

© 2017 Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Framework for Enhancing the Performance of Data Intensive

MPI based HPC applications on Cloud

Ashwini Janagal Padmanabha and Sanjay Harogolige Adimurthy

Department of ISE, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India

Article history

Received: 29-04-2017

Revised: 13-06-2017

Accepted: 4-08-2017

Corresponding Author:

Ashwini Janagal Padmanabha

Nitte Meenakshi Institute of

Technology, Bangalore,

Karnataka, India
Email: ashwini.janagal@gmail.com

Abstract: Cloud computing is a new technology which is revolutionizing

the current business model with pay-per-usage resource provisioning

method. This model proves to be more profitable compared to traditional

resource procurement and maintenance model. Data intensive High

performance applications (HPC Application) handles large scale data sets

on cluster/grid environment for enhanced performance. Most of these

applications belong to the MPI category, where the work is assigned to

multiple processes which communicate amongst each other to furnish the

task. These applications prefer cluster/grid environment because of the

homogeneity and high end resource availability. Cloud can be a better

platform for these applications, as it consists of large quantity of resources.

But, this technology is avoided by the HPC user community for the reasons

of performance degradation, which is caused by the virtualization layer and

sharing of resources. Static cluster instances as a resource provided by

many cloud vendors like Amazon, CDAC etc. provides good performance

by sacrificing the resource utilization factor. The work proposed here

provides a framework for enabling data intensive MPI based HPC

applications on cloud with dynamic cluster formation. Placement of the

virtual machines hosting the individual processes and their distance to the

data plays an important role in deciding the performance of application, as

data transfer delay plays an important role in deciding the speed of

execution. The framework provides two VM scheduling strategies towards

improving the performance of data intensive HPC applications. The

strategies with prioritized shared memory based communication of data to

the process is implemented and tested on the private cloud. The work

considers two most widely used data distribution models; Distributed

volume and Striped volume. First VM scheduling strategy is implementable

for distributed volume where complete data file will be hosted on single

data server and the results show an improvement of around 88% in the best

case. Second VM placement strategy can be used in more fine tuned

distribution where stripes of single data file is distributed across different

data servers. Here we have observed around 70% improvement in the

performance of application compared to normal VM placement methods.

Keywords: Cloud, Data Intensive HPC, VM Placement, Data Distribution

Introduction

Large scale data intensive computing plays an

increasingly important role in many scientific

computations. Performance of these applications

depends mainly on data locality, resource availability

and data access pattern of the application. Parallel

processing has been considered as the best solution for

these applications, which are highly sensitive to

performance. Many of the high performance based

applications belong to the message passing (MPI)

category and implemented through cluster/grid.

Cluster/grid is set of tightly or loosely coupled machines

which are almost homogeneous in nature.

Cluster/grid instantiation requires a large amount of

resources, which makes it a costly solution. Cloud can be

Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy / Journal of Computer Science 2017, 13 (8): 320.328

DOI: 10.3844/jcssp.2017.320.328

321

considered as a solution for instantiating the clusters

because of its resource abundance and scalable nature.

Acquisition of the resources is quite easy and cheap on

cloud platform. But, virtualization which is the base

technology used in cloud implementation, degrades the

performance of applications. For this reason HPC

applications are avoided on cloud platform. But (Phillip

and Andrzej, 2011) and (Guohui Wang, 2010) provides

insight on few cluster-as-a-service cloud vendors for

implementation of HPC applications on cloud. Static

cluster instances are provided as a solution and the

results indicate almost no degradation in the application

performance but less resource utilization.

Ashwini et al. (2017a; 2017b) we have proposed a

methodology to implement the dynamic clusters for

communication intensive MPI based HPC applications

with enhanced performance through resource reservation

and VM scheduling policies. But for large scale data

intensive applications, data availability will be the main

criteria in deciding the performance. Work proposed

here aims at enhancing the performance of data intensive

MPI based HPC applications on cloud.

