously accessing

two attributes). The iteration in this algorithm is used

and based on the grouping matrix n × n affinity matrix

that will be used as the basic matrix in table

fragmentation process that will be done (Rodríguez and

Li, 2011). Initialization is conducted by downloading

one column and placing it in the first column of the

output matrix. Iteration step i n-i have a column on the

left at the position i + 1 which allows the output matrix

that will generate the greatest contribution to the

calculation affinity calculations. Row ordering, at this

step, the lines will be set the same as the column setting.

Contributions from Ak column, which is placed between

Ai and Aj. The next step is to calculate the number of

accesses performed on each fragment is formed, then

calculate the value maximize split quality (sq) of each

fragment. The research has proven attributes in the

cluster system will have a direct impact on the cost

savings of storage and access costs. The study carried

out by Hoffer and Severance (1975) can find a

combination linearly with the cost of storage, retrieval

and update the capacity restrictions for each file.

The fragments are separated into two-stage approach

which are overlapping and non-overlapping fragments

(Navate et al., 1984). The first stage is based on the

empirical objective function and performs cost

optimization by combining knowledge of the specific

application environment in the second phase. Cornell and

Yu (1990) proposed a model in a vertical partition

problem as a programming problem of round number with

the aim to minimize the number of disk accesses. This

model uses certain physical factors related to the object

files (attributes, length, selectivity and cardinality).

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

468

GBVP algorithm and BEA is analyzed and compared

using the same affinity matrix, where the implementation

of BEA has previously been studied on a database in

medical records management information system by

Nurhendratno and Budiman (2017), in which graph

affinity was created by removing the existing value of 0

in the affinity matrix.

Analysis Comparison of Vertical

Fragmentation

Bond Energy Algorithm

Bond Energy Algorithm (BEA) proposed by Hoffer,

Severande and McCormick is an algorithm that can be

used for vertical fragmentation process in a distributed

database (Runeeanu, 2008). BEA Algorithm is divided

into two steps, the first step is used to put a group of

related data by allocating data elements simultaneously

(elements who have no connection separated) and the

second step can be used to form a group that is in charge

of determining the point of a set of data (create cluster).

The important thing in creating a vertical fragmentation

in a distributed database is finding attributes which have

been clustered in a relational table based on the affinity

value in matrix of an attribute.
Affinity matrix is a matrix containing number of

attributes which are mutually bound (number of access
of two simultaneous attributes). BEA uses affinity matrix
as an input to form clustered affinity matrix. Split
function produces a clustered affinity matrix in the
following steps: Initialization: Select and place one at
random columns of the matrix into the matrix Clustered
Affinity. The iteration step i: Place a column n-i at position i
+ 1 in the matrix Clustered Affinity. Rules contributions
columns are illustrated in the following formula:

() () () (), , , , ,Count Ai Ak Aj bond Ai Ak bond Ak Aj bond Ai Aj= + −

Graph-Based Vertical Partitioned Algorithm

Graph-Based Vertical Partitioning (GBVP) is
different with the BEA. GBVP has a less computational
complexity and produces fragments that have meaning
by using a graph method. The input for GBVP algorithm
is an affinity matrix considered a complete graph known
as affinity graph where an edge value represents affinity
between two attributes. A linearly connected spanning tree
is then formed. This algorithm produces all fragments that
have meaning in one iteration (Cornell and Yu, 1990).
The steps of the algorithm in generating vertical
fragments with affinity graph are:

1. Build an affinity graph from object attributes. Note

that the matrix affinity is a sufficient data structure

to represent the graph. No additional physical data

storage is required

2. It can be started from any node

3. Select the edge that completes the conditions below:

• It must be connected to the binary tree that is

already established

• It must have the greatest value among all

existing edge selection

• The iteration will end when all the nodes have

already been used

4. If the next selected edge forms a primitive cycle:

• If there is no node cycle, check all possibility

cycles and if there is a possibility, mark the

cycle as the affinity cycle. Return to step 3

• If the there is an existing node cycle, remove

the edge and continue to step 3

5. If the next selected edge does not form a cycle and

there is a partition candidate, then:

