

© 2017 Sami Qawasmeh and Arwa Zabian. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

DPSA: Deterministic Parallel Search Algorithm in Large

Database

Sami Qawasmeh and Arwa Zabian

Jadara University, Irbid-Jordan

Article history

Received: 10-10-2016

Revised: 31-01-2017

Accepted: 19-07-2017

Corresponding Author:

Sami Qawasmeh

Jadara University, Irbid-Jordan
Email: sqawasmeh@jadara.edu.jo

Abstract: The main goal of parallel processing is to reduce the complexity

of finding a solution for a problem. In this study, we consider the problem

of searching for multiple items at the same time in a large database. We

propose a parallel search algorithm that reduces the searching time in

comparison to binary search algorithm saving in that the time needed for

sorting. Our algorithm works well for any data that can be represented in

binary and it converts the searching of two items to search for a composed

key that is the AND-combination of the two searched items. DPSA our

proposed algorithm outperforms Binary search algorithm in searching for

two items at the same time where the binary search will search them

sequentially. The running time of our algorithm in the worst case is O(n)

for searching two items in a data input of size n.

Keywords: Distributed Database, Parallel Searching, Parallel Processing,

Multithreading Programming

Introduction

The searching problem is a simple problem that can

be expressed as follows given an array of integers A of

size n and an element x, we must define with good

precision that x is an element of the array A or not.

Generally, using sequential search it requires linear time

with n, its worst case cost is proportional to the number

of elements in the list.
The binary search algorithm performs well in

solving the searching problem. But, it works only

under a sorted data. For that, the time saved in

searching is spent in sorting. The searching problem is

faced in different fields for that we must find a

solution with the best performance. Searching

database means issue a query to locate a record that

has a specific field (or key) equal to a specific value.

Another type of database query may require finding

the smallest (or largest) key value and in some cases,

more than one query can be directed to the database

simultaneously, or sometimes searching an item can be

done by composite fields. In all these cases, we need a

good and fast response time taking in consideration that

the size of the database is increased continuously and the

number of queries also increased with the time. For that,

we need always an effective and fast search mechanism

that satisfies the user requirements.

Information Retrieval Model (IRM) defines the

interaction between a user and information retrieval

system and consists of three parts are: Document

representation, user need and a matching function.

Both document representation and matching functions

must be defined in a manner to satisfy the user need.

This means, finding the requested object in small

time. For that, request-response time is an important

factor in information retrieval system and searching

time is one issue that influences in the request-

response time. The motivation of our work is to

minimize the cost of searching multiple items when

searching in the database or in an information

retrieval system (data stored on the server, on the

proxy, on the cloud). Our work consists of reducing

the searching time without ordering the data. Our

algorithm works well for any data represented by a

key that is an integer for any length. The main

important result of our proposed algorithm is that the

searching time is increased in a moderate ratio when

the size of input data is increasing rapidly. Parallel

processing is used to reduce the searching time.

Parallel processing means to enable the

microprocessor to perform the same operation

(logical, arithmetic, or other) in parallel on several

independent data sources. It is possible to divide the

Sami Qawasmeh and Arwa Zabian / Journal of Computer Sciences 2017, 13 (9): 452.459

DOI: 10.3844/jcssp.2017.452.459

453

data into smaller units and perform operations on that

unit in parallel. Parallel execution reduces response

time for the data-intensive operation on the large

database. The most common use of parallel execution

is in DSS and data warehouse environments, complex

queries such as those involving joins of the several

tables or search of very large tables are often best

executed in parallel.
The idea of our work is to use the parallel search to

improve the results of a multi-query for a large

database. Consider we have a large database and more

than one user sends concurrently a query to this

database. The performance of the database is seen in

the request-response time. The sequential search will

execute each query in a time proportional to the

database size. The binary search algorithm will sort

the data, then process each query sequentially. Our

proposed algorithm will divide the database into two

parts and will search about two queries in parallel on

the two parts. The worst case of searching one or

more than one item in our proposed system will be

equal to the half of the size of the database. In

addition, when the size of the data is increased the

searching time will be always proportional to the half

of the data size.

