

© 2017 Ricardo Theis Geraldi and Edson OliveiraJr. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Review Paper

Defect Types and Software Inspection Techniques: A

Systematic Mapping Study

1
Ricardo Theis Geraldi and

2
Edson OliveiraJr

1Department of Informatics, State University of Maringá, Avenida Colombo, 5790, Maringá-PR, Brazil
2Department of Informatics, State University of Maringá, Avenida Colombo, 5790, Maringá-PR, Brazil

Article history
Received: 31-07-2017
Revised: 08-09-2017
Accepted: 09-10-2017

Corresponding Author:
Edson OliveiraJr
Department of Informatics,
State University of Maringá,
Avenida Colombo, 5790,
Maringá-PR, Brazil
Phone: +55 (44) 3011-5121
E-mail: edson@din.uem.br

Abstract: Software inspection has been used to guarantee and control the
quality of products by detecting defects, which can be spread out
throughout the entire software life cycle. Therefore, the main premise is to
identify and reduce the number of defect types in software artifacts during
inspections. This work focuses on providing an up to dated overview of
existing defects in the context of software inspection techniques. A
systematic mapping was carried out, from which 2096 primary studies were
retrieved and 32 were final selected. From the analysis, classification and
aggregation of the retrieved studies, important different defect types were
identified. Most studies encompass defect types by means of experiments
and proposed techniques and approaches. Thus, as a main result, the
identification of several different studies with distinct proposals concerned
on defect types is evident. Although researchers have conducted studies
over time, a general pattern on the detection of defects could not be established.
Therefore, the scenario in which this study was carried out provides researchers
with the capability of conducting further research in a motivating and
challenging research topic, as well as practitioners with the adoption of
empirically evaluated inspection techniques and respective defect types.

Keywords: Defect Type, Software Inspection, Systematic Mapping Study

Introduction

A software system can incorporate different defect
types that must be detected and removed throughout its
life cycle. Such defects increase development and
maintenance costs (Boehm and Basili, 2001). In this
context, verification and validation activities and
dynamic and static analysis are essential as they
contribute to software quality control (Sommerville, 2015).
Effective software inspections, thus, increase such a control.

In this scenario, software inspection is a singular type
of software review conducted by inspectors and formally
applied in different software artifacts to maximize the
number of defects found, in order to minimize defects in
software systems to be delivered (Cheng and Jeffery,
1996; Fagan, 1986).

By means of software inspections, it is possible to
verify several elements from software artifacts in order
to detect different defect types existing in software
specifications (Gilb and Graham, 1993; IEEE, 1998b). It
is essential that developers become aware of inspections
to iteratively improve the quality of a software product
(Anda and Sjøberg, 2002; Souza et al., 2013).

Defect types are necessary to identify persistent fault
in different software artifacts. Thus, main pre-defined
defect types are useful to inspection techniques, for
guiding the detection of possible defects. The objective
of main predefined defect types is to specify and ensure
which or at least the major defects known in the
literature are detected at the time of inspections
(Alshazly et al., 2014).

Main existing defect types in the literature can be
highlighted (Fagan, 2002): Omissions, Incorrect facts,
Inconsistencies, Ambiguities and Extraneous

information. Thus, detecting these defect types might
provide evidence for refining inspection techniques in an
adaptation perspective.

Based on the aim of software inspections and defect
types, it seems essential to map the literature related to
this research topic in order to provide a knowledge body
for researchers and practitioners improving and/or
incorporating inspection activities in emerging and state-
of-the-art techniques, such as software product lines and
model-driven engineering. Therefore, this paper presents
a Systematic Mapping (SM) study, which aims at
identifying existing defect types and inspection techniques

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

471

and studies that provide evidence of such software
inspection techniques and respective defect types.

The results of this systematic mapping identified
what defect types are most frequent in software
inspection techniques based on different domains. In
addition, results evidenced the identification of several
different studies with distinct proposals concerned on
defect types, as well as many empirical studies.

This paper is structured as follows: Study background
is presented in Section 2; the systematic mapping
process is detailed in Section 3; obtained results are
discussed in Section 4; threats to validity for this study
are discussed in Section 5; and concluding remarks are
presented in Section 6.

Background of the Study

Software inspection is a specific type of software
review (Ciolkowski et al., 2003) applied to artifacts
by means of a systematic and well-planned defect
identification process (Fagan, 1986; Kalinowski and
Travassos, 2004; Sauer et al., 2000). According to
CeBASE (http://www.cebase.org/defect-
reduction.html), over 60% of defects can be identified
at early stages of the software life-cycle (Boehm and
Basili, 2001; Gilb and Graham, 1993).

Fagan (1986) proposed a software inspection process
driven by roles, such as moderator, inspector and author
and activities. Once the process is established, one or
more review techniques can be taken into account for
performing inspection activities (Pressman, 2014;
Sommerville, 2015).

The process of defect detection must be standardized
and non-ambiguous for the artifact under revision, for
instance, the requirements specification (IEEE, 1998a).
The study of van Lamsweerde (2009) is evident in the
literature by the singularity of the established
classification scheme of defect types. This classification
can be used independently of the inspection techniques,
usually adapted for detecting defects based on
requirements engineering.

The taxonomy of defect types is taken into account by
several more studies, such as in Alshazly et al. (2014; Silva
and Vieira, 2016; Teixeira et al., 2015; Travassos et al .,
1999; Walia and Carver, 2009). For example, the IEEE
Standard 1012-2012 recommends verifying and
validating an inspected system throughout defect types,
such as: Complete, Correct, Omissions, Ambiguities,
Traceable, Testable and Consistent (IEEE, 2012).

Furthermore, Hayes et al. (2006) proposed a taxonomy
to detect defects based on the study of Miller et al. (1998)
that can be adapted for software inspection techniques
with regard to the following defect types: Requirements,
Incompleteness, Omitted/Missing, Incorrect,
Ambiguous, Infeasible, Inconsistent, Over-specification,

Not Traceable, Non-Verifiable, Misplaced, Intentional
Deviation and Redundant.

For example, to explain the most common defect types
in the literature, the study of Anda and Sjøberg (2002)
proposes a taxonomy for the following defect types for
checklist-based software inspections mostly applied to
functional requirements and use cases diagrams:

• Omissions, absence of a mandatory element or

functionality, e.g., variations of a certain
requirement not present in the specification

• Incorrect Facts, a functional requirement or use
cases incorrectly described

• Inconsistencies, problems from functional
requirements or use cases with their goals and
specifications poorly designed - e.g., descriptions,
variations and terminology

• Ambiguities, a specified functional requirement or use
case does not meet its objective - e.g., descriptions with
multiple interpretations or misdescribed

• Extraneous Information, functional requirements or
use cases are redundant - e.g., are duplicated and
without specification

• Consequences or Others, unexpected problems in
the specification of functional requirements or use
cases - e.g., communication between analysts and
developers is flawed with respect to the project
objectives and what should or not be done

Travassos et al. (1999) applied defect types to their

proposed technique, named Traceability-Based Reading
(TBR), taking the proven effective set of defect types
from Anda and Sjøberg (2002) into account. In addition,
Zhu (2016) discussed the impact of the defect types
based on Travassos et al. (2001) taxonomy in high-level
object-oriented designs using UML diagrams.

The secondary study conducted by Hernandes et al.
(2013) contributes to a significant mapping of empirical
studies in the area of software inspection. Thus, the
identification of the main defect types in combination
with mapped empirical studies is essential to provide
evidence for adopting and/or proposing new inspection
techniques. However, such a work is restricted to mapping
only empirical studies and controlled experiments,
whereas this mapping study is concerned on the overall
mapping of defect types and inspection techniques.

Based on the results, this systematic mapping
provides an identification of studies focused on defect
types. Thus, these defect types can be adapted or applied
to different techniques proposed in the software
inspection scenario. Therefore, inspections may be
guided by means of a well-organized set of defect types
to improve the quality of inspections.

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

472

Systematic Mapping Process

The Systematic Mapping (SM) carried out in this
paper is aimed at providing researchers and practitioners
with an overview of primary studies of defect types in
software inspection activities (Kitchenham et al., 2010;
Petersen et al., 2008a).

Petersen et al. (2008a), by comparing different
methods when performing systematic mappings and
reviews, established six stages as a strategy for the
elaboration and conduction of SMs: (I) Definition of
protocol; (ii) definition of research questions; (iii)
conducting the search for primary studies; (iv) screening
papers based on inclusion/exclusion criteria; (v) classifying
the papers; and (vi) data extraction and aggregation.

The conducted stages of this SM is in accordance to
Fig. 1. Thus, this section describes how each stage was
planned and conducted, which are: Research questions
(Section 3.1), research process (Section 3.2), digital
databases, keywords and search strings (Section 3.3),
inclusion and exclusion criteria (Section 3.4),
classification scheme (Section 3.5) and data extraction
and aggregation (Section 3.6).

Definition of Research Questions

The main objectives of this SM were established
aiming at: (I) identifying in the literature defect types
used in environments/domains and software
inspection techniques; (ii) presenting an overview of
defect types empirically evidenced; and (iii)
discussing primary studies on inspection techniques
with defect types. Therefore, the following research
questions are stated:

• Research Question (RQ1). What defect types have

been taken into account by software inspection
techniques?

• RQ1a. Which environments or domains defect
types were applied to?

• RQ1b. Which defect types were empirically
evidenced?

• Research Question (RQ2). What kind of evidence do
inspection techniques/approaches that adopt
classified defect types provide?

• RQ2a. Which inspection techniques adopted
classified defect types?

• RQ2b. Which evaluation results are documented?

The Search Process

The followed search process is based on criteria
and guidelines proposed by Kitchenham (2007;
Kitchenham et al., 2010; Petersen et al., 2008a) with

relation to performing SMs. In addition, knowledge
body from several studies in different areas, such as
Barney et al. (2012; Neto et al., 2011; Mohabbati et al.,
2013; Novais et al., 2013), served as a basis to provide
directions on how to conduct this SM.

Therefore, the search process procedures (Fig. 2)
were established, as follows:

1. Selection of digital databases and indexed search

mechanisms (Section 3.3)
2. Definition of keywords to compose the main query

and the search strings applied to digital databases
and mechanisms to retrieve primary studies. The
following keywords were used: “software
inspection” and “defect type” (Section 3.3)

3. Composition of such keywords and their variations
using ”AND” and ”OR” operators (Section 3.3)

4. Application of defined search strings to digital
databases and such mechanisms. A list with a
considerable number of primary studies was retrieved.
Inclusion and exclusion criteria were applied to filter
such studies. Figure 3 and Table 1 Illustrates such
filters in detail, as well as the number of primary
studies selected based on each filter activity

5. Duplicated studies and potential conflicts, for
instance, were reviewed to generate an updated
list (Section 3.4)

6. Definition of a classification scheme based on
categories (Section 3.5)

7. Extraction and aggregation of data (Section 3.6) by
means of visualization techniques (graphs, bubble
plots, etc) in order to present the obtained results.
Thus, a brief discussion on the subjects related to
this SM (Section 4) was carried out

A search was performed on the digital databases

using the search query, respective keywords (Filter #1)
and obtained 2096 studies, as presented in Section 3.3.
Then, a preliminary selection was carried out by reading
title, abstract, introduction and conclusion of the
retrieved studies, as well as the application of inclusion
and exclusion criteria (Filter #2) and obtained 86 studies.
Therefore, 32 selected primary studies were fully read
based on definition of research questions (RQ1 and RQ2
and derivatives), according to Filter #3 (Fig. 3).

The retrieved studies were filtered based on the
inclusion and exclusion criteria according to Filter #2
and Filter #3 in Section 3.4 and Fig. 3. The first author
of this paper performed reading, interpretation and
selection of studies. The second author helped to
interpret and decide including or excluding certain
studies in case of indecision of the first author. Thus,
such studies were classified (Section 3.5), as well as
provided a constructive analysis (Section 4.3).