• If no former edge is found (selected edge is in

between the last piece and a node cycle), check

a possibility of a cycle extension of the new

edge. If there is no possibility found, cut the edge

and the cycle will be a partition. Return to step 3

• If a former edge is found, change the cycle node

and check the possibility of a cycle extension

by the former edge. If there is no possibility

found, cut the former edge and the cycle will be

a partition. Return to step 3

Partition Evaluator

Partition Evaluator (PE) is a function to compare and
evaluate different algorithms, using the same input on
the process of designing a database. In the process of PE,
the input used is an accessing attributes matrix followed

by designing an Evaluator used to evaluate in finding the
better partition or fragmentation (Lisbeth and Li, 2011).
There are two common terms in PE which are
"irrelevant local attribute access cost" and "relevant
attribute remote access cost".

Irrelevant local attribute access costs measures the

cost of the transaction process which due to irrelevant
attributes and assumes that all needed data fragments by a
transaction are locally available. Irrelevant local attribute
access cost is described by the following formula:

2 2

1 1
1

M M itk

M t itk ri t

itk

R
E q R

n= =

  
= ∗ ∗ − 

  
∑ ∑

where,
itk

R is the number of attributes that are relevant

in a fragment. While the relevant remote attribute access

cost measures a remote processing costs caused by the

relevant attributes of accessed data fragments.

Relevant remote attribute access cost illustrated by

the equation formula:

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

469

2 2

1 1
min

T M itk

R t itk rt i

itk

R
E q R

n= =

  
= ∗ ∗ 

  
∑ ∑

where,
itk

R is the number of attributes that are relevant

in another fragments. While the function of PE is:

2 2

M R
PE E E= +

The definition and notation used in the PE functions are:

T = The number of transactions that are below the

consideration

Qt = Transaction frequency t, for t = 1, 2, ... T

M = The number of fragments of a partition
r

itk
n = The number of attributes that are accessed k

fragments and fragments associated with the

transaction of t

itk
R = The number of relevant attributes in fragment k

accessed and related with fragment I by

transaction t

Comparison Process of BEA and GBVP

In this research, the author proposed a procedure

completion that will be done as the main purpose of this

research. The process below is an example of vertical

fragmentation process in a certain case:

A = (ICD, patient_name, address, gender,

date_of_birth) are the attributes of the patient

table and a query used is:

q1 = Select ICD, address from Patient

q2 = Select ICD, from Patient where date_of_birth =

value

q3 = Select ICD, patient_name from Patient where

gender = value

q4 = Select gender, address from Patient where

date_of_birth = value

where, A1 = ICD, A2 = Patient_name, A3 = Address,

A4 = Gender, A5 = Date_of_birth.

A matrix of the use of the attributes from attributes

and query above is.

Next is calculating the frequency of each query on

the entire web.

Next is building an affinity matrix resulted from

multiplication of matrix of the use of the attributes with

matrix of attributes and query access.

Approach with BEA

After forming affinity matrix, next is creating a cluster

matrix from several attributes using split function.

The BEA uses affinity matrix as inputs to form a

clustered affinity matrix. The contribution is calculated

by randomly selecting two columns in the affinity matrix.

A sorting result from the process produces the maximum

value contribution which is [A3, A1, A5, A4, A2].

The next step is calculating the number of the

accesses of each existing fragment by calculating the

quality split value in each fragment:

1. Split at: [A1, A2, A3, A5] | [A4]

Access fragment1 = 51

Access fragment2 = 0

Aksesfragment1 and fragment2 = 31

Split quality = (51×0) − (〖31〗^2) = −961

2. When fragmentation is done at: [A1, A2, A5] |
[A4, A3]

Access fragment1 = 29

Access fragment2 = 0

Accessfragment1 and fragment2 = 53

Split quality = (29×0)-(〖53〗 ^ 2) = -2809

3. When fragmentation is done at: [A1, A5] | [A3,
A4, A2]

Access fragment1 = 0

Access fragment2 = 0

Accessfragment1 and fragment2 = 82

Split quality = (0×0)−(〖82〗 ^ 2) = −6724

4. When fragmentation is done at: [A1] | [A2, A3,
A4, A5]

Access fragment1 = 0

Access fragment2 = 11

Accessfragment1 and fragment2 = 71

Split quality = (0×11)−〖71〗 ^ 2 = −5041

5. When fragmentation is done at: [A1, A3, A4, A5]
| [A2]

Access fragment1 = 62

Access fragment2 = 0

Accessfragment1 and fragment2 = 20

Split quality = (32×0)−〖20〗 ^ 2 = −400

Based on the results, it can be concluded that the

fragmentation with the maximum quality split is sq = − 400

on the fragmentation done at [A1, A3, A4, A5] | [A2].

