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Abstract: Query optimization is an important task in a client/server 

environment of a distributed database, whereas a health epidemiologist data 

distribution based on DBD data on Geographic Information Systems (GIS). 

A proper method for a particular query process function is needed to 

generate query optimization on a distributed database. The query process 

requires important attention especially in distributed databases because the 

result of a cost-based query process is accessed by involving a number of 

attributes and visited sites. A query operation typically will search for data 

from various attributes in a scattered database table, although the processes 

do not require all table attributes. Query optimization requires minimum 

query operating costs (communication costs and access fees). The query 

cost can be optimized by separating attributes that are not required by the 

query. This can reduce the amount of communication and access time. The 

attributes should not be divided indiscriminately to obtain the best result of 

the query process and a vertical fragmentation method can be used to 

perform such attribute separation. In this research, attributes separation 

using vertical fragmentation method for a database health table is studied 

by comparing Bond Energy Algorithm (BEA) and Graphic Based Vertical 

Partitioning (GBVP) algorithm. The initial result of vertical fragmentation 

in both algorithms is the determination of types of attributes separated from 

a number of specific query process. The result of the separation of 

attributes from each algorithm is compared and evaluated using Partitioned 

Evaluator (PE) in order to achieve the access cost of several attributes. The 

results show that GBVP algorithm is more optimal for use in vertical table 

fragmentation process applied as query operation on distributed DBD 

database in a health field. The GBVP algorithm has less computational 

complexity, results a higher partition evaluator value and has lower query 

execution time than BEA. 

 

Keywords: Query Distribution Process, Vertical Fragmentation, 

Optimization, BEA, GBVP, PE 

 

Introduction  

An increase of a large and complex database can 

decrease the performance and cost overruns of data 

access information system. Performance reduction and 

cost overruns occur due to function query accesses data 

retrieval from various attributes contained in a database 

table in which not all the attributes in the table are 

required. A distributed database can be implemented to 

improve the performance and reduce the cost of data 

access on a database. The process of designing a 

Distributed Databases is complex, so a data 

fragmentation (partitioning) scheme was used to 

facilitate a design process of a Distributed Databases 

(Al-Sayyed et al., 2014). 
Fragmentation is a process of division or mapping of 

tables based on the columns and rows of data into the 
smallest unit of data. Data fragmentation is a process of 
division or mapping of a database where it is broken 
down by columns and rows stored in a computer site or a 
different unit in a data network, allowing for decisions to 
divided data (Abdalla and Amer, 2012). Data 
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fragmentation can be accomplished in several ways, 
including horizontal and vertical fragmentation. 
Horizontal fragmentation consists of a global fragment 
tuple subdivided or partitioned into several sub-sets. A 
blocking for this type is very useful in a distributed 
database, where each sub-sets can contain data that 
generally have a property. Vertical fragmentation 
subdivides the attributes of an available global fragment 
into several groups or subclass (Bhaskar and Sharma, 
2012). The simplest form of vertical fragmentation is 
decomposition, where a row of unique-id can be 
included in each fragment to ensure and enable the 
reconstruction process through join operations. This 
fragmentation divides data into multiple tables which 
form interrelated attributes. This study was limited to 
test vertical fragmentation efficiency with Bond Energy 
Algorithm (BEA) and Graph-Based Vertical Partitioning 
(GBVP) algorithm. The main purpose of fragmentation 
is to minimize the number of access-related and share a 
relationship based on the efficiency of queries that are 
most frequently accessed (Al-Sayyed et al., 2014). To 
make the process of vertical fragmentation in the 
database to be tested, is based on the calculation of the 
algorithm Bond Energy (BEA) and the algorithm Graph-
Based Vertical Partitioning (Rahimi and Riahi, 2015). 
BEA is an algorithm used for a vertical fragmentation 

process. Information given about the use of attributes 
with initial transaction is converted into a square matrix 
referred to as the attribute affinity matrix which then is 
diagonalized by a cluster algorithm as the basis for 
calculating the bond energy algorithm.  GBVP algorithm 
has less complexity in computing and produces meaning 
fragments with graphs. The affinity matrix is transformed 
into an affinity graph in order to partition the fragment 
based on defined rules and steps (Fung et al., 2002).  
A vertical fragmentation design is initialized by 

building an Attribute Affinity matrix (AA). This matrix 
is used as the input generated from a multiplication of an 

attribute usage matrix with attribute query access matrix. 
The affinity matrix is then calculated using BEA to 
generate a clustered affinity matrix (Hoffer and Severance, 
1975). The clustered affinity matrix determines attributes 
fragmentation. The calculation in GBVP algorithm has the 
same initial steps with BEA which is to perform an 