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

473

Fig. 1. The followed systematic mapping process (adapted from Petersen et al. (2008a))

Fig. 2. The Search Process (adapted from Barney et al. (2012))

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

474

Fig. 3. Stages of Search for Primary Studies (adapted from Neto et al. (2011; Mohabbati et al., 2013))

Table 1. Number of studies per data source, filter and duplicated studies

Data source Filter #1 Filter #2 Filter #3
ACM Digital Library 408 23 7
Compendex 197 12 5
ELSEVIER ScienceDirect 467 15 4
Google Scholar 105 7 3
IEEE Xplore 525 27 11
Scopus 827 2 2
#Duplicated Studies 433 - -
Total (with duplicated studies) 2529 - -
Total (no duplicated studies) 2096 86 32

Definition of Digital Databases, Keywords and

Search Strings

Once the research questions were defined, the next
step was the definition of the digital databases and
mechanisms aiming at allowing search and identification
of primary studies. Therefore, the set of selected digital
databases is as follows: (I) ACM Digital Library-
“papers published by ACM and bibliographic citations
from major publishers in computing”; (ii) Compendex-
“is the broadest and most complete engineering literature
database available in the world.”; (iii) ELSEVIER
ScienceDirect- “peerreviewed full-text scientific,
technical and medical content.”; (iv) Google Scholar -
“wide search mechanism for articles, dissertations and
thesis.”; (v) IEEE Xplore- “resource to discover and
access scientific and technical content published by the
Institute of Electrical and Electronics Engineers (IEEE)
and its publishing partners.”; and (vi) Scopus - “the largest
abstract and citation database of peer-reviewed literature.”

Next step was the definition of appropriate keywords
to build search strings in order to establish a general

search query. This query can be adapted for each search,
in an iterative basis and applied to the selected digital
databases. Thus, keywords were applied by means of the
search query and they were modified according to each
digital database and mechanism search tool.

Table 2 presents the search strings list and
respective keywords.

Definition of Inclusion and Exclusion Criteria

Aiming at selecting the studies to contribute to
answer the research questions of this paper, the
following inclusion and exclusion criteria were defined:

Inclusion Criteria

 For each research question, inclusion criteria were
defined, as follows:

• RQ1. Studies that present defect types related to

software inspection techniques:
• RQ1a. Studies that present environments or

domains with defect types applied; and

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

475

• RQ1b. Studies that present defect types
empirically evidenced

• RQ2. Studies that propose inspection techniques or
approaches associated to defect types:
• RQ2a. Studies that propose inspection

techniques with classified defect types
• RQ2b. Studies that document evaluation results

Exclusion Criteria

For each research question, exclusion criteria were
defined, as follows:

• RQ1. Studies that do not present defect types related

to software inspection techniques:

• RQ1a. Studies that do not present environments
or domains with defect types applied and

• RQ1b. Studies that do not present defect types
empirically evidenced

• RQ2. Studies that propose neither inspection
techniques nor approaches associated with defect
types:

• RQ2a. Studies that propose neither inspection
techniques nor used classified defect types; and

• RQ2b. Studies that do not document
evaluation results

In addition, the following exclusion criteria were

defined: (I) Studies in languages other than English; (ii)
studies, which are not in one of the following file
formats: PDF, DOC or ODT; (iii) opinion and/or
philosophical papers; (iv) duplicated studies, i.e., studies
retrieved from more than one of the defined data sources;
(v) unavailable studies, for instance, an unavailable
URL; and (vi) studies with less than four pages.

Classification Scheme

In order to classify the retrieved research types in this
SM, the Wieringa et al. (2005) classification method was
adopted. Such a method is suggested by Petersen et al.
(2008a) as it has a well-defined classification structure. The
Wieringa et al., (2005) method performs classification of
research types by means of six categories: (i) Validation

Research: Evaluates techniques usually performed in an
academic environment. Methods used to evaluate research

are: Experiments, simulations, prototype constructions and
mathematical analysis; (ii) Evaluation Research: Evaluates
techniques usually performed in industry, focusing on a
research, a research problem or practical technique
implementation; (iii) Solution Proposal: Focuses on new
techniques proposed and/or revised based on the research
problem; (iv) Philosophical Papers: Aims to present
new concepts that can be explored for research; (v)
Opinion Papers: Presents positive or negative opinions
of an author concerning, for instance, certain techniques,
experiments, case studies; and (vi) Experience Papers:
Presents experiences of an author with respect to
particular research verified in practice.

The classification of the retrieved studies was made
by reading abstract, introduction and conclusion of each
retrieved study, as well as excerpts in order to make sure
of the proper category of a study. Figure 4 illustrates this
classification scheme.

Data Extraction and Aggregation

Data extraction summarizes data with regard to the
final set of selected primary studies (Bailey et al.,
2007). Therefore, the following metadata of each
study was extracted: (I) Source: ACM Digital Library,
IEEE Xplore and ELSEVIER ScienceDirect, as well
as the electronic search mechanisms: Compendex,
Google Scholar and Scopus; (ii) Title; (iii) Authors
and afilliations; (iv) Publication year: Studies were
identified until May/2017; (v) Publication type:
Conference, Journal, Workshop, Book Chapter, Book,
Master Dissertations, Ph.D. thesis; (vi) Publication
venue acronym. In addition, we extracted the
following data: (I) Defect Types (e.g., Omissions,
Inconsistencies and others); (ii) Inspection Techniques
(e.g., Checklist-Based Reading, Perspective-Based
Reading, amongst others); and (iii) Software Artifacts
(e.g., UML diagrams).

The Mendeley tool (desktop version v1.11)
(Mendeley, 2014) was adopted for providing a better
organization of bibliographic references (A study
package for replicating this study, as well as bibtex files,
selected studies URL per source and query strings per
source are available at:
http://www.din.uem.br/˜edson/defect_types) of this study.

Table 2. Keywords and search strings composing the general search query

Search Query (SQ)
("software")
AND (
 ("inspection" AND ("technique" OR "activity" OR "strategy"))
 OR ("defect type" OR "type of defects" OR "defect detection"
 OR "requirements defect" OR "fault detection")
)

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

476

Fig. 4. Classification scheme (adapted from Petersen et al. (2008a))

Systematic Mapping Discussion of Results

This section provides a discussion with regard to the
obtained results of this SM. Thus, Section 4.1 presents
an overview of the retrieved studies based on the results
from the application of Filter #1 (Fig. 2) and Sections 4.2
and 4.3 provide graphical representations and discuss the
selected studies from Filter #3.

Systematic Mapping Overview

This SM was carried out until May/2017. A total of
2096 primary studies was obtained (no duplicated
studies) by applying the proposed search strings to the
defined data sources.

Scopus search mechanism retrieved the major studies
represented by 827 (33%). IEEE Xplore retrieved 525
studies (21%), whereas ACM Digital Library retrieved
408 studies (16%). In addition, ELSEVIER
ScienceDirect retrieved 467 studies (18%) and
Compendex 197 studies (8%) (Table 1, column Filter
#1). Most of the 433 duplicated studies were retrieved
from search engines Compendex, Google Scholar and
Scopus. After applying the filters, was selected for fully
reading (Filter #3) 11 IEEE Xplore studies, 7 ACM
Digital Library studies, 4 ELSEVIER ScienceDirect
studies, 2 Scopus studies and 5 Compendex studies
(including SCITEPRESS and SpringerLink).

A few studies (3) from Google Scholar were
selected for fully reading, due to the fact Google
Scholar retrieved 105 studies, including 31 duplicated
papers also retrieved from IEEE Xplore and ACM
Digital Library. This search mechanism represents
around 4% of the total primary studies retrieved. For

the final set of 32 selected papers (Filter #3), Google
Scholar represents 9.4%.

Selected Studies Discussion

This section presented the obtained results based
on Filter #2 for the 86 studies in Table 3. According
to the analysis of Filter #2, the research questions of
this study were answered by means of the 32 primary
studies from Filter #3.

Furthermore, next sections analyze the selected
studies in terms of data sources, research types, research
questions (RQs), defect types and inspection techniques.

Data Sources x RQs x Research Types

Filter #3 (Fig. 3) resulted in 32 studies selected. It
allowed us to answer research questions RQ1 and RQ2
based on data sources and research types (Fig. 5).

Studies from ACM Digital Library, Compendex,
IEEE Xplore, ELSEVIER ScienceDirect, Google
Scholar and Scopus are related to answer each research
question (RQ1 and RQ2). Thus, taking Fig. 5 into
account, most of the selected studies are from IEEE
Xplore and ACM Digital Library, with 11 and 7 studies,
respectively. Defect Types and Software Inspection
Techniques: A Systematic Mapping Study 13 IEEE
Xplore has six studies that answer RQ1, from which
most are classified as Solution Proposal. In addition,
RQ2 was answered by means of five studies from ACM
Digital Library, classified as Validation Research.

Five studies from Compendex answered RQs, four
for RQ1 and one for RQ2. In addition, four studies from
ELSEVIER ScienceDirect answered RQs, two for RQ1
and two for RQ2. Furthermore, three studies from
Google Scholar answered RQs, two for RQ2 and one for
RQ1. Scopus answered once two studies for RQ1.

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

477

Table 3. Retrieved studies based on the inclusion and exclusion criteria

Author(s) Title Year Data source

Cox et al. (2004b) A use case description inspection experiment 2004 Google Scholar
Travassos et al. (2001) working with UML: A software design process 2001 ELSEVIER ScienceDirect
 Based on inspections for the unified modeling language
Amoui et al. (2013) Search-based duplicate defect detection: An industrial experience 2013 ACM Digital Library
Mello et al. (2012) Checklist-based inspection technique for feature models review 2012 IEEE Xplore
Cunha et al. (2012) A set of inspection technique on software 2012 Google Scholar
 product line models
Mello et al. (2010) Activity diagram inspection on requirements specification 2010 IEEE Xplore
Chen et al. (2009) Variability management in software product 2009 ACM Digital
 lines: A systematic review Library
Petersen et al. (2008b) The impact of time controlled reading on 2008 ACM Digital Library
 software inspection effectiveness and efficiency:
 A controlled experiment
Simidchieva et al. (2007) Representing process variation with a process family 2007 Google Scholar
Winkler et al. (2007) Early software product improvement with sequential 2007 IEEE Xplore
 inspection sessions: An empirical investigation of
 inspector capability and learning effects
Tørner et al. (2006) Defects in automotive use cases 2006 ACM Digital Library
He and Carver (2006) PBR vs. checklist: A replication in the N-fold inspection context 2006 ACM Digital Library
Lange and Chaudron (2006) Effects of defects in UML models – an experimental investigation 2006 ACM Digital Library
Wagner (2006) A model and sensitivity analysis of the quality 2006 ACM Digital
 economics of defect-detection techniques Library
Cooper et al. (2005) Experiences using defect checklists in software 2005 Google Scholar
 engineering education
Belgamo et al. (2005) TUCCA improving the effectiveness of use case 2005 IEEE Xplore
 construction and requirement analysis
Staron et al. (2005) An empirical assessment of using stereotypes to 2005 ACM Digital Library
 improve reading techniques in software inspections
Denger et al. (2004) Investigating the active guidance factor in reading 2004 IEEE Xplore
 techniques for defect detection
Lanubile et al. (2004) Assessing the impact of active guidance for defect 2004 IEEE Xplore
 detection: A replicated experiment
Denger and Paech (2004) an integrated quality assurance approach for use 2004 Google Scholar
 case based requirements
Grunbacher et al. (2003) An empirical study on groupware support for 2003 IEEE Xplore
 software inspection meetings
Kelly and Shepard (2003) An experiment to investigate interacting versus 2003 ACM Digital Library
 nominal groups in software inspection
Miller and Yin (2003) Adding diversity to software inspections 2003 IEEE Xplore
Sabaliauskaite et al. An experimental comparison of checklist-based 2002 IEEE Xplore
(2002a) reading and perspective-based reading for UML
 design document inspection
Sabaliauskaite et al. An experimental comparison of checklist-based 2002 ACM Digital Library
(2002b) reading and perspective-based reading for UML
 design document inspection
Anda and Sjøberg (2002) Towards an inspection technique for use case models 2002 ACM Digital Library
Kelly and Shepard (2001) A case study in the use of defect classification in inspections 2001 ACM Digital Library
Freimut et al. (2001) Investigating the impact of reading techniques on the accuracy 2001 IEEE Xplore
 of different defect content estimation techniques
Biffl et al. (2001) Investigating the cost-effectiveness of reinspections 2001 ACM Digital Library
 in software development
Biffl and Halling (2000) Software product improvement with inspection – a 2000 IEEE Xplore
 large-scale experiment on the influence of inspection processes
 on defect detection in software requirements documents
Travassos et al. (1999) Detecting defects in object-oriented designs: 1999 ACM Digital Library
 Using reading techniques to increase software quality
Cheng and Jeffery (1996) Comparing inspection strategies for software 1996 IEEE Xplore
 requirement specifications
Mishra and Mishra (2009) Simplified software inspection process in compliance 2009 ELSEVIER ScienceDirect
 with international standards
Walia and Carver (2009) A systematic literature review to identify and classify 2009 ELSEVIER ScienceDirect
 software requirement errors
Munson et al. (2006) Software faults: A quantifiable definition 2006 ELSEVIER ScienceDirect