Approach With GBVP

GBVP algorithm uses the same affinity matrix with

previous that generated by BEA as describe in Table 3.

The graph affinity is made by removing value 0 in the

affinity matrix. The graph can be seen in Fig. 1 where

this process is conducting by starting from the node 1

(step 2) and follow by selecting the edge1-5 (step 3) and

choosing the edge 5-3 edge as the next edge and forming

a candidate to be partitioned (step 4). Note that the node

1 is a node cycle.

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

470

Fig. 1: Graph of affinity

Fig. 2: Results fragmentation GBVP Algorithm, starting from

node 1

The process is continued by selecting the edge 3-1,

(check step 3), so the cycle of 1, 3, 5 is considered as a
partition for the edge 1-2 and 2-4 are not eligible contained
in step 4.2 and 5.1. Both of the edges cannot forming a
cycle and the existence of a partition candidate and cycle
node appear on the graph. The results of the process of the
algorithm above are shown in Fig. 2 that the GBVP
algorithm produces two affinity cycles separated by edge 1,
2 and two fragments which are (1, 3, 5) and (2, 4).
Two fragments which are (1, 3, 4, 5) and (2) are resulted

from BEA and two fragments which are (1, 3, 5) and (2, 4)
are resulted from GBVP algorithm. Partition Evaluator (PE)
is use to compare and evaluate the resulted fragments from
these algorithms. The inputs used in the process of PE are
attribute accessing matrix (Table 1).

PE Calculations (Using BEA Algorithm)

1) Calculate Irrelevant local attribute access cost:

()(){ ()()

()() ()()}

()(){ }

2 2 2

2 2

2

1 2 1 2 / 4 1 2 1 2 / 4

1 2 1 2 / 4 1 3 1 3 / 4

1 1 1 1 /1

3,75 0

3,75 0

M
E = ∗ ∗ − + ∗ ∗ −

+ ∗ ∗ − + ∗ ∗ −

+ ∗ ∗ −

= +

= +

2) Calculate relevant remote attribute access cost:

Value Value Minimum

Q1 on fragment 1 1
2
0(0/1) = 0

Q1 on fragment 2 0
2
2(2/4) = 0; (0)

Q2 on fragment 1 1
2
0(0/1) = 0

tQ2 on fragment 2 0
2
2(2/4) = 0; (0)

Q3 on fragment 1 1
2
1(1/1) = 1

Q3 on fragment 2 1
2
2(2/4) = 1; (1)

Q4 on fragment 1 1
2
0(0/1) = 0

Q4 on fragment 2 0
2
3(3/4) = 0; (0)

2

R
E = 0 + 0 +1 + 0 = 1

So, 2 2

M R
PE E E= + = 3,75 + 1 = 4,75

PE Calculations (Using GBVP Algorithm)

1) Calculate Irrelevant local attribute access cost

()(){ ()()

()() ()()}

()() ()(){ }
() ()

2 2 2

2 2

2 2

1 2 1 2 / 3 1 2 1 2 / 3

1 1 1 1 / 3 1 2 1 2 / 3

1 2 1 2 / 2 1 2 1 1 / 2

0,667 0,667 0,667 0 0,5

3,168

M
E = ∗ ∗ − + ∗ ∗ −

+ ∗ ∗ − + ∗ ∗ −

+ ∗ ∗ − + ∗ ∗ −

+ + + + +

=

2) Calculate relevant remote attribute access cost:

Value Value Minimum

Q1 On fragment 1 1
2
0(0/2) = 0

Q1 On fragment 2 0
2
2(2/3) = 0; (0)

Q2 On fragment 1 1

2
0(0/2) = 0

Q2 On fragment 2 0
2
2(2/3) = 0; (0)