Current applications prefer distributed data model

and the data location with respect to application depends

on the distribution model. The individual processes in

data intensive MPI applications, spend initial time in

acquisition of the data which will be followed by

processing. Porting these applications to cloud require a

strategy to distribute the data such that data acquisition

time will be reduced. The proposed framework enhances

the performance of MPI based data intensive HPC

applications by scheduling the virtual machines in

accordance to the data availability.

Ashwini et al. (2017b), we have shown that shared

memory based communication between VMs improves

the VM communication performance drastically. Shared

memory based I/O is implemented in this work, which

gives better performance when compared to traditional

TCP/IP based data communication. Data location with

respect to the processing node is important in order to

induce shared memory based I/O of data to process. Also

in distributed data environment mapping of the data chunk

to its respective process is very important. This work

consists of a framework for data distribution on cloud

platform and different VM placement strategies in

accordance to the data location.
VM scheduling policies for two most widely used

data distribution models; distributed volume and striped
volume are proposed in this work. In distributed volume
complete data file will be placed on single data server
amongst the many servers. In striped distribution model,
single data file will be divided into multiple chunks
which will be distributed over many servers. The work is
implemented and tested on private OpenNebula based
cloud with GlusterFS distributed file system. The
scheduling strategies strive to place VMs such that

shared memory based I/O can be implemented. Results
show an average enhancement of around 88% in case of
distributed volume and 70% in case of striped volume by
application of our VM scheduling strategy.

Rest of the article is organized as follows. Section 2

discusses some of the previous work which motivated us

to consider this work. Proposed framework is discussed

in section 3 and section 4 gives experiments conducted

and result analysis. The work is concluded in section 5.

Previous Work

High performance applications are implemented

through cluster/grid environment. Most of the existing

work towards porting these applications on cloud

platform consists of static cluster instances provided as a

service by the cloud vendors through dedicated resources.

Ekanayake and Fox (2009; Masud, 2010; Younge et al.,

2011; Phillip and Andrzej, 2011; Nanos et al., 2007;

Guohui, 2010) compare the performance of HPC

applications on cloud/virtualization technology. Resource

sharing amongst the virtual machines and the hypervisor

layer are the main culprits in performance degradation of

the applications on cloud. Some ready to use cluster-as-

service solutions like Penguin on Demand (PoD), Amazon

cluster instances etc. are discussed and compared with

normal cluster performance in (Nanos et al., 2007) and

(Guohui Wang, 2010). These cloud vendors provide static

cluster-as-a-service instances consisting of homogeneous

resources connected through high end networking. Results

show a uninterrupted performance with low resource

utilization. Any solution with less resource utilization will

be costly for the cloud vendor as well as user.
Authors in (Jin et al., 2012; Shan et al., 2008;

Mazandarani and Momeni, 2013; Rogeiro et al., 2017)
believe that capability of running HPC applications on
top of data-intensive file systems is a critical catalyst in
promoting Clouds for HPC. In (Shan et al., 2008)
authors study many traditional data intensive
applications and their performance on current super
computing platform. The current supercomputing
platform poses many challenges to these applications
and they believe that separate benchmarks are required
to evaluate these architectures. Jin et al. (2012) proposes
a Chunk-Aware I/O (CHAIO) strategy to enable efficient
N-1 data access on data-intensive distributed file
systems. Authors in (Mazandarani and Momeni, 2013)
propose QOS aware scientific application scheduling
algorithm for cloud environment. Complete application
is divided into work flow and according to QoS
requirement such as cost or time resources are selected.
This work does not consider the MPI based
applications. Hou et al. (2016) authors study the I/O
behavior on cloud. The experiments were conducted to
measure various issues like effect of bandwidth, chunk
size etc. on the I/O performance. The results show that
various optimizations on I/O like enhancing the

Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy / Journal of Computer Science 2017, 13 (8): 320.328

DOI: 10.3844/jcssp.2017.320.328

322

bandwidth, communication latency etc. can be used to
enhance the overall performance of the application.