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

478

Table 3. Continue
Sabaliauskaite et al. (2004) Assessing defect detection performance of interacting 2004 ELSEVIER
 teams in objectoriented design inspection ScienceDirect
Cox et al. (2004a) An experiment in inspecting the quality of use case descriptions 2004 Google Scholar
Hungerford et al. (2004) Reviewing software diagrams: A cognitive study 2004 IEEE Xplore
Thelin et al. (2003) Prioritized use cases as a vehicle for software inspections 2003 IEEE Xplore
Ciolkowski et al. (2003) Software reviews: The state of the practice 2003 IEEE Xplore
Sabaliauskaite et al. (2003) Further investigations of reading techniques for 2003 ELSEVIER ScienceDirect
 object-oriented design inspection
Biffl (2003) Evaluating defect estimation models with major defects 2003 ELSEVIER ScienceDirect
Biffl and Halling (2003) Investigating the defect detection effectiveness and 2003 IEEE Xplore
 cost benefit of nominal inspection teams
Laitenberger et al. (2001) An internally replicated quasi-experimental comparison of 2001 IEEE Xplore
 checklist and perspective-based reading of code documents
Laitenberger and An encompassing life cycle centric survey 2000 ELSEVIER ScienceDirect
DeBaud (2000) of software inspection
Laitenberger et al. (2000) An experimental comparison of reading techniques for 2000 ELSEVIER ScienceDirect
 defect detection in UML design documents
Dunsmore et al. (2000) The role of comprehension in software inspection 2000 ELSEVIER ScienceDirect
Brykczynski (1999) A survey of software inspection checklists 1999 ACM Digital Library
Porter et al. (1998) Understanding the sources of variation in software inspections 1998 ACM Digital Library
Miller et al. (1998) Further Experiences with Scenarios and Checklists 1998 Google Scholar
Roper et al. (1997) An empirical evaluation of defect detection techniques 1997 ELSEVIER ScienceDirect
Wu et al. (2015) A case study in specification defects detection using statecharts 2015 IEEE Xplore
Valentim et al. (2015) A controlled experiment with usability inspection techniques 2015 IEEE Xplore
 applied to use case specifications: Comparing the MIT 1
 and the UCE techniques
Ma et al. (2014) A defects classification method for aerospace 2014 Compendex
 measurement and control software
Silva et al. (2016) A field study on root cause analysis of defects in space software 2016 ELSEVIER ScienceDirect
Rawal and Tsetse (2016) Analysis of bugs in Google security research project database 2016 IEEE Xplore
Kasubuchi et al. (2015) An empirical evaluation of the effectiveness of 2015 IEEE Xplore
 inspection scenarios developed from a defect repository
Mohammed et al. (2015) An experimental study on detecting semantic defects 2015 ACM Digital Library
 in object-oriented programs using software reading techniques
Naveed and Ikram (2015) A Novel checklist: Comparison of CBR and PBR to 2015 Compendex
 inspect use case specification SpringerLink
Liu et al. (2014) Automatic early defects detection in use case documents 2014 ACM Digital Library
Rocha et al. (2015) Automating test-based inspection of design models 2015 Compendex SpringerLink
Hentschel et al. (2016) Can formal methods improve the efficiency of code reviews? 2016 Compendex SpringerLink
Bjarnason et al. (2014) Challenges and practices in aligning requirements with 2014 Compendex SpringerLink
 verification and validation: A case study of six companies
Geraldi et al. (2015) Checklist-based inspection of smarty variability models 2015 Compendex
 SCITEPRESS
 - proposal and empirical feasibility study
Alshazly et al. (2014) Detecting defects in software requirements specification 2014 ELSEVIER ScienceDirect
Czibula et al. (2015) Detecting software design defects using relational 2015 Compendex SpringerLink
 association rule mining
Kovalenko et al. (2014) Engineering process improvement in heterogeneous 2014 Compendex SpringerLink
 multi-disciplinary environments with defect causal analysis
Tang et al. (2015) Enhancing defect prediction with static defect analysis 2015 ACM Digital Library
Singh et al. (2016) Experimental study on feature selection methods for 2016 IEEE Xplore
 software fault detection
Hamill and Goseva- Exploring fault types, detection activities, and failure 2015 Compendex SpringerLink
Popstojanova (2015) severity in an evolving safety-critical software system
Yousef (2014) Extracting software static defect models using data mining 2014 ELSEVIER ScienceDirect
Winkler and Biffl (2015) Focused inspections to support defect detection in 2015 Compendex SpringerLink
 automation systems engineering environments
Mäntylä and How are software defects found? The role of implicit defect 2014 ELSEVIER ScienceDirect
Itkonen (2014) detection, individual responsibility, documents and knowledge
Albayrak and Investigation of individual factors impacting the effectiveness 2014 Compendex SpringerLink
Carver (2014) of requirements inspections: A replicated experiment
Lopes et al. (2015) MoLVERIC: An inspection technique 2015 Scopus
 for MoLIC diagrams
Gopinath et al. (2014) Mutations: How close are they to real faults? 2014 IEEE Xplore

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

479

Table 3. Continue
Felderer et al. (2014) On the role of defect taxonomy types for testin 2014 IEEE Xplore
 requirements: Results of a controlled experiment
Rodriguez et al. (2014) Preliminary comparison of techniques for dealing with 2014 ACM Digital Library
 imbalance in software defect prediction
Femmer et al. (2014) Rapid requirements checks with requirements smells: 2014 ACM Digital Library
 Two case studies
Yusop et al. (2016) Reporting usability defects: Do reporters report what 2016 ACM Digital Library
 software developers need?
Cavezza et al. (2014) Reproducibility of environment-dependent software 2014 IEEE Xplore
 failures: An experience report
Langenfeld et al. (2016) Requirements defects over a project lifetime: An 2016 Compendex SpringerLink
 empirical analysis of defect data from a 5-year
 automotive project at bosch
Saito et al. (2014) RISDM: A requirements inspection systems design 2014 IEEE Xplore
 methodology -perspective-based design of the pragmatic
 quality model and question set to SRS
Travassos (2014) Software defects: Stay away from them. Do inspections! 2014 IEEE Xplore
Silva and Vieira (2016) Software for embedded systems: A quality assessment 2016 ACM Digital Library
 based on improved ODC taxonomy
Teixeira et al. (2015) Verification of software process line models: A 2015 Scopus
 checklist-based inspection approach

Fig. 5. Answering research questions based on selected studies per data sources and research types (Filter #3)

In an overall analysis, IEEE Xplore and ACM Digital
Library provided the most important defect types studies,
whereas IEEE Xplore, ACM Digital Library, Compendex,
ELSEVIER Science Direct and Google Scholar identified
important inspection techniques.

Defect Types x RQs x Research Types

Figure 6 presents the identified defect types,
classified according to their research type. We can
observe that RQ1 was answered based on the
identification of several different and unique defect
types. These, were identified mostly as 14 primary
studies related with Ambiguities defect type,
Inconsistencies (12), Incorrect Facts (10), Omissions
(9) and 32 Others defect types amongst 12 of 17

selected studies for RQ1. On the other hand, RQ1 and
RQ2, respectively, was answered taking 9 occurrences
of research type into account, in which most of the
studies are Validation Research and Solution Proposal
with several experiments support inspection
techniques/approaches.

In addition, based on Fig. 6, requirement
engineering provided a means to identify and adapt
defect types for several different
techniques/approaches. Most of the studies takes
IEEE standards as a basis, such as IEEE (1998a).
These standards contain recommended practices
characterized by establishing a well-defined
requirement document, thus providing a means for
proposing defect types taxonomies (see Section 4.3).

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

480

Taking the word cloud of Fig. 7 into consideration, it
highlights the most frequent defect types identified in
this study, such as Ambiguities, Inconsistencies and
Incorrect Facts. Omissions and Extraneous Information
are practically in the same number of occurrence. In
overall, the Others unique defect types almost does
appears in the same times compared to the Extraneous
Information defect type, according to RQ2 (Fig. 6).
Remaining defect types barely appear in proposed
taxonomies from the selected studies retrieved in this SM.

In the next sections, Fig. 7 and 9 were based on
primary studies of Filter #2 and Filter #3.

Defect Types x Software Artifacts

Figure 8 presents the identified defect types based on
selected primary studies, classified according to their
software artifacts. We can observe that RQ1 was
answered based on the identification of number for each
defect type and software artifacts related to primary

studies. RQ2 is not answered in Fig. 8 due to the fact of
being related to studies and several experiments
supporting inspection techniques/approaches.

According to Fig. 8, the defect type Ambiguities
occurs 14 times compared to the defect types such as
Inconsistencies, Incorrect Facts, Omissions and
Extraneous Information, which appear approximate.
Others different defect types occur 32 times distributed
in the primary studies.

As mentioned in this study, the defect types were
adapted from requirements engineering. Thus, Fig. 8
presents the defect types with regard to Software
Requirements Document (5 times), as well as
complemented with Use Cases Diagrams (5 times). In
addition, each Class and State UML Diagrams have a
frequency below average (2 times) compared to Other
Diagrams (6 times).

Related artifacts with Feature Models appear 2 times.

Fig. 6. Answering research questions based on selected studies per defect types and research types (Filter #3)

Fig. 7. Word cloud for most frequent defect types

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

481

Fig. 8. Answering research question RQ1 based on selected studies per defect types and software artifacts (Filter #3)

Fig. 9. Software inspection technique types based on the selected studies per RQ and research type

Inspection Technique Type x RQs x Research Types

Figure 9 illustrates the distribution of inspection
techniques with relation to research type and RQ1 and RQ2.

By analyzing the studies, we can observe that the
majority of software inspection techniques is directly
related to Validation Research and Evaluation Research.
Therefore, RQ2 was answered by studies related to
controlled experiments, empirical studies and case

studies. In this sense, RQ1 has few studies with regard to
inspection techniques, as its objective is to identify
defect types rather than inspection techniques.

According to Fig. 9, the most frequent inspection
technique types are: Checklist-Based Reading (CBR) (48
occurrences), Perspective-Based Reading (PBR) (27
occurrences), Ad hoc (17 occurrences) and Scenario-
Based Reading (SBR) (14 occurrences).

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

482

Different software inspection techniques, other than the
ones mentioned, occur with less frequency, such as: Defect-
Based Reading (DBR), Usage-Based Reading (UBR) and
Object-Oriented Reading Technique (OORT). However, all
of them are essential for the research field, as we can see in
the discussion presented in next section.

Discussion of the Selected Studies

This section presents a discussion on the final selected
papers (32) of this study. Table 4 lists such studies, as well
as respective RQs, Authors, Title, Year, Research Type,
Data Source, Publication Type and Venue. A discussion is
presented based on RQ1 and RQ2, as follows.

Research Question 1 (RQ1a and RQ1b)

Figure 10 presents the results obtained that answered
RQ1 with regard to which defect types empirically or non-
empirically evidenced. Furthermore, a brief discussion of
each study is presented after analyzing the number of times
of environments or domains applied such defect types.

Observing the final set of selected studies in the Fig. 10,
it is possible highlight that major number of studies (14 of
17) was empirically evidenced by means of experiments,
case studies or empirical studies. The three other studies
(non-evidenced) not conduct any empirical evaluation.

The main defect types empirically evidenced that appear
most times are: Ambiguities (12), Inconsistencies (10),
Incorrect Facts (8), Omissions (7), Extraneous Information
(6) and Others defect types (10) which are contained in
several studies. The non-evidenced defect types appear in
equal number of times (2) for three other studies mentioned.