Q3 On fragment 1 1

2
2(2/2) = 2

Q3 On fragment 2 1
2
1(1/3) = 1/3 = 0,33;(0,33)

Q4 On fragment 1 1

2
1(1/2) = 1/2 = 0,5

Q4 On fragment 2 1
2
* 2*(2/3) = 4/3 = 1,3; (0,5)

2

R
E = 0 + 0 + 0,33 + 0,5 = 0,83

So, 2 2

M R
PE E E= + = 3,168 + 0,83 = 3,998

Complexity Analysis

A good algorithm is an efficient algorithm, the
efficiency of the algorithm is measured by the amount of
time and memory space needed to run the algorithm. An
efficient algorithm is an algorithm that minimizes time
and space requirements. The algorithm can be said to be
good or efficient is it requires formal criteria used to
assess the algorithm that is with its complexity.

1

2 5

4 3

29

20
22

20

20 20

11

11

4 20

2

20

1

22

3 11

5

29

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

471

There are two kinds of algorithm complexity, namely
the complexity of time and space. The time complexity
of the algorithm is to measure the number of
computations performed by a computer when solving a
problem using an algorithm. The size in question refers to
the number of calculation steps and processing time of the
processing. The time complexity of the algorithm contains
the number expressions and the number of steps required
as a function of the size of the problem. The complexity of
space relates to the system memory required in program
execution. Table 1 shows the algorithmic group based on
the time complexity asymptotically.
The time and space requirements of an algorithm

depend on the size of the input, typically the amount of
data being processed. The size of the input is symbolized
by n. After setting the input size, the next step in
measuring the time complexity is to calculate the number
of operations performed by the algorithm so that the
notation of the time complexity in function n is f(n).

Implementation and Comparison

In order to establish affinity matrix, there are several
steps that must be completed, in the vertical
fragmentation of activities. In the process of vertical
fragmentation, we do a comparison results using 10
tables in the DBD health database (Dummy Data), using
70 queries to fragmentation table vertically. The
measures that we use in executing the research outline is
as follows: In the method of BEA, the first step is the
formation of affinity matrix by classifying attributes
based on the affinity (AA). The next perform matrix
multiplication using Attributes (AU) with a matrix of
Query Access (QA) thus that the contribution of each
attribute value obtained to get a Split tilapia Quality
(SQ) as a determinant of the result of fragmentation. To
evaluate the value of the access cost, then after the
obtained values of table fragmentation results from both
methods, the next step is to compare the values of these
fragments, by calculating the Partition Evaluator (PE).

From the utilization of the above two algorithms,

generate some fragments of the BEA and GBVP

algorithms. Furthermore, using Partition Evaluator (PE)

results from both fragments the algorithm will compare

and evaluate. The input used in this process is the PE

matrix that can accesses the attributes.

PE Calculation (Using BEA and GBVP)

After using the BEA and GBVP methods, then
calculate the cost to access the data from the calculation
table with the proposed method. The results of
fragmentation of the calculation table using BEA and
GBVP methods in the table below:
The table above shows the result of the

fragmentation of each table that uses GBVP and BEA
algorithms. The results of the two algorithms above
fragmentation display different results due to the
fragmentation of the rules already established on the
algorithm used. Results fragmentation by each of the
methods will be tested by calculating the cost of data
access using Partition Evaluator.

Access Cost

The results of the calculation of the cost of access to

data by using Partition Evaluator (PE) show differences

Partition Evaluator value of both BEA and GBVP

algorithms which are shown in the table.
From the results of the experiments conducted,

indicating that the GBVP algorithm produces a better
fragmentation rather than BEA algorithms that can be
seen from the partition Evaluators (PE) resulted from the
total cost of access for relevant attributes and attribute
minimal access cost is irrelevant. Where the greater
value of Partition Evaluator (PE) produced which
partition or fragmentation is better.

Comparison between BEA and GBVP

The results of the proposed algorithm show the
comparison of query execution time on tables
fragmented by using BE and GBVP algorithms.
Execution time comparison results obtained from the
implementation of the results table fragmentation
generated by both algorithms when design of ProSIARS
Distributed Databases. Comparison of the execution time
is shown in the figure below.