This paper is organized as follows: Section 2, will

present some of the related work in parallel database

and information retrieval. Our proposed algorithm

will be presented in section 3. Simulation results are

presented in section 4. In section.5 is analyzed our

results and the final conclusion and future works.

Related Work

The basic idea behind the parallel algorithm is to

reduce the problem complexity and the time needed to

solve it. So, if we have a problem, we can solve it

quickly and in an easy manner if we divide it into sub-

problems and solving them at the same time in

parallel (if possible). Most of the NP-complete

problems are solved in this manner, assigning a

processor to each sub-problem. The running time of

the algorithm is then the longest running time of any

of these processors. A parallel algorithm is optimal in

the running time if its upper bound is the best known

sequential algorithm for the problem. For that,

parallelism is used in different computing area to

reduce the complexity and running time but it suffers

from overhead.

Parallel search is used to solve optimization

problems such that scheduling, robotic, game playing.

In such problem the most important thing is when x

the input size is large, in this case finding a near

optimal solution is not an easy task. Grama and

Kumar (1995) have introduced a list of parallel search

algorithms for solving an optimization problem. The

Parallel Depth First Search algorithm (PDFS)

according to (Kumar and Rao, 1987; 1990) is based on

the idea to partition the tree into smaller parts, these

parts require no or minimal communication. The idea

of tree partitioning can be applied using stack splitting

or node splitting. In parallel DFS using stack splitting

each processor searches a disjoint part of the tree in a

depth-first fashion. When a goal is found, all of them

quit. If the tree is finite and has no solution, then

eventually all processors would run out of work and

then the parallel search will terminate. When a

processor runs out of work it selects a target processor

of addressing a work request. On receiving a work

request, a processor either responds with a part of its

work, or a reject message that it does not have any

work. This process continues until all processors go

idle or a solution is found. Finkel and Manber (1987)

have presented the performance results of PDFS for a

number of problems such as traveling salesman

problem and other problems. Monien and Vornberger

(1987) showed that a linear speedup can be obtained to

solve combinatorial problems using parallelism.

Acar et al. (2015) have proposed a parallel algorithm for

unordered depth first search on a graph, in PDFS each

processor maintain a data structure in which is stored

the visited vertices and each processor works locally

on its data structure. When a new visited vertex is

discovered, it is visited by comparing and swap

mechanisms, if it is successes, this vertex is added to

the data structure. To minimize the running time on a

parallel machine, PDFS performs load balancing to

keep all processors busy. The limitation of this

algorithm is that the cost of creating each thread must

not overweight the benefits of parallelism and that the

amount of work in each thread is proportional to the

total vertices reachable from the vertex. The total

work performed by PDFS is bounded by O(n + m)

where n, m are the number of vertices and edges

respectively. Jeon et al. (2013) have proposed an

adaptive parallelization strategy that dynamically

selects the degree of parallelism on a query-by-query

basis in web search. The paper introduces a dynamic

fine grain sharing technique that parallelizes each

individual request with preserving the sequential order

of execution. The idea is to index the web page related

to some topics, then the index data is partitioned and

each part is assigned to a thread that searches about

the requested document, the threads communicate

with each other to merge the top results they have

found. When better results have obtained the threads

stop processing the query, reducing in that the

computation overhead. The results show that the

proposed technique outperforms the linear search in

Sami Qawasmeh and Arwa Zabian / Journal of Computer Sciences 2017, 13 (9): 452.459

DOI: 10.3844/jcssp.2017.452.459

454

term of delay time and overhead on the system. The

main advantage of the proposed work is that

dynamically decide the degree of parallelism based on

the job under consideration that reduces the

partitioning load and overhead.

Multiple search problem is the problem to search for

more than one element at the same time, this problem

can be solved in parallel or in binary search and

generally is solved in time O (n log n) performing n

binary search operations according to (Akl and Meijer,

1990). Chen (1990) has proposed a parallel binary

algorithm to solve the multiple search algorithm on two

sorted arrays of different size in time O(log m) using

O(n) processor, where m, n are the size of the two arrays.