There are few works towards study of performance
of HPC applications on virtualization technology
(Nanos et al., 2010; Graham and Shipman, 2008;
Cheng and Wang, 2013; Ashwini et al., 2017a; 2017b;
Hou et al., 2016) and (O’Donnacha et al., 2016).
Porting of the HPC applications on cloud must consider
performance degradation due to resource sharing,
which leads to communication delays (Hou et al., 2016;
O’Donnacha et al., 2016). For performance
enhancement some of the best solutions proposed are,
traffic shaping, shared memory based communication
and VMM split driver models. Cheng and Wang (2013;
Ashwini et al., 2017a) and (Ashwini et al., 2017b)
shared memory based communication is used improve
the performance. Results shows notable increase in
performance with shared memory based communication.

Data distribution leads to more secure and loss
resistant architecture. It is the most widely used
architecture in the current scenario. Huang and Begnum
(2013) proposes a layered, redundant data management
approach for cloud-agnostic disaster recovery. This work
shows the importance of data distribution and discusses
the ways to recover them in cloud architecture. Noronha
and Panda (2008) provides introduction to GlusterFS
which is a distributed network file system. The work
analyzes the performance of this system with
consideration of various architectures. GlusterFS provides
a client server architecture with servers called as bricks
storing the data file in various formats. GlusterFS client
can access the data from these servers. It is most widely
used because of its simple architecture and ease of use.
Therefore GlusterFS is used in the implementation of
proposed system to form data distribution.

Manjaly and Jisha (2009; Sempolinski and Thain,

2010) and (Robinson and Hacker, 2012) authors have

compared different cloud environments like OpenNebula,

VMware Vsphere, Eucalyptus and Nimbus. Authors have

analyzed the overall structure of each of these projects and

addressed how the differing features and implementations

reflect the different goals of each of these projects. Lastly,

they discuss some of the common challenges that emerge

in setting up any of these frameworks and suggest avenues

of further research and development. Proposed work is

implemented and tested in OpenNebula cloud

management tool, which enables us to plug in our

placement strategy.

Proposed Framework

The proposed work in Fig. 1 is aimed at enabling data

intensive MPI based HPC applications on cloud. In

general cloud data center consists of multiple data and

compute nodes. GlusterFS distributed file system on

private cloud platform is used in this work for

establishing a distributed data base.

The work was initiated with the study of various data
placement strategies and its effect on data transfer delay.
The results proved that application performance can be
improved, if data is near to the computing node in terms
of transfer delay. Also, it has been observed that
combining data and compute nodes will help in
achieving good performance. The work considers a
cloud platform, where individual hosts work as both data
node and compute node. The work includes a data
distribution module and VM placement module. In the
first module, data will be hosted on the node according to
the choice of user. In the next module, VMs hosting the
data intensive MPI application are placed on the nodes
such that the data transfer delay will be minimized.

There are various data distribution models. This work
considers two very widely used models; distributed
volume and striped volume. In the first model, complete
file will be hosted on single data server amongst the set
of data servers. In the later model, file will be striped and
chunks will be stored amongst multiple data servers.

MPI based application hosting on cloud includes
instantiating a cluster of VMs hosting individual
processes. The work considers one process per VM for
cluster formation. Two different VM scheduling policies
have been proposed for the two different data
distribution models. The scheduling policies
implemented, enhances the application performance
through prioritization of the shared memory based I/O by
placing VMs according to the data dependency.

Data Availability Vs. Application Performance

Data placement is the key candidate in deciding the
performance of data intensive HPC applications. In order
to understand the effect of data locality on performance
of application the work was initiated by the study of
various scenarios of data distribution and its effect on
the performance of application. Data repository can be
divided into two categories, as centralized or
distributed. Centralized data bases keep data on single
node or single rack whereas distributed data bases
tend to distribute the data over different locations. In
the proposed method, we have implemented and tested
an environment wherein data is distributed amongst
the processing nodes. As a first phase, we tested the
impact of data distribution on the performance of
application using IOR benchmark application.
Following cases were considered for our analysis:

• Application with single process and Data file hosted

on same node
• Application with single process is hosted on a

compute node and file should be transferred from
separate data node

• Multi process application hosted on cluster of
compute nodes and data file transferred from single
data node

• Multi process application hosted on the nodes
consisting of data file

Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy / Journal of Computer Science 2017, 13 (8): 320.328

DOI: 10.3844/jcssp.2017.320.328

323

Fig. 1. Proposed framework

The study of various cases helped us to understand

the importance of data transfer time in overall

performance of application.