affinity matrix as the input. The matrix is then 
converted into a graph and the table is fragmented 
following the GBVP algorithm rules. Further, the rules 
for candidates identify a fragmentation of forming a 
cycle. The cycle can be extended to improve a decision 
fragmentation. The process runs until reaching at the 

end of a node. The results of the fragmentation of these 
algorithms are compared and evaluated using Partition 
Evaluators (PE) to determine which algorithm has 
performance that is more optimal. 
In this research, an optimization of queries vertically 

generated on a fragmented table relationship using 

GBVP algorithm and BEA is analyzed and compared, 

where the implementation of BEA has been previously 

studied on a database in medical records management 

information system (Nurhendratno and Budiman, 2017). 

Related Research  

A clustering method based on vertical fragmentation 

to increase the system performance has become trend in 

a distributed database study, especially in determining 

the cost of query access. An implementation of vertical 

fragmentation by performing attributes clustering in a 

process of fragmentation in a distributed database was 

proposed by Rahimi and Haug (2010). 

The method comprises two main algorithms. The first 

algorithm is used to place a set of data by simultaneously 

allocating the relevant elements and separating irrelevant 

elements. The second algorithm is used to cluster in 

which groups are created to determine a point to make 

pieces of a dataset. The main part of making vertical 

fragmentation in a distributed database is to find groups 

which contain relevant attributes in a relation table based 

on the affinity matrix value. 

Affinity matrix contains a number of attributes with 

other attributes (the number of simultaneously accessing 

two attributes). The iteration in this algorithm is used 

and based on the grouping matrix n × n affinity matrix 

that will be used as the basic matrix in table 

fragmentation process that will be done (Rodríguez and 

Li, 2011). Initialization is conducted by downloading 

one column and placing it in the first column of the 

output matrix. Iteration step i n-i have a column on the 

left at the position i + 1 which allows the output matrix 

that will generate the greatest contribution to the 

calculation affinity calculations. Row ordering, at this 

step, the lines will be set the same as the column setting. 

Contributions from Ak column, which is placed between 

Ai and Aj. The next step is to calculate the number of 

accesses performed on each fragment is formed, then 

calculate the value maximize split quality (sq) of each 

fragment. The research has proven attributes in the 

cluster system will have a direct impact on the cost 

savings of storage and access costs. The study carried 

out by Hoffer and Severance (1975) can find a 

combination linearly with the cost of storage, retrieval 

and update the capacity restrictions for each file. 

The fragments are separated into two-stage approach 

which are overlapping and non-overlapping fragments 

(Navate et al., 1984). The first stage is based on the 

empirical objective function and performs cost 

optimization by combining knowledge of the specific 

application environment in the second phase. Cornell and 

Yu (1990) proposed a model in a vertical partition 

problem as a programming problem of round number with 

the aim to minimize the number of disk accesses. This 

model uses certain physical factors related to the object 

files (attributes, length, selectivity and cardinality). 
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GBVP algorithm and BEA is analyzed and compared 

using the same affinity matrix, where the implementation 

of BEA has previously been studied on a database in 

medical records management information system by 

Nurhendratno and Budiman (2017), in which graph 

affinity was created by removing the existing value of 0 

in the affinity matrix. 

Analysis Comparison of Vertical 

Fragmentation 

Bond Energy Algorithm  

Bond Energy Algorithm (BEA) proposed by Hoffer, 

Severande and McCormick is an algorithm that can be 

used for vertical fragmentation process in a distributed 

database (Runeeanu, 2008). BEA Algorithm is divided 

into two steps, the first step is used to put a group of 

related data by allocating data elements simultaneously 

(elements who have no connection separated) and the 

second step can be used to form a group that is in charge 

of determining the point of a set of data (create cluster). 

The important thing in creating a vertical fragmentation 

in a distributed database is finding attributes which have 

been clustered in a relational table based on the affinity 

value in matrix of an attribute.  
Affinity matrix is a matrix containing number of 

attributes which are mutually bound (number of access 
of two simultaneous attributes). BEA uses affinity matrix 
as an input to form clustered affinity matrix. Split 
function produces a clustered affinity matrix in the 
following steps: Initialization: Select and place one at 
random columns of the matrix into the matrix Clustered 
Affinity. The iteration step i: Place a column n-i at position i 
+ 1 in the matrix Clustered Affinity. Rules contributions 
columns are illustrated in the following formula: 
 

( ) ( ) ( ) ( ), , , , ,Count Ai Ak Aj bond Ai Ak bond Ak Aj bond Ai Aj= + −  

 