Analyzing the environments or domains applied such
defect types empirically evidenced, is possible emphasize
that Requirements Engineering domain contains most
number of the studies (7). Such common defect types
existing in the literature occurs in the studies of Anda and
Sjøberg (2002; Belgamo et al., 2005; Mello et al.,
2010; Alshazly et al., 2014; Saito et al., 2014; Naveed
and Ikram, 2015; Langenfeld et al., 2016). The Lopes et al.
(2015) is another study (non-evidenced) that also addresses
the Engineering Requirements domain and such defect
types. Respectively in this order, a brief discussion of each
study of such domain is presented below:

Anda and Sjøberg (2002) proposed a taxonomy for
defect types that can be used in checklist-based software
inspections, especially for functional requirements and
use cases diagrams. Such taxonomy comprises the
following defect types (described in Section 2):
Omissions, Incorrect Facts, Inconsistencies Ambiguities,
Extraneous Information and Consequences. In addition
anda and Sjøberg (2002) performed two experiments to
validate the proposal, providing results to improve such
a proposal, as well as evidence of the real usefulness of
checklist-based inspections.

The technique proposed by Belgamo et al. (2005),
named Technique for Use Case Model-based

Construction and Construction Requirements Document
Analysis (TUCCA), encompasses two different reading
techniques, which are different from checklist-based
techniques. In addition, the feasibility study conducted by
Belgamo et al. (2005) provided important results when the
TUCCA technique is compared to checklist-based
inspection techniques. Thus, defect types that might be
applied to inspection techniques based on checklists were
identified. Such study mentions the following defect types
with relation to the technique used throughout TUCCA
requirements to detect defects: Omission, Incorrect Fact,
Inconsistency, Ambiguity and Extraneous Information.

Mello et al. (2010) support the identification of defects
in activity diagrams, in which software inspection
techniques might be applied. Thus, the research presents a
checklist-based technique, as well as its specification of
defects. It is concerned on supporting the review of activity
diagrams for requirements specification activities.
According to the following defect types were adapted from
the literature: Omission, Ambiguity, Inconsistency, Incorrect

Fact and Extraneous Information.

Alshazly et al. (2014) investigated problems in the
defects detection and common existing inspection
techniques in the literature. This work also presents a
combined reading technique based on taxonomy to
detect different defect types in requirements. The main
defect types identified were: Omission, Superfluous,
Ambiguous, Inconsistent, Not-conforming to standards,
Incorrect, Not-implementable and Risk-prone; and the
following techniques: Ad hoc; Requirements Validation
Techniques (RVTs); CBR; PBR; SBR; UBR and DBR.

Saito et al (2014) proposed RISDM (Requirements
Inspection System Design Methodology) a technique set
based on the PQM (Pragmatic Quality Model) and PBR.
In such paper, it was analyzed more than 140 projects of
NTT DATA for five years. Taking into account the
analyzed characteristics such study reveals a relationship
between cost and level of quality to predicting risks in
the maturity of SRS (Software Requirements
Specification). The following defect types were
identified in such study: Modifiable, Traceable,
Verifiable, Unambiguous, Ranked for importance and/or

stability, Complete and Correct.
Naveed and Ikram (2015) present an experimental

study conducted to identify defects from the UCS
(Use Case Specification) and compare CBR and PBR
techniques in industry to propose a novel checklist.
According to the obtained results, PBR detected more
defects, but the effort (person hours) is major
compared to CBR. CBR has more efficiency and
reports less false positive defects in comparison to
PBR. CBR is recommended for medium to small
companies. The following defect types were identified
in such study: Ambiguity, Incorrectness, Inconsistency

and Incompleteness.

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

483

Table 4. Final set of primary studies (ordered by RQ)
 Research Publication Publication
RQ Author(s) Title Year type Data source type venue
RQ1 Anda and Sjøberg Towards an inspection technique for 2002 Solution ACM Digital Conference SEKE
 (2002) use case models Proposal Library
RQ1 Travassos (2014) Software defects: Stay away from 2014 Solution IEEE Xplore Conference QUATIC
 them. Do inspections! Proposal
RQ1 Travassos et al. Detecting defects in object-oriented 1999 Solution ACM Digital Conference OOPSLA
 (1999) Designs: Using reading techniques to Proposal Library
 increase Software quality
RQ1 Belgamo et al. TUCCA Improving the effectiveness 2005 Solution IEEE Xplore Conference ESEM (ISESE)
 (2005) of use case construction and Proposal
 requirement analysis
RQ1 Cunha et al. (2012) A set of inspection technique on 2012 Solution Google Conference SEKE
 software product line models Proposal Scholar
RQ1 Mello et al. (2012) Checklist-based inspection technique 2012 Solution IEEE Xplore Conference SBCARS
 for feature models review Proposal
RQ1 Mello et al (2010) Activity diagram inspection on 2010 Solution IEEE Xplore Conference SBES
 requirements specification Proposal
RQ1 Munson et al Software faults: A 2006 Evaluation ELSEVIER Journal ADVENGSOFT
 (2006) quantifiable definition Research ScienceDirect
RQ1 Teixeira et al. Verification of software process line 2015 Validation Scopus Conference CIBSE
 (2015) models: A checklist-based Research
 inspection approach
RQ1 Geraldi et al. Checklist-based inspection of Smarty 2015 Validation Compendex Conference ICEIS
 (2015) variability models – proposal and Research SCITEPRESS
 empirical feasibility study
RQ1 Naveed and A novel checklist: comparison of CBR 2015 Evaluation Compendex Journal CCIS
 Ikram (2015) and PBR to inspect use Research SpringerLink
 case specification
RQ1 Rocha et al. (2015) Automating test-based inspection of 2015 Solution Compendex Journal Softw. Qual. J.
 design models Proposal SpringerLink
RQ1 Lopes et al. (2015) MoLVERIC: An inspection technique 2015 Solution Scopus Conference SEKE
 for MoLIC diagrams Proposal
RQ1 Kasubuchi et al. An empirical evaluation of the 2015 Validation IEEE Xplore Conference ICSME
 (2015) effectiveness of inspection scenarios Research
 developed from a defect repository
RQ1 Langenfeld et al. Requirements defects over a project 2016 Evaluation Compendex Conference FSQ
 (2016) lifetime: An empirical analysis of Research SpringerLink
 defect data from a 5-year automotive
 project at Bosch
RQ1 Alshazly et al. Detecting defects in software 2014 Evaluation ELSEVIER Journal AEJ
 (2014) requirements specification Research ScienceDirect
RQ1 Saito et al. (2014) RISDM: A requirements inspection 2014 Evaluation IEEE Xplore Conference RE
 systems design methodology - Research
 perspective-based design of the
 pragmatic quality model and
 question set to SRS
RQ2 Brykczynski A survey of software 1999 Evaluation ACM Digital Journal ACM SIGSOFT
 (1999) inspection checklists Research Library
RQ2 Staron et al (2005) An empirical assessment of using 2005 Validation ACM Digital Conference WoSQ
 stereotypes to improve reading Research Library
 techniques in software inspections
RQ2 Denger and Paech An integrated quality assurance 2004 Solution Google Conference LNI, GI
 (2004) approach for use case Proposal Scholar
 based requirements
RQ2 Biffl and Halling Software product improvement 2000 Validation IEEE Xplore Conference EUROMICRO
 (2000) with inspection Research
RQ2 Laitenberger et al. An internally replicated quasi- 2001 Validation IEEE Xplore Journal TSE
 (2001) experimental comparison of checklist Research
 and perspective-based reading
 of code documents
RQ2 Sabaliauskaite et al. Assessing defect detection performance 2004 Validation ELSEVIER Journal INFSOF (IST)
 (2004) of interacting teams in object-oriented Research ScienceDirect
 design inspection
RQ2 Sabaliauskaite et al. An experimental comparison of 2002 Validation ACM Digital Conference ESEM (ISESE)
 (2002a) checklist-based reading and Research Library
 perspective-based reading for UML
 design document inspection

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

484

Table 4. Continue

RQ2 Thelin et al. (2003) Prioritized use cases as a vehicle for 2003 Validation IEEE Xplore Journal IEEE Software
 software inspections Research
RQ2 Cox et al. (2004a) An experiment in inspecting the 2004 Validation Google Journal JRPIT
 quality of use case descriptions Research Scholar
RQ2 Mohammed et al. An experimental study on detecting 2015 Validation ACM Digital Conference ICEMIS
 (2015) semantic defects in object-oriented Research Library
 programs using software
 reading techniques
RQ2 Ma et al. (2014) A defects classification method for 2014 Solution Compendex Conference ICCEIS
 aerospace measurement and Proposal
 control software
RQ2 Gopinath et al. Mutations: how close are they 2014 Validation IEEE Xplore Conference ISSRE
 (2014) to real faults? Research
RQ2 Silva and Vieira Software for embedded systems: A 2016 Solution ACM Digital Conference SAC
 (2016) quality assessment based on Proposal Library
 improved ODC taxonomy
RQ2 Silva et al (2016) A field study on root cause analysis 2016 Evaluation ELSEVIER Journal RESS
 of defects in space software Research ScienceDirect
RQ2 Felderer et al. On the role of defect taxonomy types 2014 Evaluation IEEE Xplore Conference SEAA
 (2014) for testing requirements: Results of Research
 a controlled experiment

Fig. 10. Answering RQ1 based on empirical evidence of final set of selected studies per defect types and environments/domains (Filter #3)

Langenfeld et al. (2016) identified nine defect
sources taking in to account requirements defects
analyzed 588 requirements reported on an automotive
project at Bosch. The most costly and common defect
types are incomplete and inconsistency according to
refined IEEE 830 standard (IEEE, 1998a). The results
obtained to authors allowing decisions improved for the
requirements engineering process enabling adopt a new
classification of the requirements defects. The following
defect types were identified in such study: Incorrect,
Ambiguous, Incomplete, Inconsistent, Not ranked, Not

verifiable, Not modifiable and Not traceable.
Lopes et al. (2015) proposed MoLVERIC, a inspection

technique for Modeling Language for Interaction
Conversation (MoLIC) diagrams applying cards with
verification items in the inspections. A pilot study was
conducted to verify feasibility and improve such
technique. The Travassos et al. (2001) taxonomy of defect

types was adopted: Omission, Ambiguity, Incorrect Fact,
Inconsistency and Extraneous Information.

The Object Oriented Design UML Model domain
contains 3 studies. Two studies are empirically evidenced
and one study is non-evidenced. Thus, such common defect
types existing in the literature occurs in the three studies of
Travassos et al. (1999; Rocha et al., 2015; Travassos, 2014)
non-evidenced. The next discussions of each study of such
domain are presented as follows:

The study performed by Travassos et al. (1999)
deserves attention for highlighting software defect types
related to specific object-oriented modeling. Thus,
Travassos et al. (1999) present a taxonomy of defect
types roughly equivalent to the taxonomy proposed by
Anda and Sjøberg (2002). However, Travassos et al.
(1999) taxonomy is applied to a set of reading
techniques, named Traceability-Based Reading (TBR),
which was experimentally evaluated in the study. The

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

485

defect types applied to the TBR technique are (discussed
in Section 2): Omission, Incorrect Fact, Inconsistency,
Ambiguity and Extraneous Information.

Rocha et al. (2015) proposes an automating test-
based inspection, named Automated Guided Inspection
Technique (AGI), adopting Model-Driven Architecture
(MDA) for UML models. The authors of such study
conducted three case studies to observe the effectiveness
of AGI. The results obtained reveals good coverage of
different defect types and defect detection rate per time
is similar to the other techniques: PBR; Guided
Inspection (MGI) and OORT. These facts are due the AGI
not depend on human intervention. The following defect
types were identified in this study: Omission, Incorrectness,
Ambiguity, Inconsistency and Extraneous Information.

Travassos (2014) discusses the benefits of software
inspections to evaluate feasibility and effectiveness to
support identification of defects existing in most
software projects. He presents the main defect types and
inspection techniques published in the literature. The
defect types are: Omission, Incorrect Fact, Inconsistency,
Ambiguity, Extraneous Information and Others; and the
techniques: Ad hoc; CBR; SBR; PBR; UBR; OORT and
Web Design Perspectives-based Usability Evaluation.

The Software Product Line domain contains 3 studies
empirically evidenced. Thus, such common defect types
existing in the literature occurs in the studies of Cunha et al.
(2012; Mello et al., 2012; Geraldi et al., 2015). A brief
discussion of such studies and respective domain is
presented as follows:

Cunha et al. (2012) proposes a set of inspection
techniques, named Software Product Lines Inspection
Techniques (SPLIT), aiming at evaluating Software
Product Line models. Furthermore, the SPLIT technique
takes into consideration Software Requirements
Document, Product Map and Feature models for defect
detection. In this context, to assess this set of inspection
techniques, an experiment was carried out to compare an
inspection approach based on defect types to SPLIT. The
experimental results favored SPLIT, as a larger amount
of defects was found compared to the inspection
approach based on defect types. Therefore, the defect
types applied using SPLIT technique are: Redundancies,
Anomalies and Inconsistencies.