Application with single process and Data file hosted

on same node.

MPI applications will be executed with multiple

processes and the number of processes is usually

specified by the user. In this scenario application was

executed using single process on the virtual machine

hosted on the node containing data file. This scenario

doesn't explore the parallelization, but it analyzes the

advantage of holding process and data on same machine,

which reduces the data transfer latency due to shared

memory based communication.

Application with single process is hosted on a

compute node and file should be transferred from

separate data node.

Most of the cloud frameworks consider data and

compute nodes separately with data transfer during the

beginning of execution. Separate data nodes help in

better management of data. In this scenario, the

application was run as a single process accessing file

from data node. Even though both data node and

compute node are mounted on same rack, formal TCP/IP

based communication incurs latency.

Multi process application hosted on cluster of compute

nodes and data file transferred from single data node.

As per the general cloud practice, file was hosted on

data node and virtual machines hosting the individual

process were placed on separate compute nodes. All the

processes download data file and work on their

respective chunk required. This scenario increases the

data acquisition delay.

Multi process application hosted on the nodes

consisting of data file.

Every workstation was designed as GlusterFS file

server and data files were striped according to the “Block

size” and chunks were stored on servers in increasing

order of IP address. Application along with number of

processes equivalent to number of chunks of the

requested data file were hosted on the machines

according to their data requirement. For example process

0 hosting VM was hosted on GlusterFS server containing

first chunk and so on. Here, data acquisition time will be

reduced as data and process on same host communicate

through shared memory based I/O.

Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy / Journal of Computer Science 2017, 13 (8): 320.328

DOI: 10.3844/jcssp.2017.320.328

324

Fig. 2. Graph to compare the time of execution of IOR

application with single process on different scenarios

Fig. 3. Graph to compare the time of execution of IOR

application with multi process on different scenarios

The four cases were analyzed using a sample data file

of size 13GB. Figure 2 shows that for single process

application, combined data and compute node gives

better performance compared to separate nodes. We

can observe around 82% of performance enhancement

in combined data and compute node scenario

compared to separate nodes. Figure 3 shows that for

multi process application also combined data and

compute nodes gives better performance.

For multi process scenario we have analyzed the

results using number of processes as 13. For separate

data and compute node, data is stored on single server

and transferred to the VMs. File is divided into block

size of 1GB for the combined data and compute node

and distributed over volumes in three workstations. Here

number of virtual machines is equivalent to number of

processes with one process per VM. We can observe

around 92% of performance enhancement in case of

combined data and compute node (Fig. 3). Major part of

this performance improvement goes to the reduction in

data transfer delays. The results made us to conclude that

the combined data and compute nodes gives better

performance. But, the major problem we faced here is

the data dependency and process to data mapping.

Virtual Machine Placement for Data Intensive HPC

Applications

Proposed model aims at creation of dynamic VM

clusters on cloud, for data intensive MPI based high

performance application. In this regard, objective of this

work is to place the virtual machines in accordance with

their data dependency, in order to reduce their data

transfer delay. The analysis done in previous section

showed us that maximum performance can be achieved

by application, when data is available on the same host

for the application. This made us conclude that a cloud

framework, wherein, data and processing node

functionalities are combined will enhance the

performance of data intensive applications on cloud. The

proposed work set up a distributed data model on

compute nodes for the data used by the HPC

applications. For other applications data nodes will be

hosted separately. In order to implement this, GlusterFS

distributed file system was implemented in all the

processing nodes. Placement algorithm proposed

searches for the host where data file is available and try

to fit the virtual machine hosting application on the same

machine. There may be situation where in host machine

with data is not having enough resources to host the

virtual machines. Then placement strategy will try to fit

the VM in a host machine in the same rack where data is

hosted. The dynamic cluster of virtual machines hosted

through this will ensure complete resource utilization with

good performance, unlike static cluster instances provided

by the cloud vendors with dedicated compute and network

resources which leads to the wastage of the resources.