Graph-Based Vertical Partitioned Algorithm 

Graph-Based Vertical Partitioning (GBVP) is 
different with the BEA. GBVP has a less computational 
complexity and produces fragments that have meaning 
by using a graph method. The input for GBVP algorithm 
is an affinity matrix considered a complete graph known 
as affinity graph where an edge value represents affinity 
between two attributes. A linearly connected spanning tree 
is then formed. This algorithm produces all fragments that 
have meaning in one iteration (Cornell and Yu, 1990). 
The steps of the algorithm in generating vertical 
fragments with affinity graph are: 
 

1. Build an affinity graph from object attributes. Note 

that the matrix affinity is a sufficient data structure 

to represent the graph. No additional physical data 

storage is required 

2. It can be started from any node 

3. Select the edge that completes the conditions below: 

• It must be connected to the binary tree that is 

already established 

• It must have the greatest value among all 

existing edge selection 

• The iteration will end when all the nodes have 

already been used 

4. If the next selected edge forms a primitive cycle: 

• If there is no node cycle, check all possibility 

cycles and if there is a possibility, mark the 

cycle as the affinity cycle. Return to step 3 

• If the there is an existing node cycle, remove 

the edge and continue to step 3 

5. If the next selected edge does not form a cycle and 

there is a partition candidate, then: 

• If no former edge is found (selected edge is in 

between the last piece and a node cycle), check 

a possibility of a cycle extension of the new 

edge. If there is no possibility found, cut the edge 

and the cycle will be a partition. Return to step 3 

• If a former edge is found, change the cycle node 

and check the possibility of a cycle extension 

by the former edge. If there is no possibility 

found, cut the former edge and the cycle will be 

a partition. Return to step 3 
 

Partition Evaluator 

Partition Evaluator (PE) is a function to compare and 
evaluate different algorithms, using the same input on 
the process of designing a database. In the process of PE, 
the input used is an accessing attributes matrix followed 

by designing an Evaluator used to evaluate in finding the 
better partition or fragmentation (Lisbeth and Li, 2011). 
There are two common terms in PE which are 
"irrelevant local attribute access cost" and "relevant 
attribute remote access cost".  

Irrelevant local attribute access costs measures the 

cost of the transaction process which due to irrelevant 
attributes and assumes that all needed data fragments by a 
transaction are locally available. Irrelevant local attribute 
access cost is described by the following formula: 
 

2 2

1 1
1

M M itk

M t itk ri t

itk

R
E q R

n= =

  
= ∗ ∗ − 

  
∑ ∑  

 

where, 
itk

R  is the number of attributes that are relevant 

in a fragment. While the relevant remote attribute access 

cost measures a remote processing costs caused by the 

relevant attributes of accessed data fragments. 

Relevant remote attribute access cost illustrated by 

the equation formula: 
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2 2

1 1
min

T M itk

R t itk rt i

itk

R
E q R

n= =

  
= ∗ ∗ 

  
∑ ∑  

 

where, 
itk

R  is the number of attributes that are relevant 

in another fragments. While the function of PE is: 

 
2 2

M R
PE E E= +  

 

The definition and notation used in the PE functions are: 

 

T  = The number of transactions that are below the 

consideration 

Qt = Transaction frequency t, for t = 1, 2, ... T 

M = The number of fragments of a partition 
r

itk
n  = The number of attributes that are accessed k 

fragments and fragments associated with the  

transaction of t 

itk
R  =  The number of relevant attributes in fragment k 

accessed and related with fragment I by 

transaction t 

 

Comparison Process of BEA and GBVP 

In this research, the author proposed a procedure 

completion that will be done as the main purpose of this 

research. The process below is an example of vertical 

fragmentation process in a certain case: 

 

A = (ICD, patient_name, address, gender, 

date_of_birth) are the attributes of the patient 

table and a query used is: 

q1 = Select ICD, address from Patient 

q2 = Select ICD, from Patient where date_of_birth = 

value 

q3 = Select ICD, patient_name from Patient where 

gender  = value 

q4 = Select gender, address from Patient where 

date_of_birth = value 

 

where, A1 = ICD, A2 = Patient_name, A3 = Address, 

A4 = Gender, A5 = Date_of_birth. 

A matrix of the use of the attributes from attributes 

and query above is. 

Next is calculating the frequency of each query on 

the entire web. 

Next is building an affinity matrix resulted from 

multiplication of matrix of the use of the attributes with 

matrix of attributes and query access. 

Approach with BEA 

After forming affinity matrix, next is creating a cluster 

matrix from several attributes using split function. 

The BEA uses affinity matrix as inputs to form a 

clustered affinity matrix. The contribution is calculated 

by randomly selecting two columns in the affinity matrix. 

A sorting result from the process produces the maximum 

value contribution which is [A3, A1, A5, A4, A2]. 