The algorithm starts by merging the two arrays into one

array of length m, considering that n is too small with

respect to m and then it searches in parallel in the

resultant array. The parallel search is used by

(Kaldewey et al., 2010) to improve response time for

massively parallel architecture like Graphic Processor

Architecture (GPU). P-ary algorithm outperforms its

previous in term of throughput and response time. In

parallel binary search, we searched for four different

keys using multithreading, if three keys were found the

corresponding thread must be idle until the last thread

finishes that influence the response time. In P-ary

proposed by (Kaldewey et al., 2010), a domain

decomposition strategy is applied to search, in which

all threads search about the same key in parallel in each

time and the searching operation is done by dividing

the data sets into zones and each time the key is

compared with its two boundary values, then is

assigned the disjoint subsets and continuing searching

the key. If more than one thread finds the key the

searching process is stopped and the results are

considered correct. This searching process reduces the

searched range about 1/p where p is the number of

threads in each iteration. The worst case execution time

is logp n and the response time is significantly lower

than other parallel search algorithms for the same

context. The results show that throughput of P-ary

algorithm is 30% better than binary search algorithm

over sorted data. Aboutabl (2013) has presented a

model for parallel query processing in web search, in

the web, the interactive response time in searching a

document is becoming a challenge due to the

tremendous increase in the size of information

available. The results show that parallel query

processing outperforms cluster based architecture in

term of average response time, speed and efficiency.

Any search engine has three main components are

the web crawler, indexer and searcher. Aboutabl

(2013) has used parallelism in document indexing and

in query processing. The most important approaches

for parallelism in query processing are replication and

index partitioning. In replication approach, consider

we have n indexer node the same index is assigned to

each of the n nodes and for searching for a term

(index) a parallel query is sent to n nodes but each

request is processed sequentially. In index partitioning

approach, the index or term is divided into parts and

the parts are assigned to different nodes and each node

is responsible for a subset of the index. For searching

a document (term) the query is sent in parallel to

different nodes that mean is searched in parallel. The

index partitioning mechanism is considered as

throughput oriented. The results show that the

efficiency of using parallelism in web search about

97.5% for 4 processors, however, it is 91.9% for

clustered system with 4 processors. Varsamis et al.

(2012) have proposed a parallel search algorithm that

can scale easily to large input size for searching in

large geographical data sets. The idea is that when

designing or storing a map a set of insets placed on

the map. For that, it is necessary to store these insets

and their position. In very large geographic data sets

the searching process requires high running time

depending on the data set size. For that, it is used

parallelism to reduce the running time of searching

algorithm. The idea is to transform the geographic

data sets (map) to a matrix m*n where n is the length

and m is the width of the data set in pixels. In a

sequential search, the number of iterations depends on

the matrix dimension and is in quadratic order (where

it is used two iterations, each iteration defines an

index that indicates the data set correspond to sea or

land). Using parallel search in this context means

parallelize one of the two loops that can reduce the

searching algorithm complexity, but still depends on

the number of processors. Theoretical speedup of the

parallel algorithm is depending on the number of

processor and the time of communication between

processors. However, the efficiency depends only on

the number of processors. The algorithm is

implemented using Matlab and the results show that

the execution time of the searching algorithm is

reduced using parallel processing.

Deterministic Parallel Search Algorithm (DPSA)

DPSA is a deterministic parallel search algorithm

that uses divide and conquers technique to divide the

array A into two subarrays A1 to the left and A2 to the

right.