As mentioned in the previous section, we have

considered distributed volume and striped volume

amongst the various data distribution models. In the

distributed volume, complete data file will be stored in

same data node but overall database consists of many

servers and file can be stored in any server depending

on the space available. If the complete file resides on

single node, then virtual machines that execute the

processes should be placed in the node containing file.

The scheduling policy proposed will search for the host

with the requested file and try to place the maximum

possible VMs on the host. In case of resources on the

host not adequate for the instantiation of the VMs, any

host in the same rack with maximum resources

available will be selected for the remaining VMs.

Algorithm 1 gives the proposed method.
Storing a file on single node will increase the load on

node if many people are accessing the file at the same
time. Also in case of node failure complete data will be
lost. A better solution is to stripe the file into smaller
chunks and store it in different nodes. In the striped
volume model of data distribution, data file will be
striped and chunks will be stored over different data

Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy / Journal of Computer Science 2017, 13 (8): 320.328

DOI: 10.3844/jcssp.2017.320.328

325

servers. This architecture has the advantage that if one
server goes down, then only a part of data file will be
missing. Also, some optimization can be applied for this
architecture like an intelligent distribution technique
where in chunks will be distributed to the nodes on same
rack, so that their transfer time will be less.

In order to analyze the effect of striping on

performance of application hosted on virtual machine,

the file has to be chopped (striped) to particular size and

distributed across the servers. The primitive placement

strategy applied finds the set of servers, on which file

strips are available and virtual machines hosting the

application are hosted on those servers. For this

scheduling to work properly, the algorithm should know

the data dependency of each process. We have many

MPI profiling tools like MpiP, Darshan etc, to study the

data access pattern of each process. In this work we have

considered the IOR application which divides data into

different segments and each segment is divided evenly

among the processes. For example, if number of processes

is equal to number of segments then each process will

handle one data segment respectively. If an unknown

application is submitted by the user then the I/O profiling

phase will decide the data distribution pattern Algorithm 2

will provide the steps for scheduling of VMs in case of

striped data. We have assumed that the number of

processes will be equal to number of blocks striped across.

Algorithm 1. VM Scheduling In case of data file placed

on single server.

Data: Set of workstations ‘S’, Number of MPI Processes

‘N’ and Data File ‘F’

Result: Optimal VM Placement

Initialization;

repeat

 Check server Si for F;

Until ‘F’ is found;

If ‘F’ is found then

 repeat

 repeat

 Schedule Virtual Machine Vi in Si;

 Until (Resources are not available in Si) OR

 (‘N’ VMs are hosted);

 chose the next host machine in same rack and

 with maximum resources.;

 until (‘N’ virtual machines are hosted);

else Convey that data file is missing;

end

Experimental Setup and Results

The experiments are conducted on real private cloud

setup. A private cloud with OpenNebula cloud

management software was setup with three workstation

working as both GlusterFS data node and compute node for

hosting VMs. Xen hypervisor is used to create the virtual

machines. OpenNebula is a completely open source toolkit

to build any type of Infrastructure as a Service (IaaS) cloud.

It manages various facets of cloud like storage, network,

virtualization, monitoring and security. OpenNebula

includes single front end, containing the management

interface and a bunch of workstations, used for hosting data

and VMs. The workstations are quad core with 24GB RAM

and 250GB hard disks.