The next step is calculating the number of the 

accesses of each existing fragment by calculating the 

quality split value in each fragment: 

 

1. Split at: [A1, A2, A3, A5] | [A4] 

Access fragment1 = 51 

Access fragment2 = 0 

Aksesfragment1 and fragment2 = 31 

Split quality = (51×0) − (〖31〗^2) = −961 

2. When fragmentation is done at: [A1, A2, A5] | 
[A4, A3] 

Access fragment1 = 29 

Access fragment2 = 0 

Accessfragment1 and fragment2 = 53 

Split quality = (29×0)-(〖53〗 ^ 2) = -2809 

3. When fragmentation is done at: [A1, A5] | [A3, 
A4, A2] 

Access fragment1 = 0 

Access fragment2 = 0 

Accessfragment1 and fragment2 = 82 

Split quality = (0×0)−(〖82〗 ^ 2) = −6724 

4. When fragmentation is done at: [A1] | [A2, A3, 
A4, A5] 

Access fragment1 = 0 

Access fragment2 = 11 

Accessfragment1 and fragment2 = 71 

Split quality = (0×11)−〖71〗 ^ 2 = −5041 

5. When fragmentation is done at: [A1, A3, A4, A5] 
| [A2] 

Access fragment1 = 62 

Access fragment2 = 0 

Accessfragment1 and fragment2 = 20 

Split quality = (32×0)−〖20〗 ^ 2 = −400 

 

Based on the results, it can be concluded that the 

fragmentation with the maximum quality split is sq = − 400 

on the fragmentation done at [A1, A3, A4, A5] | [A2]. 

Approach With GBVP 

GBVP algorithm uses the same affinity matrix with 

previous that generated by BEA as describe in Table 3. 

The graph affinity is made by removing value 0 in the 

affinity matrix. The graph can be seen in Fig. 1 where 

this process is conducting by starting from the node 1 

(step 2) and follow by selecting the edge1-5 (step 3) and 

choosing the edge 5-3 edge as the next edge and forming 

a candidate to be partitioned (step 4). Note that the node 

1 is a node cycle.  
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Fig. 1: Graph of affinity 

 

 
 
Fig. 2: Results fragmentation GBVP Algorithm, starting from 

node 1 

 
The process is continued by selecting the edge 3-1, 

(check step 3), so the cycle of 1, 3, 5 is considered as a 
partition for the edge 1-2 and 2-4 are not eligible contained 
in step 4.2 and 5.1. Both of the edges cannot forming a 
cycle and the existence of a partition candidate and cycle 
node appear on the graph. The results of the process of the 
algorithm above are shown in Fig. 2 that the GBVP 
algorithm produces two affinity cycles separated by edge 1, 
2 and two fragments which are (1, 3, 5) and (2, 4). 
Two fragments which are (1, 3, 4, 5) and (2) are resulted 

from BEA and two fragments which are (1, 3, 5) and (2, 4) 
are resulted from GBVP algorithm. Partition Evaluator (PE) 
is use to compare and evaluate the resulted fragments from 
these algorithms. The inputs used in the process of PE are 
attribute accessing matrix (Table 1). 

PE Calculations (Using BEA Algorithm) 

1) Calculate Irrelevant local attribute access cost: 
 

( )( ){ ( )( )

( )( ) ( )( )}

( )( ){ }

2 2 2

2 2

2

1 2 1 2 / 4 1 2 1 2 / 4

1 2 1 2 / 4 1 3 1 3 / 4

1 1 1 1 /1

3,75 0

3,75 0

M
E = ∗ ∗ − + ∗ ∗ −

+ ∗ ∗ − + ∗ ∗ −

+ ∗ ∗ −

= +

= +

 

2) Calculate relevant remote attribute access cost: 
 

Value   Value Minimum 

Q1  on fragment 1  1
2
*0*(0/1) = 0 

Q1  on fragment 2  0
2
*2*(2/4) = 0; ( 0) 

 

Q2  on fragment 1  1
2
*0*(0/1) = 0 

tQ2  on fragment 2  0
2
*2*(2/4) = 0; (0) 

 

Q3  on fragment 1 1
2
*1*(1/1) = 1 

Q3  on fragment 2 1
2
*2*(2/4) = 1; (1) 

 

Q4  on fragment 1 1
2
*0*(0/1) = 0 

Q4  on fragment 2  0
2
*3*(3/4) = 0; (0) 

2

R
E  = 0 + 0 +1 + 0 = 1 

So, 2 2

M R
PE E E= +  = 3,75 + 1 = 4,75 

 

PE Calculations (Using GBVP Algorithm) 
 
1) Calculate Irrelevant local attribute access cost 
 

( )( ){ ( )( )