Mello et al. (2012) proposes a checklist-based
inspection technique to support the identification of
defects in feature models of Software Product Lines,
named FMCheck. The main difference between
FMCheck and other techniques of software inspection
relies on which artifact the checklist is applied to. In
FMCheck, the checklist is applied to the feature
model, whereas UML models are inspected in
different techniques. The following defect types
identified using FMCheck were adapted from
Travassos et al. (1999): Omission, Incorrect Fact,
Inconsistency, Ambiguity and Extraneous Information.

Geraldi et al. (2015) proposes SMartyCheck, a
checklist-based software inspection technique for SPL
use case and class variability models according to the
Smarty approach. The empirical study conducted in
such work provides incipient evidence of the
SMartyCheck feasibility and improves such technique
by means of feedback obtained from several experts.
The following defect types are supported by SMarty-
Check: Business Rule, Incomplete, Inconsistency,
Incorrect, Incorrect Fact, Ambiguous, Non-

modifiable, Anomaly, Instable, Infeasible, Omission,
Extraneous Information and Intentional Deviation.

The Software Process Line domain contains only the
Teixeira et al (2015) study empirically evidenced. Such
study is discussed as follows: Teixeira et al (2015)
proposed a preliminary version of PVMCheck, a
checklist-based inspection technique to detect defects in
Software Process Line (SPrLs) feature models
represented using Odyssey-Process-FEX notation. This
study was based on experience to previous work of
Mello et al. (2012) (FMCheck) and provided better
understand to literature with regard to inspections in
Software Product Line (SPL). Furthermore, PVMCheck
was evaluated by means of a quasi-experiment for
observing its feasibility compared to Ad hoc technique
inspections. The following taxonomy of defect types was
adopted: Omission, Incorrect Fact, Inconsistency,
Ambiguity and Extraneous Information.

The Inspecion Scenarios and Other environments or
domains, respectively contains, only the Kasubuchi et al.
(2015) study empirically evidenced and the Munson et al.
(2006) study non-evidenced. Such studies are
discussed as follows:

Kasubuchi et al. (2015) empirically investigated the
effectiveness of inspection scenarios developed from a
defect repository. These scenarios were investigated
throughout of cluster analysis developed based on
effectiveness. Based on obtained results, nine distinct
defects were identified corresponding inspection
scenarios. Furthermore, inspection scenarios also can be
obtained by the checklist proposed as: Value-Based
Review (VBR). The following defect types were
identified in such study: Omitted, Ambiguous, Incorrect,
Insufficient and Misleading; and the following
techniques: VBR and UBR.

On the other hand, compared to the previously
mentioned studies, the research conducted by Munson et al.
(2006) performs attempts to quantify software failures by
taking defect as a special type of failure based on evaluation
of failures throughout a specific software grammar.

In summary, the studies presented in this section
answered RQ1 and provided defect types taking into
account by software inspection techniques,
encompassing studies such as: (i) new adapted
taxonomies for detect defect types and different
artifacts (Anda and Sjøberg, 2002; Travassos et al.,

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

486

1999); (ii) new inspection techniques evaluated by
experiments (e.g., TUCCA (Belgamo et al., 2005),
SPLIT (Cunha et al 2012), FMCheck (Mello et al.,
2012), PVMCheck (Teixeira et al., 2015; SmartyCheck
(Geraldi et al., 2015), AGI (Rocha et al., 2015) and
MoLVERIC (Lopes et al., 2015); (iii) experiments
that presented defect types based on requirements
engineering and compared inspection techniques
(Alshazly et al., 2014; Kasubuchi et al., 2015;
Langenfeld et al., 2016); and (iv) an overview of
existing defect types by Travassos (2014) and
emphasis on failures by Munson et al. (2006).

Research Question 2 (RQ2a and RQ2b)

Figure 11 presents the results obtained that answered
RQ2 with regard to which inspection
techniques/approaches provide evidence of defect types
and has documented evaluation results. A brief
discussion of each study is presented after analyzing the
number of times of software inspection
techniques/approaches applied such defect types.

Observing the final set of selected studies in the
Figure 11, it is important highlight that all number of
inspection techniques/approaches was documented by
means of experiments, case studies or empirical studies.
Furthermore, the main defect types evidenced by means
of software inspection techniques/approaches that occurs
most times in studies are: Ambiguities (11),
Inconsistencies (9), Incorrect Facts and Omissions (7),
Extraneous Information (6) and Others defect types (13)
which are contained in several studies.

Analyzing the software inspection
techniques/approaches applied such defect types, is
possible emphasize that CBR technique contains most
number of the studies (10), PBR (6), SBR (1), Ad hoc
(1) and Other Techniques (6) in several studies. Thus,
such common defect types existing in the literature
occurs in the studies of Brykczynski (1999; Biffl and
Halling, 2000; Laitenberger et al., 2001; Sabaliauskaite
et al., 2002a; 2004; Thelin et al., 2003; Denger and
Paech, 2004; Cox et al., 2004a; Staron et al., 2005;
Mohammed et al., 2015). A brief discussion of each study
of such techniques/approaches is presented as follows:

Research conducted by Brykczynski (1999) is aimed at
identifying which items of checklists developed by Fagan
(1976; 1986) between the 70’s and 80’s, are considered
important to software inspection processes. Thus, it was
analyzed 117 checklists from 24 different sources in order
to validate the research. Therefore, it allowed observing that
conducting inspections by means of checklist-based reading
technique is effective. In addition, this technique is widely
adopted by industry when inspecting artifacts based on
checklists in different software contexts.

The study performed by Biffl and Halling (2000)
experimentally investigated the effect of CBR, SBR and
PBR reading techniques and detection of defects

involved in quality inspection process. Therefore,
obtained results corroborated the effectiveness of such
techniques. The CBR technique obtained better
effectiveness results than PBR in most cases.

The quasi-experiments performed by Laitenberger et al.
(2001) also established comparisons to identify the
effectiveness and cost of defects detection in the PBR
technique with respect to CBR. In order to evaluate this
scenario, two replications were carried out taking
practitioners from Bosch Telecom GmbH into
consideration. Then, overall obtained results provided
evidence that PBR is more effective than CBR. PBR
technique reduced the cost per defect found and contributed
to the detection of a larger amount of defects during
inspections meetings. In addition, it achieved lower costs
for identifying defects based on the effort of the subjects.

Sabaliauskaite et al. (2002a) evaluated the
performance of two inspection groups throughout
experiments using two reading techniques: CBR and PBR.
In this scenario, obtained results from comparing these
techniques reveal no significant differences between them.

Another study conducted by Sabaliauskaite et al. (2004)
also compared the CBR and PBR techniques, but in a
different context from their previous study (Sabaliauskaite
et al., 2002a). It presents an evaluation of inspected UML
documents design. The following results were obtained:
Similar effectiveness in detecting defects in both inspection
techniques; reviewers who used PBR spent less time
inspecting artifacts than CBR reviewers; and cost per
defects found using CBR is less than that using PBR.

Another important experimental study conducted by
Thelin et al (2003) presents the Usage-Based Reading
(UBR) technique, which was experimentally evaluated
by comparing it with the CBR technique. It was analyzed
by means of three tests, which evaluated the efficiency
(defects found per hour), efficacy (percentage of
defects found) and preparation (inspection time in
minutes). Thus, the experiment indicated that the
UBR technique is significantly more efficient and
effective than the CBR technique.

The study of Denger and Paech (2004) presents an
integrated approach to ensure use case quality. Such an
approach combines use case guidelines and inspection
techniques for use cases. The approach is evaluated by
means of simulations. Thus, the proposed combination
is performed based on defects classification and
classes of defects, which were identified taking
quality criteria into account. Denger and Paech (2004)
only evaluated CBR and PBR techniques; thus, both
were practically equal in detecting defects. Therefore,
by means of experimentation, obtained results
provided initial evidence on increasing efficiency and
effectiveness to ensure quality of use cases.

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

487

Fig. 11. Answering RQ2 based on evaluation results documented of final set of selected studies per defect types and inspection

techniques/approaches (Filter #3)

Cox et al. (2004a) presented experimental results at
the application of a checklist-based inspection to the
technical process of use cases description or
specification. Such an experiment compared a checklist-
based technique to an Ad hoc technique based on a
group of subjects, who overall identified more defects
applying the checklist-based technique.

It is important to highlight the study conducted by
Staron et al. (2005), which provided evidence, based on
several experiments, that the stereotypes present in UML
models contribute to ensure software inspection process
quality, as well as the reduction of defects by applying
CBR techniques and PBR. Thus, obtained results
evidenced that the CBR technique is more efficient and
PBR is more effective. Therefore, stereotypes are essential
to ensure quality of the carried out software inspections.

Mohammed et al. (2015) present a controlled
experimental study to compare the effectiveness and
efficiency of three reading techniques: CBR; Functional-
Based Reading (FBR) and Systematic-Based Reading
based on an approach to discovering semantic defects in
object oriented programming. The results of such study
showed that FBR technique is more productive and
effective than the Systematic-Based Reading and CBR.

The Independent Software Verification and Validation
(ISVV) approach occurs 2 times (2 studies) in the studies
of Silva and Vieira (2016; Silva et al., 2016). Thus, a brief
discussion of such studies is presented as follows:

Silva and Vieira (2016) proposed adaptations to the
ODC taxonomy applied to a real dataset with 1070 ISVV
issues selected and classified from space critical systems.
The results obtained from this new classification scheme
allowed to analyze the classification gaps, clustering and
reclassifying this dataset. Thus, in another study, Silva et

al. (2016) presented a field study applying an improved
ODC and ISVV in four critical space software projects,
detecting 1070 defects through root cause analysis.
According to the method of their work can also prevent

defects and optimize V&V activities throughout a
proposal of a generic process that suggest corrections of
defects. The following adaptations were applied in ODC:
Traceability/ Compatibility, Consistency/Completeness,
Standards conformance, Rare situation, White box path

coverage, HW/SW configuration,
Build/Package/Environment and Interface.

The Others Techniques occurs 6 times in 4 studies.
Thus, such common defect types existing in the literature
occur in the studies of based on techniques: Fault
Injection Technique in Gopinath et al. (2014), Sequence-
oriented Test Design (TS) and Performance-oriented
Test Design (TP) in Felderer et al. (2014), UBR in
Thelin et al (2003) and Systematic-Based Reading and
FBR in Mohammed et al. (2015). Thus, a brief
discussion of such studies of such techniques/approaches
is presented as follows:

Gopinath et al. (2014) attempted identify real
faults in mutations analysis applying patches in
different programming languages (Java, C, Python,
Haskell) for detect distinct bugs. Based on results
obtained, mutation operators are not representative of
real faults. Furthermore, Competent Programmer
Hypothesis is not applicable in this scenario. The
authors mentioned that ODC is not inappropriate in
the mutation analysis. However, ODC included
functional, algorithmic or serialization errors.

Felderer et al. (2014) investigated and conducted a
controlled experiment with students to compare the
influence of two types of top-level defect categories to
possibly create new defects taxonomies. The results
obtained tested requirements as well as their consequences
in an industrial application. Researchers can use this study
as a basis for proposing new taxonomies.

No technique was mentioned or discussed in the
study of Ma et al (2014). The authors present a
systematic classification method for aerospace
measurement and control software defects. The defect

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

488

types of proposed classification method were adapted
from classification methods in the literature as:
Orthogonal Defect Classification (ODC); Putnam
classification method; Thayer classification method;
and IEEE Std. 1044-1993. Taking into account the
detection of specific defect types, this classification
method can corroborate with the improvement of the
stability and effectiveness of the tests of aerospace
measurement and control software.

In summary, the studies presented in this section
answered RQ2 and provide evidence of the existing
inspection techniques or approaches associated with
defect types, encompassing studies, such as: (i) several
academic validation studies that compare and evaluate
the effectiveness of the main inspection techniques (e.g.,
CBR, PBR, SBR, Ad hoc, among others) in distinct
contexts (Biffl and Halling, 2000; Cox et al 2004a;
Denger and Paech, 2004; Laitenberger et al., 2001;
Mohammed et al., 2015; Sabaliauskaite et al., 2002a;
2003; Staron et al., 2005; Thelin et al., 2003); (ii) case
studies in industry (Felderer et al., 2014; Ma et al., 2014,
Silva and Vieira 2016, Silva et al., 2016); and (iii)
application and adaptation of systematic classifications
such as ODC (Gopinath et al., 2014; Ma et al 2014;
Silva and Vieira 2016; Silva et al 2016).