Fig. 3: Comparison graph algorithm execution time BEA and GBVP

0.1

0.08

0.06

0.04

0.02

0

T
a
b
le

 1

T
a
b
le

 2

T
a
b
le

 3

T
a
b
le

 4

T
a
b
le

 5

T
a
b
le

 6

T
a
b
le

 7

T
a
b
le

 8

T
a
b
le

 9

T
a
b
le

 1
0

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

472

Figure 3. shows the difference in access time of the
query (execution) of the experiment using the BEA
algorithm and the GBVP algorithm. Figure 3 shows that
6 of the 10 Tables (fragmented using the BEA
algorithm) have a higher execution time than the GBVP
algorithm (Tables 1, 2, 3, 5, 7 and 10). The graph also
shows 3 tables having the same execution time (Tables
6, 8 and 9). While Table 4 is the only one fragmentation
with BEA algorithm which has lower execution time
compared to GBVP algorithm. For Table 10 and 11 are
comparison of the space complexity of BEA and GBVP.
There are the difference space of complexity are BEA
and GBVP that is in the number of iterations (i) and
space of complexcity O(I*k*m*n).

Table 1: The use of any attribute matrix

 A1 A2 A3 A4 A5
q1 1 0 1 0 0
q2 1 0 0 0 1
q3 1 1 0 1 0
q4 0 0 1 1 1

Table 2: Matrix of query access on every site
 Site1 Site2 Site3 Amount
q1 10 7 5 22
q2 20 9 0 29
q3 3 12 5 20
q4 0 5 6 11

Table 3: Affinity matrix
 A1 A2 A3 A4 A5
A1 71 20 22 20 29
A2 20 20 0 20 0
A3 22 0 33 11 11
A4 20 20 11 31 11
A5 29 0 11 11 40

Table 4: Cluster affinity matrix

 A3 A1 A5 A4 A2

A3 33 22 11 11 0

A1 22 71 29 20 20

A5 11 29 40 11 0

A4 11 20 11 31 20

A2 0 20 0 20 20

Table 5: Query access matrix BEA

A1 A3 A4 A5 A2

1 1 0 0 0

1 0 0 1 0

1 0 1 0 1

0 1 1 1 0

Fragment 1 Fragment 2

Table 6: Query access matrix GBVP

A1 A3 A5 A2 A4

1 1 0 0 0

1 0 1 0 0

1 0 0 1 1

0 1 1 0 1

Fragment 1 Fragment 2

Table 7: Algorithmic group

Algorithm group Name

O(1) Constant
O(log n) Logarithmic
O(n) Linear
O(n log n) n log n
O(n2) Quadratic
O(n3) Cubic
O(2n) Exponential
O(n!) Factorial

Table 8: Result of fragmentation

 Fragmentation results table
 --
Tables BEA Method GBVP Method

ms_pasien [A2 A3 A1 A4] | [A5] [A1 A2 A3] | [A4 A5]
tb_tindakan [A3 A1 A5 A7 A2 A6] | [A4] [A1 A2 A5 A6] | [A7 A3 A4]
tb_rekam_medis [A9 A10 A6 A4 A3 A2 A1 A5 A7] | [A8] [A1 A2 A3 A4] | [A6 A5 A8 A7 A9] | [A10]
ms_paramedis [A6 A4 A2 A1 A3 A5] | [A7] [A1 A2 A3] | [A6 A7] | [A4 A5]
ms_wilayah [A3 A2 A4] | [A5 A1] [A1 A2 A5] | [A3 A4]
ms_unit_surveilans [A3 A2 A1] | [A4] [A1 A2 A3] | [A4]
tb_resume [A4 A5] | [A1 A2 A3] [A1 A2 A3] | [A4 A5]
tb_rujukan [A3 A2 A1] | [A4] [A1 A2 A3] | [A4]
tb_kejadian [A3 A5 A4 A2 A6 A7 A1] | [A8] [A5 A2 A4] | [A6 A7 A8] | [A1] | [A3]
tb_kelas [A4 A1 A3 A2] | [A5] [A1 A2 A3] | [A4 A5]