( )( ) ( )( )}

( )( ) ( )( ){ }
( ) ( )

2 2 2

2 2

2 2

1 2 1 2 / 3 1 2 1 2 / 3

1 1 1 1 / 3 1 2 1 2 / 3

1 2 1 2 / 2 1 2 1 1 / 2

0,667 0,667 0,667 0 0,5

3,168

M
E = ∗ ∗ − + ∗ ∗ −

+ ∗ ∗ − + ∗ ∗ −

+ ∗ ∗ − + ∗ ∗ −

+ + + + +

=

 

 
2) Calculate relevant remote attribute access cost: 
 

Value  Value Minimum 

Q1 On fragment 1  1
2
*0*(0/2) = 0 

Q1 On fragment 2 0
2
*2*(2/3) = 0; (0) 

 
Q2 On fragment 1  1

2
*0*(0/2) = 0 

Q2 On fragment 2 0
2
*2*(2/3) = 0; (0) 

 
Q3 On fragment 1 1

2
*2*(2/2) = 2 

Q3 On fragment 2 1
2
*1*(1/3) = 1/3 = 0,33;(0,33) 

 
Q4 On fragment 1 1

2
*1*(1/2) = 1/2 = 0,5 

Q4 On fragment 2 1
2
* 2*(2/3) = 4/3 = 1,3; (0,5) 

2

R
E  = 0 + 0 + 0,33 + 0,5 = 0,83 

So, 2 2

M R
PE E E= +  = 3,168 + 0,83 = 3,998 

Complexity Analysis 

A good algorithm is an efficient algorithm, the 
efficiency of the algorithm is measured by the amount of 
time and memory space needed to run the algorithm. An 
efficient algorithm is an algorithm that minimizes time 
and space requirements. The algorithm can be said to be 
good or efficient is it requires formal criteria used to 
assess the algorithm that is with its complexity. 

1 
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4 3 

29 
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11 
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There are two kinds of algorithm complexity, namely 
the complexity of time and space. The time complexity 
of the algorithm is to measure the number of 
computations performed by a computer when solving a 
problem using an algorithm. The size in question refers to 
the number of calculation steps and processing time of the 
processing. The time complexity of the algorithm contains 
the number expressions and the number of steps required 
as a function of the size of the problem. The complexity of 
space relates to the system memory required in program 
execution. Table 1 shows the algorithmic group based on 
the time complexity asymptotically. 
The time and space requirements of an algorithm 

depend on the size of the input, typically the amount of 
data being processed. The size of the input is symbolized 
by n. After setting the input size, the next step in 
measuring the time complexity is to calculate the number 
of operations performed by the algorithm so that the 
notation of the time complexity in function n is f(n). 

Implementation and Comparison 

In order to establish affinity matrix, there are several 
steps that must be completed, in the vertical 
fragmentation of activities. In the process of vertical 
fragmentation, we do a comparison results using 10 
tables in the DBD health database (Dummy Data), using 
70 queries to fragmentation table vertically. The 
measures that we use in executing the research outline is 
as follows: In the method of BEA, the first step is the 
formation of affinity matrix by classifying attributes 
based on the affinity (AA). The next perform matrix 
multiplication using Attributes (AU) with a matrix of 
Query Access (QA) thus that the contribution of each 
attribute value obtained to get a Split tilapia Quality 
(SQ) as a determinant of the result of fragmentation. To 
evaluate the value of the access cost, then after the 
obtained values of table fragmentation results from both 
methods, the next step is to compare the values of these 
fragments, by calculating the Partition Evaluator (PE). 

From the utilization of the above two algorithms, 

generate some fragments of the BEA and GBVP 

algorithms. Furthermore, using Partition Evaluator (PE) 

results from both fragments the algorithm will compare 

and evaluate. The input used in this process is the PE 

matrix that can accesses the attributes. 

PE Calculation (Using BEA and GBVP) 

After using the BEA and GBVP methods, then 
calculate the cost to access the data from the calculation 
table with the proposed method. The results of 
fragmentation of the calculation table using BEA and 
GBVP methods in the table below: 
The table above shows the result of the 

fragmentation of each table that uses GBVP and BEA 
algorithms. The results of the two algorithms above 
fragmentation display different results due to the 
fragmentation of the rules already established on the 
algorithm used. Results fragmentation by each of the 
methods will be tested by calculating the cost of data 
access using Partition Evaluator. 