Algorithm Description

Input an array of size n. A [1……n], two items x, y;

Sami Qawasmeh and Arwa Zabian / Journal of Computer Sciences 2017, 13 (9): 452.459

DOI: 10.3844/jcssp.2017.452.459

455

Output x or y is in A, x and y are in A, or x and y are not

in A

Processing: divide the array into two subarrays A1, A2,

If the size of A is an even number, then the two

subarrays (A1 and A2) are of an equal size which is

equal n/2 for each. If the size of A is odd, then the size

of the first subarray (A1) will be equal
2

n and the size of

the second subarray (A2) will be n/2 + 1. Two threads

called P1, P2 are working in parallel on A1, A2 searching

for item x and/or item y. The algorithm works

recursively in phases, in the first phase, it uses two

threads P1 and P2 to search for the requested items (x

and y) in parallel in the two subarrays A1, A2. If one

item is found, P1 and P2 will stop and the algorithm

passes to the second phase. In the second phase,

another two threads called P3, P4 continue searching

from the location where P1 and P2 are stopped in the

first phase; it searches sequentially about the missing

item only in both A1 and A2. The main goal of our

algorithm is to reduce the number of comparisons

needed to find two searched items. In our algorithm,

the worst case in finding an item is O ()2

n whereas a

sequential search needs O(n).

First Phase

DPSA composes a key k as follows: k = (x || y) in

binary and in each iteration the two threads work in

parallel on A1 and A2 from left to right comparing the

(key && A1 [i]) with the values of the array A1[i],

i = 0..
2

n And the (key && A2[i]) with the values of the

array A2[i], i =
2

1n + .. n. When there is a match that

means either x or y has been found.

Phase 1 Pseudocode

P1 is a thread that represents a process that Search_Thread(1)(Left[1],int(n/2)], x, y,Key)

searches for the requested items in the left subarray. Thread1_begin = Start timer

P2 is another thread it works as P1 on A2 Lower = 1

Lower indicates the first location in the array Upper = int(n/2)

Upper indicates the last location in the array Found_Loc1= 0

i,j are two indices that indicate the location where While (not (Found x_Left OR Found y_Left) AND (Lower <= Upper))

the threads are searching. Begin

 if ((Left(Lower) And Key) = Left(Lower)) Then

 Begin

 //Candidate found either x or y

 if Left(Lower) = x Then

 Found x_Left = true

 Else if Left(Lower) = y Then

 Found y_Left = true

 Exit loop

 End

 Lower = lower + 1

 End

 Found_Loc1 = Lower

 loop

 Thread1_end = end_ timer

1 2
1 . nA ……  

2 2
1,nA n+ ………  

First DSPA composes its key as follows:

Key = (x || y) in binary, where, in each iteration, the

threads P1 and P2 make the following comparisons:

If (A1 [i] && key = = A1 [i]) (1) or

If (A2 [j] && key = = A2 [j]) (2)

i takes value from 1 to
2

n and j takes values from
2

1n + to n

If the either of the previous comparisons is true,

that means one of the two items has been found, on

the other hand, if the previous two comparisons are

true, that means both items have been found.

Second Phase

In the second phase, two threads P3, P4 search

sequentially about the missing item in the rest of the

array as follows: If P3 reaches n/2 and P4 reaches n

without finding the missing item that means the missed

Sami Qawasmeh and Arwa Zabian / Journal of Computer Sciences 2017, 13 (9): 452.459

DOI: 10.3844/jcssp.2017.452.459

456

item is not in the array. Otherwise, the missing item has been found and the two threads will stop the search.

Pseudo code of the second phase:

Thread (3) Thread(4)

Search sequential_missing_item Search sequential_missing_item

(Left[Found_Loc1 + 1], int(n/2], Missing_item) (Right[Found_Loc2 + 1], n, Missing_item)

 Thread3_begin = Start timer Thread4_begin = Start timer

 FOUND = False FOUND = False

 i = Found_Loc1 + 1 j = Found_Loc2 + 1

 Do While ((Not FOUND) And (i <= n/2)) Do While ((Not FOUND) And (j <= n))

 If Left(i) = Missing_item Then If Left(j) = Missing_item Then

 FOUND = True FOUND = True

 Stop Thread (3) Stop Thread(3)

 Stop loop Stop loop

 Else Else

 i = i + 1 j = j + 1

 Loop Loop

Thread(3)_end = stop timer Thread(4)_end = stop_timer

Cases:

• One item is found at A1[1] and the second is found

at A2[n/2] and that is the best case and the running

time, in this case, is O(1)

• Duplicate items are found (duplicate x or

duplicate y), in phase one, after the if statement

(if A[i] && key =A[i]) which means one item is

found, it compares A[i] with x if A[i] = x that

means x is found in A1[1] and x can be found also

in A2[n/2]. In this case, P1 and P2 will halt and P3

and P4 continue working sequentially searching

for y only. The running time to find x is O (1) and

the running time to find y, in this case, will be O

(n/2) if y is in the array. The same procedure is

used if y is found first

• The average case is that one item is found in A1, or

in A2 in some location < Upper. Then P1 and P2 will

halt and P3 and P4 continue working sequentially

from where P1 and P2 are stopped searching for the

missing item

• The worst case, in this case, P1 and P2, continue

working recursively in the first phase until

reaching the end of the array without finding any

of the two items and that means both items are not

in the array. In this case, the running time is O

(n/2) for each item

Our algorithm is a scalable algorithm, when it

searches about two or more elements at the same time

(multiple of 2) and it can search for any item that can be

represented in binary (names, words…letters).

How does DPSA Algorithm Work?

Example: Consider the following array

A = [10, 15,14,13,12,7,9,8,0,5,4,3] and we want to

search for 12 and 5 in the array in parallel.

Key = (12 or 5) correspond in binary x = 12 and y = 5
Key = ((00001100) || (00000101)) = 00001101
In the first phase: i = 1, j = 7
For i = 1: 00001010 && 00001101 = 00001000 items
not found
Are equal
For i = 2 ….i = 3 ……continue

For i = 5 00001100 && 00001101 = 00001100 one item

is found. Then compare with x = 5 and the results x is

found P1 stop working.

In the same manner and in parallel P2 works
In j = 1 00001001 && 00001101 = 00001001 this item is
a candidate to be one of the searched items. It is
compared with x and y if not equal to both the procedure
continues testing A[j] until finding one of the two items
or until arriving at n = j without finding any of the items.
Figure 1, show a graphical representation of the steps of
our algorithm in comparison to binary search algorithm.

Complexity Analysis

The best case of running time for DPSA is O(1), where

the two items were found in the first location of A1 and A2.

The worst case for searching an item using DPSA is

2

n where it is the size of each partition. Our algorithm

performs better than binary search because it saves the

time to sort the array. The main advantage of our

algorithm that it can search for anything can be

represented in binary and can search about 2 items in

each iteration.

Are equal

Sami Qawasmeh and Arwa Zabian / Journal of Computer Sciences 2017, 13 (9): 452.459

DOI: 10.3844/jcssp.2017.452.459

457

The running time of DPSA for searching n items is

n
2
/2 and in that it outperforms binary search wherein

binary search to search n items from the unsorted array

will cost as follows:

• Sorting phase vary from n log n → n
2

• Searching for an element in the binary search

algorithm requires log n in the worst case. So,

searching n items in binary search requires n log n.

That means the total cost for searching n items in

binary search varies from (2 n log n) to (n
2
+ n log

n); however, in DPSA:

• Searching one item in the worst case is
2

n

• Searching n items require
2

2

n

Our simulation results show mathematically the

difference between DPSA and binary search in searching

two items. Then, we have calculated the search for n items.

In addition, a mathematical calculation has been done for

the number of iterations needed for each algorithm.

Simulation Results

Our proposed algorithm has been implemented from

scratch in the C++ programming language. The simulator

runs on a 2.20 GHz dual-core machine with 4 GB memory

and 64 bits Windows platform operating system.

To evaluate the performance of our algorithm we

implement both DPSA and binary search algorithms in

the same environment and we made different tests with

different input sizes. Then, we compare our results with

that obtained from binary search algorithm under the

same conditions. In our algorithm, we save the time

needed for sorting in searching in parallel in the unsorted

array. The running time of the worst case of DPSA (item

not found) is invariant for any case, where always the

algorithm must search in all the element and is O(n/2).