Table 9: Partition evaluator value

 Value partition evaluator
 --
Tables BEA GBVP

ms_pasien 4,75 4,98
tb_tindakan 7,41 10,41
tb_rekam_medis 17,85 17,95
ms_paramedis 10,98 8,34
ms_wilayah 3,49 4,64
ms_unit_surveilans 4,34 4,34
tb_resume 5,32 5,32
tb_rujukan 3,72 3,72
tb_kejadian 15,28 10,3
tb_kelas 12,5 14,07

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

473

Table 10: Space complexity of BEA

 Number of Number of Number of Space complexity

Tables name points (m) attributes (n) iterations (i) O(I*k*m*n)

ms_pasien 60 5 10 3.000

tb_tindakan 30 7 21 4.410

tb_rekam_medis 63 10 44 27.720

ms_paramedis 51 7 21 7.497

ms_wilayah 19 5 10 9.500

ms_unit_surveilans 41 4 6 744.000

tb_resume 88 5 10 4.400

tb_rujukan 58 4 6 1.392

tb_kejadian 27 8 28 6.048

tb_kelas 9 5 10 450.000

Average Space Complexity with 10 tables relation 74 queries 5.661

Table 11: Space complexity of GBVP

 Number of Number of Number of Space complexity

Tables name points (m) attributes (n) iterations (i) O(I*k*m*n)

ms_pasien 60 5 6 1.800

tb_tindakan 30 7 8 1.680

tb_rekam_medis 63 10 11 6.930

ms_paramedis 51 7 8 2.856

ms_wilayah 19 5 10 950.000

ms_unit_surveilans 41 4 5 820.000

tb_resume 88 5 6 2.640

tb_rujukan 58 4 5 1.160

tb_kejadian 27 8 9 1.944

Tb_kelas 9 5 6 270.000

Average Space Complexity with 10 tables relation 74 queries 2.105

Time Complexity Reduction

The result of time complexity analysis of BEA and

GBPV algorithm can be proved as follows:

1. Step 1 (initialization) of the Prim algorithm takes

at most n operations. So the complexity of this
step is O(n)

2. Step 2, is an iteration step, requires at most n-1
testing (since one node is selected in step 2), so the
complexity of this step is O(n)

3. Step 3 run exactly n times. Each time you perform
step 3, define the edge with the smallest weights of
the unassigned node set (F) to the set of connected
nodes (T), with at most n operations. So this step 3
has a complexity of O(n)

After the node in the most recent T set is marked,

it is necessary to update the node list in the set F. For

each node in the set F, there is a comparison of the

weights of the smallest side of the node in the set F to

the node of the set T, to determine the side with the

smallest weights connected any node in the set F to

any node in the set T. The partition renewal process is

in O(n) operation, none of this part 3 requires more

than O(n) operation, then the complexity of step 3 is

O(n), remember that O(n) + O(n) = O(n). Since step 3

is implemented n times, then the operations performed

is (n)(O(n)) = O(n
2
). So the complexity of all

iteration steps (step 2 and step 3) is O(n) + O(n
2
) =

O(n
2
 + n) = O(n

2
). From calculating the complexity of

each of the above steps, the complexity of the GBPV

algorithm is the complexity of step 1 + the complexity

of the steps of all iterations (step 2 and step 3). the

time complexity in function n is s:

() () ()

()

()

2

2

2

f n O n O n

O n n

O n

= +

= +

=

So it can be concluded that GBVP time complexity

is quadratic.
Then the time required is nothing more than

()
1

1
1

n

I
d c b a n

−

=

+  + + +  ∑ , which can be simplified into

((a/2)*n
2
+(b+c-a/2)*n+(d-b)). The function is

dominated by (a/2)*n
2
. Then according to the definition

of big-O can be written f(n) = n
2
, c = a/2 and n

0
= 0. It

can be said that the algorithm has the time complexity

in quadratic, O(n
2
).

The exponential function T(n) = 2
n+k
, where k is a

constant, is O(2
n
) because 2

n+k
is

 2

k
2

n
for all n.

Generally, T(n) = m
n+k
 is O(l

n
); l ≥ m>1, because m

n+k
 ≤

l
n+k
 = l

k
l
n
 for any constant k.

Below is a split bond energy algorithm that can be
seen in Fig. 4 where the input is an Cluster Affinity
Matrix (CAM) and the output is F Set of two Fragments.