Access Cost  

The results of the calculation of the cost of access to 

data by using Partition Evaluator (PE) show differences 

Partition Evaluator value of both BEA and GBVP 

algorithms which are shown in the table. 
From the results of the experiments conducted, 

indicating that the GBVP algorithm produces a better 
fragmentation rather than BEA algorithms that can be 
seen from the partition Evaluators (PE) resulted from the 
total cost of access for relevant attributes and attribute 
minimal access cost is irrelevant. Where the greater 
value of Partition Evaluator (PE) produced which 
partition or fragmentation is better. 

Comparison between BEA and GBVP 

The results of the proposed algorithm show the 
comparison of query execution time on tables 
fragmented by using BE and GBVP algorithms. 
Execution time comparison results obtained from the 
implementation of the results table fragmentation 
generated by both algorithms when design of ProSIARS 
Distributed Databases. Comparison of the execution time 
is shown in the figure below. 

 

 
 

Fig. 3: Comparison graph algorithm execution time BEA and GBVP 
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Figure 3. shows the difference in access time of the 
query (execution) of the experiment using the BEA 
algorithm and the GBVP algorithm. Figure 3 shows that 
6 of the 10 Tables (fragmented using the BEA 
algorithm) have a higher execution time than the GBVP 
algorithm (Tables 1, 2, 3, 5, 7 and 10). The graph also 
shows 3 tables having the same execution time (Tables 
6, 8 and 9). While Table 4 is the only one fragmentation 
with BEA algorithm which has lower execution time 
compared to GBVP algorithm. For Table 10 and 11 are 
comparison of the space complexity of BEA and GBVP. 
There are the difference space of  complexity are BEA 
and GBVP that is in the number of iterations (i) and 
space of complexcity O(I*k*m*n). 
 
Table 1: The use of any attribute matrix 

 A1 A2 A3 A4 A5 
q1 1 0 1 0 0 
q2 1 0 0 0 1 
q3 1 1 0 1 0 
q4 0 0 1 1 1 
 
Table 2: Matrix of query access on every site 
 Site1 Site2 Site3 Amount 
q1 10 7 5 22 
q2 20 9 0 29 
q3 3 12 5 20 
q4 0 5 6 11 
 
Table 3: Affinity matrix 
 A1 A2 A3 A4 A5 
A1 71 20 22 20 29 
A2 20 20 0 20 0 
A3 22 0 33 11 11 
A4 20 20 11 31 11 
A5 29 0 11 11 40 
 

Table 4: Cluster affinity matrix 

 A3 A1 A5 A4 A2 

A3 33 22 11 11 0 

A1 22 71 29 20 20 

A5 11 29 40 11 0 

A4 11 20 11 31 20 

A2 0 20 0 20 20 
 
Table 5: Query access matrix BEA 

A1 A3 A4 A5 A2 

1 1 0 0 0 

1 0 0 1 0 

1 0 1 0 1 

0 1 1 1 0 

Fragment 1   Fragment 2 
 
Table 6: Query access matrix GBVP 

A1 A3 A5 A2 A4 

1 1 0 0 0 

1 0 1 0 0 

1 0 0 1 1 

0 1 1 0 1 

Fragment 1    Fragment 2 
 
Table 7: Algorithmic group  

Algorithm group Name 

O(1) Constant 
O(log n) Logarithmic 
O(n) Linear 
O(n log n) n log n 
O(n2) Quadratic 
O(n3) Cubic 
O(2n) Exponential 
O(n!) Factorial 

Table 8: Result of fragmentation  

 Fragmentation results table 
 ------------------------------------------------------------------------------------------------------------------------ 
Tables  BEA Method GBVP Method 

ms_pasien [A2 A3 A1 A4 ] | [A5] [A1 A2 A3] | [A4 A5] 
tb_tindakan [A3 A1 A5 A7 A2 A6] | [A4] [A1 A2 A5 A6] | [A7 A3 A4] 
tb_rekam_medis [A9 A10 A6 A4 A3 A2 A1 A5 A7] | [A8] [A1 A2 A3 A4] | [A6 A5 A8 A7 A9] | [A10] 
ms_paramedis [A6 A4 A2 A1 A3 A5] | [A7] [A1 A2 A3] | [A6 A7] | [A4 A5] 
ms_wilayah [A3 A2 A4] | [A5 A1] [A1 A2 A5] | [A3 A4] 
ms_unit_surveilans [A3 A2 A1] | [A4]  [A1 A2 A3] | [A4] 
tb_resume [A4 A5] | [A1 A2 A3] [A1 A2 A3] | [A4 A5] 
tb_rujukan [A3 A2 A1] | [A4]  [A1 A2 A3] | [A4] 
tb_kejadian [A3 A5 A4 A2 A6 A7 A1] | [A8] [A5 A2 A4] | [A6 A7 A8] | [A1] | [A3] 
tb_kelas [A4 A1 A3 A2] | [A5] [A1 A2 A3] | [A4 A5] 
 