Our results show that DPSA outperforms binary search

algorithm in the worst case for searching the first item.

In the average case, (where the two elements are found

in the array) our algorithm performs similarly to the

binary search algorithm. In the worst case, for

searching n items, DPSA requires slightly more time

than a binary search algorithm, but the binary search

algorithm requires more overhead because it searches it

sequentially. For that, if the binary search algorithm

runs n times to search for items, our algorithm runs n/2

times to search the same number of items. Table 1

shows the results obtained from DPSA for searching in

parallel for two items from different input sizes in all

cases (best, average and worst).

Fig. 1. Graphical representation of DPSA

Fig. 2. The running time of DPSA for different input sizes

Table 1. The running time of DPSA for different cases and different input sizes

 Running time (ms)
 --
Cases 50.000 500.000 1.000.000 5.000.000

Worst case (not found) 0.0080 0.0670 0.1380 0.5630
Average case (find one item randomly) 0.0060 0.0620 0.1380 0.5350
Average case (finding two items randomly) 0.0040 0.0590 0.1220 0.2090
Best case (finding the two items in the first location) 0.0010 0.0460 0.0880 0.0410
Finding one item duplicated 0.0078 0.0650 0.0790 0.4815

Sami Qawasmeh and Arwa Zabian / Journal of Computer Sciences 2017, 13 (9): 452.459

DOI: 10.3844/jcssp.2017.452.459

458

Figure 2 shows that the running time of DPSA is

increased linearly with the input size. In addition, the

running time with a variation of input size differs

slightly, which ensures the robustness and scalability of

our proposed algorithm.

Table 2 shows the comparison of running time of

DPSA and binary search algorithm for different input

size. In the table, column 2 indicates the running time

of DPSA for different items size column 3 indicates the

running time of binary search algorithm for searching

the first two items that include the sorting cost.

Column (3.2) shows the running time of binary search

algorithm for the next two items after having the array

sorted and the column (3.3), shows the average

running of binary search algorithm considering that

the sorting cost will be distributed on the next

searches. Comparing column 2 with column (3.3) in

Table 2 it is clear that the DPSA performs better than

binary search algorithm under the same input size.

Results Discussion

From Fig. 3, it is clear that when the input size is

increased the running time of binary search will be

higher than DPSA and following the analysis presented in

the previous section, when the searching space is

increased, if we search for 10 items, DPSA will search it

in 5 iterations searching two items at a time and the binary

search will search it in 10 iterations. The main advantage

of our algorithm is that it searches multiple items at a time

and without the need of any kind of sorting.

Analyzing Table 1, confirms that our system is

scalable one where if the size of the input is increased n

times, the running time will increase less than n times,

(Table 3).

From Table 3, it can be concluded that our best

results are obtained when the two items were found

randomly in the search space (average case). But also,

the scalability in the worst case is acceptable.

Table 2. The comparison between the running time of DPSA and the average running time of binary search algorithm for different

input size

 Running time (ms)

 Binary search algorithm

 Running time (ms) --

Input size DPSA (Col 2) First search Second search (Col 3.2) Average (col 3.3)

50.000 0.0080 0.2045 0.0035 0.1040

500.000 0.0670 1.7077 0.0037 0.8557

1.000.000 0.1380 3.576 0.0040 1.7900

5.000.000 0.5630 13.9885 0.0065 6.9975

Table 3. The increased in performance of DPSA

 Increase percentage in running time Increase percentage in running time

 when the input size is increased from when the input size is increased from

Cases 1.000.000-5.000.000 (5 times) 500.000-5.000.000 (10 times)

Worst case (not found) 4.07 8.40

Average case (find one item randomly) 3.87 8.60

Average case (finding two items randomly) 1.71 3.54

Best case (finding the two items in the first location) 4.65 0.89

Finding one item duplicated 6.09 7.40

Fig. 3. Comparison between DPSA and binary search algorithm running time

Sami Qawasmeh and Arwa Zabian / Journal of Computer Sciences 2017, 13 (9): 452.459

DOI: 10.3844/jcssp.2017.452.459

459

Conclusion and Future Works

In this study, we proposed a parallel search algorithm

that performs better than the binary searching algorithm,

gaining the time spent in sorting in the binary search

algorithm. The main purpose of this paper was to

develop an efficient search algorithm that scales well

when the searching space is increased. For that, we have

used the parallel processing to distribute the load on

more than one process. Our results show, that working in

parallel and without sorting the input items can give an

advantage to the system in reducing the searching time.