Algorithm 2. VM Scheduling in case of striped data files

Data: Set of workstations ‘S’, Number of MPI Processes

‘N’ and Data File ‘F’

Result: Optimal VM Placement

Initialization;

repeat

 Check Set of Servers CS, where chunks of F found

Until ‘F’ is found;

If ‘F’ is found then

 repeat

 if Resource is available at CSi and matches the

 Data Dependency then

 Schedule Virtual Machine Vi in CSi

 else

 Schedule Vi in the host available in same

 rack as of data and with maximum available

 resources;

 end
 until (‘N’ virtual machines are hosted);

else
 Convey that data file is missing;

 end

In order to implement and test the proposed

scheduling method GlusterFS (Graham and Shipman,

2008) scale-out network-attached storage file system is

used. GlusterFS is a scalable open source file system,

capable of scaling to several peta bytes and handling

thousands of clients. GlusterFS is widely used for its

implementation simplicity, with minimal cost.

GlusterFS, clusters different disks and memory resources

and manage the data in a single global namespace.

GlusterFS defines multiple volumes and distributes files

across them, essentially making one single larger storage

volume from a series of smaller ones. Distributed Gluster

volumes are used to scatter files randomly across the

number of bricks in the volume. Type of a volume is

specified at the time of volume creation and volume type

determines how and where data is placed. Following are the

two widely used volume types supported in GlusterFS:

• Distribute: Complete data file will be places on

single data server amongst many data servers

available

Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy / Journal of Computer Science 2017, 13 (8): 320.328

DOI: 10.3844/jcssp.2017.320.328

326

• Stripe: Striped volume divides data into stripes

called chunks and each chunk will be stored on

different server

Figure 4 show the Gluster file system implementation

in the proposed system.

IOR HPC benchmark application is used with a

simple data file of size 13GB. This benchmark

application is used to test parallel file systems using

various interfaces and access patterns. The benchmark

application works in two modes. In the first one, all

processes work on entire data file. In the later mode, the

data file will be divided into different blocks. Blocks will

be allotted evenly to the processes. The process with

rank 0 gets the first block and the process with rank 1

gets the second blockand so on. Each block is further

divided into many transfer units called Transfer Size,

which is the data transferred for a process between

memory and file for each I/O function call. The memory

buffer size is equal to the Transfer Size.

Distributed database is implemented using GlusterFS

file system and all the workstations work as both data

node and compute nodes. For the first scheduling policy

distributed file system of GlusterFS is used and data file

as a whole will be placed on single server and VMs will

be scheduled on same node. For the second scheduling,

data file will be striped into chunks and it will be

distributed across the servers. OpenNebula cloud

management tool uses matchmaking scheduling policy

as default for VM placement and this policy has high

priority for resources and neglected the remaining

aspects of an application.

For algorithm 1, IOR-HPC application was run with

number of VMs equivalent to the number of processes

and VMs were hosted on the machine containing the file.

This scheduling policy is easy to implement but suitable

for the case, where data files are not striped to fit in

different servers. If the file is only single copy of the file

this policy will try to fit all the VMs in the same host

containing file. In case of inadequate amount of

resources, VMs will be fitted in the host with maximum

resource availability on the same rack. Replication of the

file can give more choices for the VM placement and in

case of replicas we place VMs in decreasing order of

resource availability. We can observe that the application

performs around 88% (Fig. 5) better in case of all the

VMs hosted on data node compared to matchmaking

policy, where VMs are placed only on the basis of more

resource. Even in cases where data nodes were not

having enough spaces and few VMs are hosted on same

rack as of data node we can observe an improvement of

around 66% (Fig. 5).

Fig. 4. Private cloud with merged data and compute

Fig. 5. Graph to compare the time of execution of IOR

application executed with scheduling algorithm 1 for VM

placement and default resource based scheduling policy

Fig. 6. Graph to compare the time of execution of IOR

application executed with scheduling algorithm 2 for VM

placement and default resource based scheduling policy

This algorithm gives good performance and easy

implement but the level of distribution is very coarse.

Entire data file on single system will be a great risk in

case of system crash. Algorithm 2 will be used in case of

fine grained distribution. Here, data file is striped and

Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy / Journal of Computer Science 2017, 13 (8): 320.328

DOI: 10.3844/jcssp.2017.320.328

327

stored in different servers and VMs should be placed in

the server with data chunk, according to their data

dependency. IOR-HPC application works in two modes.