Table 9: Partition evaluator value 

 Value partition evaluator 
 ---------------------------------------------------------------------------------------- 
Tables BEA GBVP 

ms_pasien 4,75 4,98 
tb_tindakan 7,41 10,41 
tb_rekam_medis 17,85 17,95 
ms_paramedis 10,98 8,34 
ms_wilayah 3,49 4,64 
ms_unit_surveilans 4,34 4,34 
tb_resume 5,32 5,32 
tb_rujukan 3,72 3,72 
tb_kejadian 15,28 10,3 
tb_kelas 12,5 14,07 
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Table 10: Space complexity of BEA 

 Number of Number of Number of Space complexity 

Tables name points (m) attributes (n) iterations (i) O(I*k*m*n) 

ms_pasien 60 5 10 3.000 

tb_tindakan 30 7 21 4.410 

tb_rekam_medis 63 10 44 27.720 

ms_paramedis 51 7 21 7.497 

ms_wilayah 19 5 10 9.500 

ms_unit_surveilans 41 4 6 744.000 

tb_resume 88 5 10 4.400 

tb_rujukan 58 4 6 1.392 

tb_kejadian 27 8 28 6.048 

tb_kelas 9 5 10 450.000 

Average Space Complexity with 10 tables relation 74 queries  5.661 
 
Table 11: Space complexity of GBVP 

 Number of Number of Number of Space complexity 

Tables name points (m) attributes (n) iterations (i) O(I*k*m*n) 

ms_pasien 60 5 6 1.800 

tb_tindakan 30 7 8 1.680 

tb_rekam_medis 63 10 11 6.930 

ms_paramedis 51 7 8 2.856 

ms_wilayah 19 5 10 950.000 

ms_unit_surveilans 41 4 5 820.000 

tb_resume 88 5 6 2.640 

tb_rujukan 58 4 5 1.160 

tb_kejadian 27 8 9 1.944 

Tb_kelas 9 5 6 270.000 

Average Space Complexity with 10 tables relation 74 queries  2.105 
 

Time Complexity Reduction 

The result of time complexity analysis of BEA and 

GBPV algorithm can be proved as follows: 

 
1. Step 1 (initialization) of the Prim algorithm takes 

at most n operations. So the complexity of this 
step is O(n) 

2. Step 2, is an iteration step, requires at most n-1 
testing (since one node is selected in step 2), so the 
complexity of this step is O(n) 

3. Step 3 run exactly n times. Each time you perform 
step 3, define the edge with the smallest weights of 
the unassigned node set (F) to the set of connected 
nodes (T), with at most n operations. So this step 3 
has a complexity of O(n) 

 

After the node in the most recent T set is marked, 

it is necessary to update the node list in the set F. For 

each node in the set F, there is a comparison of the 

weights of the smallest side of the node in the set F to 

the node of the set T, to determine the side with the 

smallest weights connected any node in the set F to 

any node in the set T. The partition renewal process is 

in O(n) operation, none of this part 3 requires more 

than O(n) operation, then the complexity of step 3 is 

O(n), remember that O(n) + O(n) = O(n). Since step 3 

is implemented n times, then the operations performed 

is (n)(O(n)) = O(n
2
).  So the complexity of all 

iteration steps (step 2 and step 3) is O(n) + O(n
2
) = 

O(n
2
 + n) = O(n

2
). From calculating the complexity of 

each of the above steps, the complexity of the GBPV 

algorithm is the complexity of step 1 + the complexity 

of the steps of all iterations (step 2 and step 3). the 

time complexity in function n is s: 
 

( ) ( ) ( )

( )

( )

2

2

2

f n O n O n

O n n

O n

= +

= +

=

 

 
So it can be concluded that GBVP time complexity 

is quadratic. 
Then the time required is nothing more than 

( )
1

1
1

n

I
d c b a n

−

=

+  + + +  ∑ , which can be simplified into 

((a/2)*n
2
+(b+c-a/2)*n+(d-b)). The function is 

dominated by (a/2)*n
2
. Then according to the definition 

of big-O can be written f(n) = n
2 
, c = a/2 and n

0 
= 0. It 

can be said that the algorithm has the time complexity 

in quadratic, O(n
2
). 

The exponential function T(n) = 2
n+k
, where k is a 

constant, is O(2
n
) because 2

n+k  
is

 
 2

k
2

n 
for all n. 

Generally, T(n) = m
n+k
 is O(l

n
); l  ≥ m>1, because m

n+k
 ≤ 

l
n+k
 = l

k
l
n
 for any constant k. 