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

474

Split of Bond Energy Algorithm

Input : Cluster Affinity Matrix (CAM)

Output: F Set of two Fragments

 Begin

 {Initialization of variables}

 X[1,1..N];

 Y[1,1..Y];

1. {Ditermine Split Point}

For I = 1 to n do

2. If (i == 1) then

3. Y[1,i] = CAM(1,i);

4. Else

5. Y[1,i] = CAM(1,i)-CAM(1,i−1);

6. End-If

7. X[1,i] = i;

8. End-For

9. Plot(X,Y);

10. Smallest = Y[1,1];

11. Split-Point = 1;

12. For i = 2 to n

13. If (Smallest< Y[1, i] then

14. Split-point is recorded as X[1, i]

15. Smallest = Y[1, i]

16. End-If

17. End-For

18. End-Begin

() ()
1

1
1

n

I
T n d c b a n

−

=

= +  + + −  ∑

Fig. 4: Split of Bond Energy Algorithm (BEA).

Space Complexity Reduction

The space requirements for BEA are modest because

only the data points and centroids are stored.

Specifically, the storage required is:

()()O m k n+

where, m is the number of points and n is the number
of attributes. The time equirements for BEA are also
modest-basically linear in the number of data points.
In particular, the time required is:

()O I k m n∗ ∗ ∗

where, I is the number of iterations required for

convergence, as mentioned I is often small and can

usually be safely bound as most changes typically occur

in the first few iterations which can be seen in Fig. 5

split of GBVP algorithm. Therefore BEA is linear in m,

the number of points and is efficient as well as simple

provided that K, the number of cluster is significantly

less than m (Rahimi and Riahi, 2015).

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

475

Split of GBVP

Input : Fj, Q1,Q2…QM

Output : Rec-IDj

Cluster-NOj [1:N/K]

 Begin
 {Initialzation steps}

1. For each Fj do in parallel

2. For p = 1 to N/K do

3. Read Fj (p);

4. Cluster -NOj [p] = 0;

5. REC-IDj [p] = (j-i) * N/K + p;

6. For i = 1 to M do

7. If Fj [p] satisfies Qi then

8. Cluster – NOj [p] = Cluster – NOj [p] +2 M-I

9. End-If

10. End-For

11. End-For

T(n) = 2nxk

Fig. 5: Split of GBVP algorithm

Conclusion

The purpose of conducting this study is to know

the impact on the response time while moving from

centralized to distributed databases with BEA and

GBVP Algorithms.

Experiments fragmentation vertically done using

BEA and GBVP algorithms at 10 tables by using a total

of 74 queries and input an affinity matrix resulted in the

fragmentation of the different tables. Based on the results

of trials that have been done show that GBVP algorithm

is an algorithm that is more optimal for use in the

process of fragmentation of the table vertically. The

statement was supported by the results of the analysis of

algorithms GBVP who have less computational

complexity and generate value Partition Evaluator higher

and has a query execution time is lower compared with

the results of fragmentation using BEA algorithm.

Distributed databases have many aspects and every

organization has certain preferences. For the public

health DBD (Dummy Data), the response time is

prioritized. Our experiment showed that the average

response time is decreased if we switch from centralized

database to distributed database. In distribution, we put

the data to the site where it is used most frequently. This

locality of data reduces the response time. In the

distributed database, data is fragmented. These

fragments are short compared to the full database

(centralized database contains maximum columns).

However, when we need data from multiple sites for a

query (report queries), the response time is increased.

Accessing data from multiple remote sites and then

joining those takes a long time. But in the centralized

database, since data is at one place so, it is easy and fast

to search it. The purpose of conducting this study is to

know the impact on the response time while moving

from centralized to distributed databases using vertical

fragmentation. Experiment results showed that the

response time is decreased in distributed databases. Due

to fragmentation dataset for the single site contains fewer

records than the centralized database, therefore the

response time is less. In algorithm performance (time

and space complexity) GBVP algorithm has better space

complexity than BEA (50% better). For Time

complexity the BEA algorithm has a group of quadratic

functions of O(n
2
). The GBVP algorithm has an

exponential algorithm group O(n
2
).

Acknowledgement

This research was provided by the Research and
Technology Ministry of Higher Education, sponsored
under a grant budget of private colleges compete
coordinator VI Central Java, Indonesia.