Results Overview of the Selected Studies

In an overall analysis, the diversity of study types is
evident as they encompass: (i) Proposals of taxonomies
for defect types, experimentally evaluated for specific
UML models; (ii) different proposals and comparisons
of techniques or approaches for software inspection and
detection of defects; (iii) several experiments taking
different software inspection techniques into
consideration; and UML models quality evaluation
studies by means of stereotypes that may be related to
software inspection techniques.

Interestingly, the retrieved and selected studies in this
SM are presented in a motivating perspective. Amongst
the discussed studies we observed distinct researches and
issues in several scenarios, mostly experimental.
Therefore, this carried out SM is considered essential to
identify studies that might mitigate any kind of support
when detecting defects in software inspection techniques.

It is important to emphasize the taxonomies and
classification of defect types usually adapted for
detecting defects based on requirements engineering.
Thus, the defect types addressed in this SM can be used
independent both in inspection techniques and different
models (e.g., UML diagrams).

Amongst the main gaps identified between the
primary studies, the following are highlighted: (i) several
inspection techniques and respective defect types do not
encompass all existing UML models; (ii) taxonomies do
not propose new defect types or adapt all the main defect
types in the literature; (iii) several software engineering

artifacts are not inspected in software product lines or
process (e.g., Component or Activity SPL UML
diagrams, BPM (Business Process Management), among
others); and (iv) inspection techniques and taxonomies
could be adapted or improved to specific contexts, such
as, agile methodology or PBR could be adapted to
inspect artifacts in security network systems.

As several experiments have been identified from the
discussed studies, they contribute to the understanding of
the existing defect types and inspection techniques in the
literature. They provide essential evidence for evolving
inspection techniques by identifying, adapting and
applying them to different defect types and contexts.

Threats to Validity

The following major threats to the validity of this
study are discussed as follows:

Research Questions

Two research questions and sub-questions were
defined for conducting this study. Such research
questions were analyzed and refined before being finally
drawn. We believe that more generic keywords returned
more important primary studies to the scope of this
study. However, this study was focused only on defect
types and software inspection techniques.

Data Sources

Four data sources were selected, which have been
considered essential for the software engineering
community based on several performed systematic
mappings and literature reviews. However, the more search
sources are taken into account, the larger the set of selected
studies might potentially be. Prospective secondary studies
should consider expanding the data source list.

Publication Bias

We cannot guarantee that all primary studies related
to this SM were retrieved. This issue may occur due to
the fact that the defined data source engines are not as
precise as we desire for processing and executing queries
based on the defined keywords.

Unfamiliarity with Other Fields

The improvement of the keywords and search strings
defined for this study could aid and optimize searching the
most important primary studies in other research areas. For
instance, primary studies of the information security area
could be investigated in order to identify what defect types
occur in computer networks infrastructure, taking defects
present in simpler and more complex networks into
account. Therefore, possible defect types present in such an
area were not considered in this study.

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

489

Conclusion

The main motivation for developing this study was
mapping existing software inspection defect types in the
literature aiming at providing taxonomies and
classifications to guide researchers and practitioners
conducting studies in this topic. Thus, by means of this
systematic mapping, new research can be performed in
order to evolve existing defect types and software
inspection techniques and/or proposing novel approaches
for inspecting software in several different contexts,
including industrial sets.

We adopted consolidated systematic guidelines
(procedures and criteria) presented by the literature in
this work to conduct this systematic mapping. Such
guidelines helped to organize and present an overview of
quantitative results obtained. In addition, these
procedures allowed characterize this SM and limited the
scope of the discussion of the primary studies simply.

The criteria used to determine the final set of the most
important defect types is related to the frequency (number
of times) they occur in primary studies selected through the
inclusion and exclusion criteria. These defect types are
arising from requirements engineering, which have been
adapted for different domains (e.g., Software Requirements
Document, UML diagrams and Feature Model).

At the time this study was conducted, the existing
literature on this research topic lacked studies on defect
detection considering several different contexts, such as
model-based inspection of software product lines,
reference architectures, model-driven architecture,
system-of-systems and human-computer interaction.
Thus, this SM provides a positioning and guidance to
other researchers and practitioners from different areas
that may consult the studies presented at the prospect of
adopting them in their research, as well as their defect
types. Such scenario allows proposing works that
integrate areas such as: embedded systems, distributed
systems and computer networks security.

By taking the obtained results of this study into
account, we provide evidence that most of the mapped
studies are related to different contexts, such as
experiments, proposals of new inspection techniques and
new taxonomies of defect types. Studies have been
conducted by large companies (IBM, NASA, JPL,
AT&T, Motorola, Nortel, Allianz, Bosch and others)
reporting that well-planned software inspections with
respective defect types adapted from the literature can
contribute to the detection of defects on the average of
80%, as well as improving software quality.

Furthermore, the results may help practitioners to
develop new products or automate support tools
throughout the use of the main defect types based on
taxonomies in the literature addressed by this
systematic mapping. We believe this contribution
allows industry to save time and money immediately
for possible further research.

Once this SM was carried out, we expect that the
obtained results might guide future work with an
emphasis on the already identified defect types and
software inspection techniques, as well as novel studies.
Furthermore, mitigate threats to validity by extending
unanswered possible research questions and their
derivatives considering an improvement in the inclusion
and exclusion criteria. In addition, new SMs might be
performed taking different data sources and keywords
into consideration.

Acknowledgment

The authors would like to thank CAPES/Brazil for
supporting this study.

Author’s Contributions

Ricardo Theis Geraldi: Contributed in the protocol
design, execution and analysis and interpretation and
sharing of this empirical study.

Edson OliveiraJr: Supported Ricardo T. Geraldi at
designing and filtering primary studies, as well as
analysis and interpretation of such studies. Both authors
equally contributed at writing and reviewing this paper.

Ethics

We declare no conflict of interest with relation to
the primary studies recovered in this systematic
mapping. In addition, as far as we know, no study in
this mapping contains ethical insufficiency.

References

Albayrak, Ö and J.C. Carver, 2014. Investigation of
individual factors impacting the effectiveness of
requirements inspections: A replicated experiment.
Empirical Software Eng., 19: 241-266.

Alshazly, A.A., A.M. Elfatatry and M.S. Abougabal,
2014. Detecting defects in software requirements
specification. Alexandria Eng. J., 53: 513-527.
DOI: 10.1016/j.aej.2014.06.001

Amoui, M., N. Kaushik, A. Al-Dabbagh, L. Tahvildari
and S. Li et al., 2013. Search-based duplicate
defect detection: An industrial experience.
Proceedings of the 10th IEEE Working Conference
on Mining Software Repositories, May 18-19,
IEEE Xplore Press, San Francisco, pp: 173-182.
DOI: 10.1109/MSR.2013.6624025

Anda, B. and D.I.K. Sjøberg, 2002. Towards an
inspection technique for use case models.
Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering,
Jul. 15-19, ACM Press, Ischia, Italy, pp: 127-134.
DOI: 10.1145/568760.568785

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

490

Bailey, J., D. Budgen, M. Turner, B.A. Kitchenham and
P. Brereton et al., 2007. Evidence relating to object-
oriented software design: a survey. Proceedings of
the 1st International Symposium on Empirical
Software Engineering and Measurement, Sep. 20-
21, IEEE Xplore Press, Madrid, Spain, pp: 482-484.
DOI: 10.1109/ESEM.2007.58

Barney, S., K. Petersen, M. Svahnberg, A. Aurum and H.
Barney, 2012. Software quality trade-offs: A
systematic map. Inform. Software Technol., 54:
651- 662. DOI: 10.1016/j.infsof.2012.01.008

Belgamo, A., S. Fabbri and J.C. Maldonado, 2005.
TUCCA: Improving the effectiveness of use case
construction and requirement analysis. Proceedings
of the International Symposium on Empirical
Software Engineering, Nov. 17-18, IEEE Xplore
Press, Noosa Heads, Qld., Australia, pp: 257-266.
DOI: 10.1109/ISESE.2005.1541835

Biffl, S. and M. Halling, 2000. Software product
improvement with inspection. A large-scale
experiment on the influence of inspection processes
on defect detection in software requirements
documents. Proceedings of the 26th Euromicro
Conference, Sep. 5-7, IEEE Xplore Press, Maastricht,
pp: 262-269. DOI: 10.1109/EURMIC.2000.874427

Biffl, S. and M. Halling, 2003. Investigating the defect
detection effectiveness and cost benefit of nominal
inspection teams. Trans. Software Eng., 29: 385-397.
DOI: 10.1109/TSE.2003.1199069

Biffl, S., 2003. Evaluating defect estimation models
with major defects. J. Syst. Software, 65: 13-29.
DOI: 10.1016/S0164-1212(02)00025-0

Biffl, S., B. Freimut and O. Laitenberger, 2001.
Investigating the cost-effectiveness of reinspections
in software development. Proceedings of the 23rd
International Conference on Software Engineering,
May 19-19, IEEE Xplore Press, Toronto, pp: 155-164.
DOI: 10.1109/ICSE.2001.919090

Bjarnason, E., P. Runeson, M. Borg, M. Unterkalmsteiner
and E. Engstr¨om et al., 2014. Challenges and practices
in aligning requirements with verification and
validation: a case study of six companies. Empirical
Software Eng., 19: 1809-1855.

Boehm, B. and V.R. Basili, 2001. Software defect
reduction top 10 list. J. Comput., 34: 135-137.
DOI: 10.1109/2.962984

Brykczynski, B., 1999. A survey of software inspection
checklists. Software Eng. Notes, 24: 82-89.

 DOI: 10.1145/308769.308798
Cavezza, D.G., R. Pietrantuono, S. Russo, J. Alonso and

K.S. Trivedi, 2014. Reproducibility of environment-
dependent software failures: An experience report.
Proceedings of the 25th International Symposium on
Software Reliability Engineering, Nov. 3-6, IEEE
Xpolore Press, Naples, Italy, pp: 267-276.

 DOI: 10.1109/ISSRE.2014.19

Chen, L., M.A. Babar and N. Ali, 2009. Variability
management in software product lines: A systematic
review. Proceedings of the 13th International Software
Product Line Conference, Aug. 24-28, Carnegie
Mellon University, San Francisco, pp: 81-90.

Cheng, B. and R. Jeffery, 1996. Comparing inspection
strategies for software requirement specifications.
Proceedings of the Australian Software
Engineering Conference, Jul. 14-18, IEEE Xplore
Press, Melbourne, pp: 203-211.

 DOI: 10.1109/ASWEC.1996.534137
Ciolkowski, M., O. Laitenberger abd S. Biffl, 2003.

Software reviews: The state of the practice. IEEE
Software, 20: 46-51.

Cooper, K., S. Liddle abd S. Dascalu, 2005. Experiences
using defect checklists in software engineering
education. Proceedings of the International
Conference on Computer Applications in Industry
and Engineering, Nov. 9-11, Sheraton Moana
Surfrider, Honolulu, Hawaii, USA, pp: 402-409.

Cox, K., A. Aurum and R. Jeffery, 2004a. An experiment in
inspecting the quality of use case descriptions. J. Res.
Pract. Inform. Technol., 36: 211-229.

Cox, K., R. Jeffery and A. Aurum, 2004b. A use case
description inspection experiment. University of
New South Wales - School of Computer Science
and Engineering, Australia.

Cunha, R., T.U. Conte, E.S. Almeida and J.C.
Maldonado, 2012. A set of inspection techniques on
software product line models. Proceedings of the
24th International Conference on Software
Engineering and Knowledge Engineering, Jul. 1-3,
Hotel Sofitel, Redwood City, San Francisco Bay,
USA, pp: 657-662.

Czibula, G., Z. Marian and I.G. Czibula, 2015. Detecting
software design defects using relational association
rule mining. Knowledge Inform. Syst., 42: 545-577.

Denger, C. and B. Paech, 2004. An integrated quality
assurance approach for use case based
requirements. GI-Edition-Lecture Notes in
Informatics (LNI) pp: 59-74.