Below is a split bond energy algorithm that can be 
seen in Fig. 4 where the input is an Cluster Affinity 
Matrix (CAM) and the output is F Set of two Fragments.
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Split of Bond Energy Algorithm 

Input : Cluster Affinity Matrix (CAM) 

Output:  F Set  of two Fragments 

                  Begin 

                  {Initialization  of variables} 

                  X[1,1..N]; 

                  Y[1,1..Y]; 

1.  {Ditermine Split Point} 

For I = 1  to  n  do  

2.               If (i == 1) then  

3.                     Y[1,i] = CAM(1,i); 

4.              Else 

5.                  Y[1,i] = CAM(1,i)-CAM(1,i−1);  

6.              End-If 

7.       X[1,i] = i; 

8.       End-For 

9. Plot(X,Y); 

10. Smallest = Y[1,1];  

11. Split-Point = 1; 

12.       For i = 2 to n  

13.            If (Smallest< Y[1, i] then 

14.                   Split-point is recorded as X[1, i] 

15.                   Smallest = Y[1, i] 

16.             End-If 

17.         End-For 

18. End-Begin 

( ) ( )
1

1
1

n

I
T n d c b a n

−

=

= +  + + −  ∑  

 
Fig. 4: Split of Bond Energy Algorithm (BEA). 

 

Space Complexity Reduction 

The space requirements for BEA are modest because 

only the data points and centroids are stored. 

Specifically, the storage required is: 
 

( )( )O m k n+  

 
where, m is the number of points and n is the number 
of attributes. The time equirements for BEA are also 
modest-basically linear in the number of data points. 
In particular, the time required is: 

( )O I k m n∗ ∗ ∗  

 

where, I is the number of iterations required for 

convergence, as mentioned I is often small and can 

usually be safely bound as most changes typically occur 

in the first few iterations which can be seen in Fig. 5 

split of GBVP algorithm. Therefore BEA is linear in m, 

the number of points and is efficient as well as simple 

provided that K, the number of cluster is significantly 

less than m (Rahimi and Riahi, 2015). 
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Split of GBVP 

Input : Fj, Q1,Q2…QM 

Output : Rec-IDj  

Cluster-NOj [1:N/K] 

     Begin 
  {Initialzation steps} 

1.  For each Fj do in parallel  

2.        For p = 1 to N/K do 

3.             Read  Fj (p); 

4.                Cluster -NOj  [p] = 0; 

5.                 REC-IDj  [p] = (j-i) * N/K +  p; 

6.              For i = 1 to M  do 

7.                  If Fj [p] satisfies Qi  then 

8.                      Cluster – NOj [p] = Cluster – NOj [p] +2 M-I  

9.                   End-If 

10.                 End-For 

11.              End-For 

T(n) = 2nxk 

 

Fig. 5:  Split of GBVP algorithm 

 

Conclusion 

The purpose of conducting this study is to know 

the impact on the response time while moving from 

centralized to distributed databases with BEA and 

GBVP Algorithms. 

Experiments fragmentation vertically done using 

BEA and GBVP algorithms at 10 tables by using a total 

of 74 queries and input an affinity matrix resulted in the 

fragmentation of the different tables. Based on the results 

of trials that have been done show that GBVP algorithm 

is an algorithm that is more optimal for use in the 

process of fragmentation of the table vertically. The 

statement was supported by the results of the analysis of 

algorithms GBVP who have less computational 

complexity and generate value Partition Evaluator higher 

and has a query execution time is lower compared with 

the results of fragmentation using BEA algorithm. 

Distributed databases have many aspects and every 

organization has certain preferences. For the public 

health DBD (Dummy Data), the response time is 

prioritized. Our experiment showed that the average 

response time is decreased if we switch from centralized 

database to distributed database. In distribution, we put 

the data to the site where it is used most frequently. This 

locality of data reduces the response time. In the 

distributed database, data is fragmented. These 

fragments are short compared to the full database 

(centralized database contains maximum columns). 

However, when we need data from multiple sites for a 

query (report queries), the response time is increased. 

Accessing data from multiple remote sites and then 

joining those takes a long time. But in the centralized 

database, since data is at one place so, it is easy and fast 

to search it. The purpose of conducting this study is to 

know the impact on the response time while moving 

from centralized to distributed databases using vertical 

fragmentation. Experiment results showed that the 

response time is decreased in distributed databases. Due 

to fragmentation dataset for the single site contains fewer 

records than the centralized database, therefore the 

response time is less. In algorithm performance (time 

and space complexity) GBVP algorithm has better space 

complexity than BEA (50% better). For Time 

complexity the BEA algorithm has a group of quadratic 

functions of  O(n
2
). The GBVP algorithm has an 

exponential algorithm group O(n
2
). 
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