In many applications the request- response time is

important to evaluate the performance of the application

and in most cases, the request-response time depends on

the searching operation. Reducing the searching time can

reduce the request-response time that improves the

performance of the system. Our results show that our

proposed algorithm is a scalable one and it works well

when the search space is increased in searching for n

items in parallel searching for 2 items at a time. Our

future work is to use the genetic algorithm to search for

multiple items in the unsorted array.

Author’s Contributions

Sami Qawasmeh: Algorithm design, implementalion

and resul analysis and discusion.

Arwa Zabian: Related works, data analyzing and

results analysis and discussion.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Aboutabl, A.E., 2013. Exploiting parallelism in query

processing for web document search using shared-

memory and cluster-based architectures. Comput.

Inform. Sci., 6: 125-137.

 DOI: 10.5539/cis.v6n3p125

Acar, U.A., A. Charguéraud and M. Rainey, 2015. A work-

efficient algorithm for parallel unordered depth-first

search. Proceedings of the International Conference for

High Performance Computing, Networking, Storage

and Analysis, Nov. 15-20, ACM., Austin, Texas.

 DOI: 10.1145/2807591.2807651

Akl, S. and H. Meijer, 1990. Parallel binary

search. IEEE Trans. Parallel Distributed Syst., 1:

247-250. DOI: 10.1109/71.80139

Chen, D.Z., 1990. Efficient parallel binary search on

sorted arrays.

Finkel, R. and U. Manber, 1987. DIB-a distributed

implementation of backtracking. ACM Trans.

Programm. Lang. Syst., 9: 235-256.

 DOI: 10.1145/22719.24067

Grama, A. and V. Kumar, 1995. Parallel search algorithms

for discrete optimization problems. ORSA J.

Comput., 7: 365-385. DOI: 10.1287/ijoc.7.4.365
Jeon, M., Y. He, S. Elnikety, A.L. Cox and S. Rixner,

2013. Adaptive parallelism for web
search. Proceedings of the 8th ACM European
Conference on Computer Systems, Apr. 15-17,
ACM., Prague, Czech Republic, pp: 155-168.

 DOI: 10.1145/2465351.2465367
Kaldewey, T., J. Hagen, A. Di Blas and E. Sedlar, 2009.

Parallel search on video cards. Proceedings of the
1st USENIX Conference on Hot Topics in
Parallelism, Mar. 30-31, USENIX Association,
Berkeley California USA., pp: 9-9.

Kumar, V. and V.N. Rao, 1987. Parallel depth first
search. Part II. Analysis. Int. J. Parallel
Programm., 16: 501-519. DOI: 10.1007/bf01389001

Kumar, V. and V.N. Rao, 1990. Scalable Parallel
Formulations of Depth-First Search. In: Parallel
Algorithms for Machine Intelligence and
Vision, Kumar, V., P.S. Gopalakrishnan and L.N.
Kanal (Eds.), Springer-Verlag, New York, pp: 1-41.

Monien, B. and O. Vornberger, 1987. Parallel processing
of combinatorial search trees. Parallel Algorithms
Architectures. DOI: 10.1007/3-540-18099-0_29

Varsamis, D., P. Mastorocostas, A. Papakonstantinou and
N. Karampetakis, 2012. A parallel searching
algorithm for the insetting procedure in Matlab
Parallel Toolbox. Proceedings of the Federated
Conference on Computer Science and Information
System, Sept. 9-12, IEEE Xplore Press, pp: 587-593.