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2018, 14 (4): 466.476
DOI: 10.3844/jcssp.2018.466.476

476

Funding Information

All funding for conducting this research comes from
the research grant scheme of the ministry of research and
higher education of the Republic of Indonesia.

Author’s Contributions

Slamet Sudaryanto Nurhendratno: Designed and
analysed data, performed experiments and co-wrote
the paper.

Sudaryanto: Performed experiments BEA and
GBVP, simulation and evaluation.

Maryani Setyowati: Designed experiments and
work supervision.

Ethics

 This article is the original contribution of the authors
and is not published elsewhere. There is no ethical issue
involved in this article.

References

Abdalla, H. and A. Amer, 2012. Dynamic horizontal
fragmentation, replication and allocation model in
DDBSs. Proceedings of the International Conference
on Information Technology and e-Services, Mar. 24-26,
IEEE Xplore Press, Sousse, Tunisia, pp: 1-7.

 DOI: 10.1109/ICITeS.2012.6216603
Al-Sayyed, R., F. Al Zaghoul, D. Suleiman, M. Itriq and

I. Hababeh, 2014. A new approach for database
fragmentation and allocation to improve the distributed
database management system performance. J. Softw.
Eng. Applic., 7: 891-905.

 DOI: 10.4236 / jsea.2014.711080
Bhaskar, R. and R. Sharma, 2012. An analysis of

vertical splitting algorithm. Int. J. Comput. Applic.,
52: 30-36. DOI: 10.5120/8304-1767

Cornell, D.W. and P.S. Yu, 1990. A vertical partitioning
algorithm for relational database. Proceedings of the
International Conference on Data Engineering,
(CDE’ 90), Los Angeles, California, pp: 30-35.

Fung, C., K., Karlapalem and Q. Li, 2002. An evaluation
of vertical class partitioning for query processing in
object-oriented databases. IEEE Trans. Knowl.
Data Eng., 14: 1095-1118.

 DOI: 10.1109/TKDE.2002.1033777

Hoffer, J.A and D.G. Severance, 1975. The use of cluster

analysis in physical database design. Proceedings of

the 1st International Conference on Very Large

Database, (VLD’ 75), pp: 69-86.

Lisbeth, R. and X. Li, 2011. A vertical partitioning

algorithm for distributed multimedia databases.

Proceedings of the International Conference on

Database and Expert Systems Applications, (ESA’ 11),

Springer, Berlin, Heidelberg, pp: 544-558.

 DOI : 10.1007 / 978364223 091248

Navate, S.B., S. Ceri, G. Wiederhold and J. Dour, 1984.

Vertical partitioning algorithms for database design.

ACM Trans. Database Syst., 9: 680-710.

 DOI: 10.1145/1994.2209

Nurhendratno, S.S. and F. Budiman, 2017. Design model

integration and syncronization between surveillance

units to support data warehouse epidemiology. J.

Theoretical Applied Informa. Technol., 95: 498-505.

Rahimi, H. and D. Riahi, 2015. Hierarchical

simultaneous vertical fragmentation and allocation

using modified Bond Energy Algorithm in

distributed databases. Applied Comput. Informat.

Saudi Comput. Society, King Saud Uni.

 DOI: 10.1016/j.aci.2015.03.001

Rahimi, S.K. and F.S. Haug, 2010. Query Optimization.

In: Distributed Database Management Systems: A

Practical Approach, Rahimi, S.K. and F.S. Haug

(Eds.), John Wiley and Sons, Inc., NJ. Hoboken,

USA., ISBN-10: 0470602368.

Rodríguez, L. and X. Li, 2011. A support-based vertical

partitioning method for database design.

Proceedigns of the 8th International Conference on

Electrical Engineering Computing Science and

Automatic Control, Oct. 26-28, IEEE Xplore Press,

Mexico, pp: 1-6. DOI: 10.1109/ICEEE.2011.6106682

Runeeanu, R., 2008. Fragmentation in Distributed

Databases. In: Innovations and Advanced

Techniques in System, Computing Science and

Software Engineering, Elleithy, K. (Ed.), Springer

Science, Business Media B.V,

 ISBN-10: 9781402052620, pp: 57-62.