Denger, C., M. Ciolkowski and F. Lanubile, 2004.
Investigating the active guidance factor in reading
techniques for defect detection. Proceedings of
the International Symposium on Empirical
Software Engineering, Aug. 20-20, IEEE Xplore
Press, Redondo Beach, pp: 219-228.

 DOI: 10.1109/ISESE.2004.1334909
Dunsmore, A., M. Roper and M. Wood, 2000. The

role of comprehension in software inspection. J.
Syst. Software, 52: 121-129.

 DOI: 10.1016/S0164-1212(99)00138-7
Fagan, M., 2002. A History of Software Inspections. 1st

Edn., Springer, Berlin Heidelberg.

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

491

Fagan, M.E., 1976. Design and code inspections to
reduce errors in program development. IBM Syst. J.,
15: 182-211. DOI: 10.1147/sj.153.0182

Fagan, M.E., 1986. Advances in software inspections.
IEEE Trans. Software Eng., SE-12:744-751.

 DOI: 10.1109/TSE.1986.6312976
Felderer, M., A. Beer and B. Peischl, 2014. On the role

of defect taxonomy types for testing requirements:
Results of a controlled experiment. Proceedings of
the 40th EUROMICRO Conference on Software
Engineering and Advanced Applications, Aug. 27-
29, IEEE Xplore Press, Verona, Italy pp: 377-384.
DOI: 10.1109/SEAA.2014.37

Femmer, H., D.M. Fernández, E. Juergens, M. Klose and
I. Zimmer et al., 2014. Rapid requirements checks
with requirements smells: Two case studies.
Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering, Jun. 03-
03, ACM, Hyderabad, India, pp: 10-19.

 DOI: 10.1145/2593812.2593817
Freimut, B., O. Laitenberger and S. Biffl, 2001.

Investigating the impact of reading techniques on
the accuracy of different defect content estimation
techniques. Proceedings of the 7th International
Software Metrics Symposium, Apr. 4-6, IEEE
Xplore Press, London, pp: 51-62.

 DOI: 10.1109/METRIC.2001.915515
Geraldi, R.T., E. Oliveira Jr, T. Conte and I. Steinmacher,

2015. Checklist-based inspection of smarty variability
models - proposal and empirical feasibility study.
Proceedings of the 17th International Conference
on Enterprise Information Systems, Apr. 27-30,
SCITEPRESS, Science and Technology
Publications, Barcelona, Spain, pp: 268-276.
DOI: 10.5220/0005350102680276

Gilb, T. and D. Graham, 1993. Software Inspection. 5th
Edn., Addison-Wesley Longman Publishing Co.,
Inc. Boston, ISBN-10: 0201631814, pp: 496.

Gopinath, R., C. Jensen and A. Groce, 2014. Mutations:
How close are they to real faults? Proceedings of the
25th International Symposium on Software Reliability
Engineering, Nov. 3-6, IEEE Xplore Press, Naples,
Italy, pp: 189-200. DOI: 10.1109/ISSRE.2014.40

Grunbacher, P., M. Halling and S. Biffl, 2003. An empirical
study on groupware support for software inspection
meetings. Proceedings of the 18th IEEE International
Conference on Automated Software Engineering, Oct.
6-10, IEEE Xplore Press, Montreal, Que., pp: 4-11.
DOI: 10.1109/ASE.2003.1240289

Hamill, M. and K. Goseva-Popstojanova, 2015.
Exploring fault types, detection activities and failure
severity in an evolving safety-critical software
system. Software Quality J., 23: 229-265.

 DOI: 10.1007/s11219-014-9235-5

Hayes, J., I. Raphael, E. Holbrook and D. Pruett, 2006.
A case history of international space station
requirement faults. Proceedings of the 11th
International Conference on Engineering of
Complex Computer Systems, Aug. 15-17, IEEE
Xplore Press, Stanford, CA, pp: 1-10.

 DOI: 10.1109/ICECCS. 2006.1690351
He, L. and J. Carver, 2006. PBR Vs. checklist: A

replication in the N-fold inspection context.
Proceedings of the International Symposium on
Empirical Software Engineering, Sep. 21-22, ACM,
Rio de Janeiro, Brazil, pp: 95-104.

 DOI: 10.1145/1159733.1159750
Hentschel, M., R. Hähnle and R. Bubel, 2016. Can

formal methods improve the efficiency of code
reviews? Proceedings of the International
Conference on Integrated Formal Methods, Jun. 1-5,
Springer, Reykjavik, Iceland, pp: 3-19.

 DOI: 10.1007/978-3-319-33693-0_1
Hernandes, E.M., A. Belgamo and S. Fabbri, 2013.

Experimental studies in software inspection process
- a systematic mapping. Proceedings of the
International Conference on Enterprise Information
Systems, (EIS’13), SciTePress - Science and and
Technology Publications, pp: 66-76.

 DOI: 10.5220/0004454000660076
Hungerford, B., A. Hevner and R. Collins, 2004.

Reviewing software diagrams: A cognitive study.
Trans. Software Eng., 30: 82-96.

 DOI: 10.1109/TSE.2004.1265814
IEEE, 2012. System and software verification and

validation. Standard 1012-2012, IEEE.
IEEE, 1998a. Recommended practice for software

requirements specifications. Standard 830-1998, IEEE.
IEEE, 1998b. Software reviews. Standard 1028-1997,

IEEE.
Kalinowski, M. and G.H. Travassos, 2004. A

computational framework for supporting software
inspections. Proceedings of the 19th International
Conference on Automated Software Engineering,
Sep. 24-24, IEEE Xplore Press, Linz, Austria, pp:
46-55, DOI: 10.1109/ASE.2004.1342723

Kasubuchi, K., S. Morisaki, A. Yoshida and C. Ogawa,
2015. An empirical evaluation of the effectiveness
of inspection scenarios developed from a defect
repository. Proceedings of the International
Conference on Software Maintenance and
Evolution, Sep. 29-Oct. 1, IEEE Xplore Press,
Bremen, Germany, pp: 439-448.

 DOI: 10.1109/ICSM.2015.7332495
Kelly, D. and T. Shepard, 2003. An experiment to

investigate interacting versus nominal groups in
software inspection. Proceedings of the 2003
Conference of the Centre for Advanced Studies on
Collaborative Research, Oct. 06-09, IBM Press,
Ontario, Canada, pp: 122-134.

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

492

Kelly, D., T. Shepard, 2001. A case study in the use of
defect classification in inspections. Proceedings
of the conference of the Centre for Advanced
Studies on Collaborative Research, Nov. 5-7,
IBM Press, Toronto, Ontario, Canada, pp: 5-7.
DOI: 10.1145/782096.782103

Kitchenham, B.A., 2007. Guidelines for performing
systematic literature reviews in software
engineering. Proceedings of the International
Conference on Software Engineering, ACM Press,
pp: 1051-1052. DOI 10.1145/1134285.1134500

Kitchenham, B.A., D. Budgen and O.P. Brereton, 2010.
Using mapping studies as the basis for further
research - a participant-observer case study. Inform.
Software Technol., 53: 638-651.

 DOI: 10.1016/j.infsof.2010.12.011
Kovalenko, O., D. Winkler, M. Kalinowski. E. Serral

and S. Biffl, 2014. Engineering process
improvement in heterogeneous multi-disciplinary
environments with defect causal analysis. Commun.
Comput. Inform. Sci., 425: 73-85.

Laitenberger, O. and J.M. DeBaud, 2000. An
encompassing life cycle centric survey of software
inspection. J. Syst. Software, 50: 5-1.

 DOI: 10.1016/S0164-1212(99)00073-4
Laitenberger, O., C. Atkinson, M. Schlich and K.E.

Emam, 2000. An experimental comparison of
reading techniques for defect detection in fUMLg
design documents. J. Syst. Software, 53: 183-204.
DOI: 10.1016/S0164-1212(00)00052-2

Laitenberger, O., K. El Emam and T.G. Harbich, 2001.
An internally replicated quasi- experimental
comparison of checklist and perspective based
reading of code documents. IEEE Trans. Software
Eng., 27: 387-421. DOI: 10.1109/32.922713

Lange, C.F.J. and M.R.V. Chaudron, 2006. Effects of
defects in UML models: An experimental
investigation. Proceedings of the 28th International
Conference on Software Engineering, May 20-28,
ACM, Shanghai, China, pp: 401-411.

 DOI: 10.1145/1134285.1134341
Langenfeld, V., A. Post and A. Podelski, 2016.

Requirements defects over a project lifetime: An
empirical analysis of defect data from a 5-year
automotive project at Bosch. Proceedings of the
International Working Conference on
Requirements Engineering: Foundation for Defect
Types and Software Inspection Techniques: a
Systematic Mapping Study 33 Software Quality,
Springer, pp: 145-160.

Lanubile, F., T. Mallardo, F. Calefato, C. Denger and M.
Ciolkowski, 2004. Assessing the impact of active
guidance for defect detection: A replicated
experiment. Proceedings of the 10th International
Symposium on Software Metrics, Sep. 11-17, IEEE
Xplore Press, Chicago, pp: 269-278.

 DOI: 10.1109/METRIC.2004.1357909

Liu, S., J. Sun, Y. Liu, Y. Zhang and B. Wadhwa et al.,
2014. Automatic early defects detection in use case
documents. Proceedings of the 29th International
Conference on Automated Software Engineering,
Sep. 15-19, ACM, Vasteras, Sweden, pp: 785-790.
DOI: 10.1145/2642937.2642969

Lopes, A., A.B. Marques, T. Conte and S.D.J. Barbosa,
2015. MoLVERIC: An inspection technique for
MoLIC diagrams. Proceedings of the International
Conference: Software Engineering and Knowledge
Engineering, (EKE’15), pp: 13-17.

 DOI: 10.18293/SEKE2015-069
Ma, C., J.R. Li, C.L. Sun, J.D. Yang and Z.F. Zhou,

2014. A defects classification method for aerospace
measurement and control software. Proceedings of
the International Conference on Control Engineering
and Information Systems, CRC Press, pp: 99-103.

Mäntylä, M.V. and J. Itkonen, 2014. How are software
defects found? The role of implicit defect detection,
individual responsibility, documents and knowledge.
Inform. Software Technol., 56: 1597-1612.

 DOI: 10.1016/j.infsof.2013.12.005
Mello, R.M., E.N. Teixeira, M. Schots, C.M.L. Werner

and G.H. Travassos, 2012. Checklist-based
inspection technique for feature models review.
Proceedings of the Brazilian Symposium on
Software Components Architectures and Reuse, Sep
23-28, IEEE Xplore Press, Natal, Brazil, pp: 140-
149. DOI: 10.1109/SBCARS.2012.25

Mello, R.M., W.M. Pereira and G.H. Travassos, 2010.
Activity diagram inspection on requirements
specification. Proceedings of the Brazilian
Symposium on Software Engineering, Sep. 27- Oct.
1, IEEE Xplore Press, Salvador, pp: 168-177.

 DOI 10.1109/SBES.2010.29
Mendeley, 2014. Mendeley desktop v1.11@inproceedings.
Miller, J. and Z. Yin, 2003. Adding diversity to software

inspections. Proceedings of the 2nd International
Conference on Cognitive Informatics, Aug. 20-20,
IEEE Xplore Press, London, pp: 81-86.

 DOI: 10.1109/COGINF.2003.1225957
Miller, J., M. Wood and M. Roper, 1998. Further

experiences with scenarios and checklists.
Empirical Software Eng., 3: 37-64.

 DOI: 10.1023/A:1009735805377
Mishra, D. and A. Mishra, 2009. Simplified software

inspection process in compliance with international
standards. Comput. Standards Interfaces, 31: 763-771.
DOI: 10.1016/j.csi.2008.09.018

Mohabbati. B., M. Asadi, D. Gašević, M. Hatala and
H.A. Müller, 2013. Combining service-orientation
and software product line engineering: A systematic
mapping study. Inform. Software Technol., 55:
1845-1859. DOI: 10.1016/j.infsof.2013.05.006

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

493

Mohammed, A.O., Z.A. Abdelnabi, A.M. Maatuk and
A.S. Abdalla, 2015. An experimental study on
detecting semantic defects in object-oriented programs
using software reading techniques. Proceedings of the
International Conference on Engineering and MIS,
Sep. 24-26, ACM Press, Istanbul, Turkey, pp: 1-6.
DOI: 10.1145/2832987.2833025

Munson, J.C., A.P. Nikora and J.S. Sherif, 2006. Software
faults: A quantifiable definition. Adv. Eng. Software,
37: 327-333. DOI: 10.1016/j.advengsoft.2005.07.003

Naveed, A. and N. Ikram, 2015. A novel checklist:
comparison of CBR and PBR to inspect use case
specification. Commun. Comput. Inform. Sci.,
558: 109-125.

Neto, P.A.M.S., I.C. Machado, J.D. McGregor, E.S.
Almeida and S.R.L. Meira, 2011. A systematic
mapping study of software product lines testing.
Inform. Software Technol., 53: 407-423.

 DOI: 10.1016/j.infsof.2010.12.003
Novais, R.L, A. Torres, T.S. Mendes, M. Mendonc and

N. Zazworka, 2013. Software evolution
visualization: A systematic mapping study. Informa.
Software Technol., 55: 1860-1883.

 DOI: 10.1016/j.infsof.2013.05.008
Petersen, K., K. Rönkkö and C. Wohlin, 2008b. The impact

of time controlled reading on software inspection
effectiveness and efficiency: A controlled experiment.
Proceedings of the 2nd International Symposium on
Empirical Software Engineering and Measurement,
Oct. 09-10, ACM, Kaiserslautern, Germany, pp: 139-
148. DOI: 10.1145/1414004.1414029

Petersen, K., R. Feldt, S. Mujtaba and M. Mattsson,
2008a. Systematic mapping studies in software
engineering. 12th International Conference on
Evaluation and Assessment in Software
Engineering, Jun. 26-27, British Computer Society,
University of Bari, Italy, pp: 68-77.

Porter, A., H. Siy, A. Mockus and L. Votta, 1998.
Understanding the sources of variation in software
inspections. ACM Trans. Software Eng. Methodol.,
7: 41-79. DOI: 10.1145/268411.268421

Pressman, R.S., 2014. Software Engineering: A
Practitioner's Approach. 8th Edn., McGraw-Hill,
ISBN-10: 0078022126, pp: 976.

Rawal, B.S. and A.K. Tsetse, 2016. Analysis of bugs in
Google security research project database.
Proceedings of the Recent Advances in Intelligent
Computational Systems, Dec. 10-12, IEEE Xplore
Press, Trivandrum, India, pp: 116-121.

 DOI: 10.1109/RAICS.2015.7488399
Rocha, A.C., F. Ramalho and P.D.L. Machado, 2015.

Automating test-based inspection of design
models. Software Quality J., 23: 3-28.

 DOI: 10.1007/s11219-013-9219-x

Rodriguez, D., I. Herraiz, R. Harrison, J. Dolado and
J.C. Riquelme, 2014. Preliminary comparison of
techniques for dealing with imbalance in software
defect prediction. Proceedings of the 18th
International Conference on Evaluation and
Assessment in Software Engineering, May 13-14,
ACM, London, England, pp: 1-10.

 DOI: 10.1145/2601248.2601294
Roper, M., M. Wood and J. Miller, 1997. An empirical

evaluation of defect detection techniques. Inform.
Software Technol., 39: 763-775.

 DOI: 10.1016/S0950-5849(97)00028-1
Sabaliauskaite, G., F. Matsukawa, S. Kusumoto and K.

Inoue, 2002a. An experimental comparison of
checklist-based reading and perspective-based
reading for UML design document inspection.
Proceedings of the International Symposium on
Empirical Software Engineering, Oct. 3-4, IEEE
Xplore Press, Nara, Japan, pp: 148-157.

 DOI: 10.1109/ISESE.2002.1166934
Sabaliauskaite, G., F. Matsukawa, S. Kusumoto and K.

Inoue, 2002b. An experimental comparison of
checklist-based reading and perspective-based reading
for UML design document inspection. Proceedings of
the International Symposium on Empirical Software
Engineering (ISESE), Nara, Japan, pp: 148-157.

 DOI: 10.1109/ISESE.2002.1166934
Sabaliauskaite, G., F. Matsukawa, S. Kusumoto and K.

Inoue, 2003. Further investigations of reading
techniques for object-oriented design inspection.
Inform. Software Technol., 45: 571-585.

 DOI: 10.1016/S0950-5849(03)00044-2
Sabaliauskaite, G., S. Kusumoto and K. Inoue, 2004.

Assessing defect detection performance of
interacting teams in object-oriented design
inspection. Inform. Software Technol., 46: 875-886.
DOI: 10.1016/j.infsof.2004.03.004

Saito, S., M. Takeuchi, S. Yamada and M. Aoyama,
2014. RISDM: A requirements inspection systems
design methodology: Perspective-based design of the
pragmatic quality model and question set to SRS.
Proceedings of the 22nd International Requirements
Engineering Conference, Aug. 25-29, IEEE Xplore
Press, Karlskrona, Sweden, pp: 223-232.

 DOI: 10.1109/RE.2014.6912264
Sauer, C., D.R. Jeffery, L. Land and P. Yetton, 2000.

The effectiveness of software development technical
reviews: A behaviorally motivated program of
research. IEEE Trans. Software Eng. 26: 1-14.

 DOI 10.1109/32.825763
Silva, N. and M. Vieira, 2016. Software for embedded

systems: a quality assessment based on improved
odc taxonomy. Proceedings of the 31st Annual
Symposium on Applied Computing, Apr. 04-08,
ACM, Pisa, Italy, pp: 1780-1783.

 DOI: 10.1145/2851613.2851908

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

494

Silva, N., J.C. Cunha and M. Vieira, 2016. A field study
on root cause analysis of defects in space software.
Reliability Eng. Syst. Safety, 158: 213-229.

 DOI: 10.1016/j.ress.2016.08.016
Simidchieva, B.I., L.A. Clarke and L.J. Osterweil, 2007.

Representing process variation with a process
family. Proceedings of the International Conference
on Software Process, May 19-20, Springer-Verlag,
Minneapolis, MN, USA, pp: 109-120.

 DOI: 10.1007/978-3-540-72426-1_10
Singh, D.A.A.G., A.E. Fernando and E.J. Leavline,

2016. Experimental study on feature selection
methods for software fault detection. Proceedings of
the International Conference on Circuit, Power and
Computing Technologies, Mar. 18-19, IEEE Xplore
Press, Nagercoil, India, pp: 1-6.

 DOI: 10.1109/ICCPCT.2016.7530156
Sommerville, I., 2015. Software Engineering. 10th Edn.,

ADDISON WESLEY Publishing Company
Incorporated, Boston, ISBN-10: 0133943038, pp: 816.

Souza, I.S., G.S.S. Gomes, P.A.M.S. Neto, I.C. Machado
and E.S. Almeida et al., 2013. Evidence of software
inspection on feature specification for software
product lines. J. Syst. Software, 86: 1172-1190.
DOI: 10.1016/j.jss.2012.11.044

Staron, M., L. Kuzniarz and C. Thurn, 2005. An
empirical assessment of using stereotypes to
improve reading techniques in software inspections.
Proceedings of the 3rd Workshop on Software
Quality, May 17-17, ACM, St. Louis, Missouri, pp:
1-7. DOI: 10.1145/1083292.1083308

Tang, H., T. Lan, D. Hao and L. Zhang, 2015. Enhancing
defect prediction with static defect analysis.
Proceedings of the 7th Asia-Pacific Symposium on
Internetware, Nov. 06-06, ACM, Wuhan, China, pp:
43-51. DOI: 10.1145/2875913.2875922

Teixeira, E.N., R.M. De Mello, R.C. Motta, C.L.M.
Werner and A. Vasconcelos, 2015. Verification of
software process line models: A checklist-based
inspection approach. Proceedings of the 17th
Iberoamerican Conference on Software Engineering,
(CibSE), At Lima, Peru, pp: 81-91.

Thelin, T., Runeson and P. Wohlin, 2003. Prioritized use
cases as a vehicle for software inspections. IEEE
Software, 20: 30-33. DOI 10.1109/MS.2003.1207451

Tørner, F., M. Ivarsson, F. Pettersson and P. Öhman, 2006.
Defects in automotive use cases. Proceedings of the
International Symposium on Empirical Software
Engineering, Sep. 21-22, ACM, Rio de Janeiro, Brazil,
pp: 115-123. DOI: 10.1145/1159733.1159753

Travassos, G.H., 2014. Software defects: Stay away
from them. Do inspections!. Proceedings of the 9th
International Conference on the Quality of
Information and Communications Technology, Sep.
23-26, IEEE Xplore Press, Guimaraes, pp: 1-7.

 DOI: 10.1109/QUATIC.2014.8

Travassos, G.H., F. Shull and J. Carver, 2001.
Working with UML: A software design process
based on inspections for the unified modeling
language. Adv. Comput., 54: 35-98.

 DOI: 10.1016/S0065-2458(01)80015-2
Travassos, G.H., F.J. Shull, M. Fredericks and V.R.

Basili, 1999. Detecting defects in object-oriented
designs: Using reading techniques to increase
software quality. Proceedings of the 14th
Conference on Object-Oriented Programming,
Systems, Languages and Applications, Nov. 01-05,
ACM Press, Denver, Colorado, pp: 47-56.

 DOI: 10.1145/320384.320389
Valentim, N.M.C., J. Rabelo, A.C. Oran, T. Conte and S.

Marczak, 2015. A controlled experiment with
usability inspection techniques applied to use case
specifications: Comparing the MIT 1 and the UCE
techniques. Proceedings of the 18th International
Conference on Model Driven Engineering
Languages and Systems, Sep. 30-Oct. 2, IEEE
Xplore Press, Ottawa, pp: 206-215.

 DOI: 10.1109/MODELS.2015.7338251
van Lamsweerde, A., 2009. Requirements Engineering:

From System Goals to UML Models to Software
Specifications. 1st Edn., Wiley, Hoboken, N.J.,
ISBN-10: 0470012706, pp: 712.

Wagner, S., 2006. A model and sensitivity analysis of
the quality economics of defect-detection
techniques. Proceedings of the International
Symposium on Software Testing and Analysis, Jul.
17-20, ACM, Portland, Maine, pp: 73-84.

 DOI: 10.1145/1146238.1146247
Walia, G.S. and J.C. Carver, 2009. A systematic

literature review to identify and classify software
requirement errors. Inform. Software Technol., 51:
1087-1109. DOI: 10.1016/j.infsof.2009.01.004

Wieringa, R., N. Maiden, N. Mead and C. Rolland, 2005.
Requirements engineering paper classification and
evaluation criteria: A proposal and a discussion.
Requirements Eng., 11: 102-107.

 DOI: 10.1007/s00766-005-0021-6
Winkler, D. and S. Biffl, 2015. Focused inspections to

support defect detection in automation systems
engineering environments. Proceedings of the
International Conference on Product-Focused
Software Process Improvement, (SPI’15), Springer,
pp: 372-379. DOI: 10.1007/978-3-319-26844-6_27

Winkler, D., B. Thurnher and S. Biffl, 2007. Early
software product improvement with sequential
inspection sessions: An empirical investigation of
inspector capability and learning effects.
Proceedings of the 33rd EUROMICRO Conference
on Software Engineering and Advanced
Applications, Aug. 28-31, IEEE Xplore Press,
Lubeck, Germany, pp: 245-254.

 DOI: 10.1109/EUROMICRO.2007.28

Ricardo Theis Geraldi and Edson OliveiraJr / Journal of Computer Science 2017, 13 (10): 470.495
DOI: 10.3844/jcssp.2017.470.495

495

Wu, J., S. Lv, E. Ding and B. Luo, 2015. A case study in
specification defects detection using statecharts.
Proceedings of the 6th International Conference on
Software Engineering and Service Science, Sep. 23-25,
IEEE Xplore Press, Beijing, China, pp: 1-6.

 DOI: 10.1109/ICSESS.2015.7338994
Yousef, A.H., 2014. Extracting software static defect

models using data mining. Ain Shams Eng. J., 6:
133-144. DOI: 10.1016/j.asej.2014.09.007

Yusop, N.S.M., J. Grundy and R. Vasa, 2016. Reporting
usability defects: Do reporters report what software
developers need? Proceedings of the 20th International
Conference on Evaluation and Assessment in Software
Engineering, Jun. 01-03, ACM, Limerick, Ireland,
pp: 1-10. DOI: 10.1145/2915970.2915995

Zhu, Y.M., 2016. Software reading techniques: Twenty
techniques for more effective software review and
inspection. 1st Edn., Apress, Berkeley, CA,

 ISBN-10: 978-1-4842-2345-1, pp: 126.