In the first mode, entire file will be processed by each

process and in the second one, each process requires a

particular block size and processes are sequentially

mapped to block. For example, block 0 is mapped to

process 0, block 1 to process 1, etc. We have striped data

according to the block size and VMs hosting the

individual process are scheduled in the data node

containing required block. Analysis has been done for

various numbers of processes. Consider the result

analysis for the sample processes 3, 6, 9 and 13. For

separate data and compute node, data is stored on single

server and transferred to the VMs. File is divided into

block size of 1GB for the combined data and compute

node and distributed over volumes in three workstations.

Here number of virtual machines is equivalent to number

of processes with one process per VM. Also, in all the

four cases we are able to fit in the VMs according to

their data dependency except when number of processes

is 3. In this case as very less VMs are there, few chunks

have to be transferred across the workstations. Graph in

Fig. 6 shows that on an average there is around 70% of

improvement in performance of our placement strategy,

to default resource based strategy.

Conclusion

HPC applications usually work with a large amount

of data and high performance resources. Even though

cloud can provide plenty of such resources, it is not

much entertained for HPC applications. Reason is

performance degradation due to sharing of resources and

hypervisor layer. Current database technology is driven

by distributed databases. The work has implemented a

framework for improving the performance of data

intensive HPC applications on cloud, by redesigning the

VM placement policies. Our analysis shows that much of

the performance degradation is while transferring data to

processes. Usually cloud technology, differentiates data,

compute nodes and as an initial step data will be

transferred from data node to compute node. Our

experiments shows that combined data and compute

nodes give better performance, as data transfer delay will

be minimized. Two VM placement strategies for

distributed and striped distributed data models are

implemented and tested in this work, using GlusterFS

distributed file system and OpenNebula based private

cloud. The placement policies strive to instantiate the

VMs running the process on the host machine where data

is already residing. For distributed data model our strategy

has achieved around 88% of performance enhancement

and 70% enhancement for striped distributed model.

Acknowledgement

The authors are indeed grateful to the management of
Nitte Meenakshi Institute of Technology for their support
and resources provided to us at every stage of this work.

Funding Information

We want to express our immense gratitude to the
Department of Electronics and Information Technology,
New Delhi for funding this work (Administrative
Approval number: HPC Projects/2(8)/2011).

Author’s Contributions

Ashwini Janagal Padmanabha: Being the research
scholar, author has contributed in design of the work,
data collection, implementation, result analysis and
drafting of the article.

Sanjay Harogolige Adimurthy: Being the research
advisor, author has contributed in the conception of the
work, result analysis and critical revision of the work
and article.

Ethics

As per the knowledge of the authors, work carried

out in this article is unique.

References

Ashwini, J.P., H.A. Sanjay and G. Shreevidya, 2017b.
Modeling and prediction of bandwidth requirement
for MPI based HPC applications on cloud. Int. J.
Cloud Comp.

Ashwini, J.P., H.A. Sanjay and M.C. Naina, 2017a.
Framework for performance enhancement of MPI
based HPC Application on Cloud. Int. J. Grid High
Performance Computing.

Cheng, L. and C.L. Wang, 2013. Network performance
isolation for latency-sensitive cloud application. J.
Future Generation Computer Systems, 29: 1073-1084.
DOI: 10.1016/j.future.2012.05.025

Ekanayake, J. and G. Fox, 2009. High performance
parallel computing with clouds and cloud
technologies. Proceedings of the 1st International
Conference on Cloud Computing, Oct. 19-21,

Munich, Germany, pp: 20-38.
 DOI: 10.1007/978-3-642-12636-9_2

Graham, R.L. and G. Shipman, 2008. MPI support for

multi-core architectures: Optimized shared memory
collectives, recent advances in parallel virtual
machine and message passing interface. Proceedings
of the 15th European PVM/MPI Users’ Group
Meeting, Dublin, Ireland.

Ashwini Janaga Padmanabha and Sanjay Harogolige Adimurthy / Journal of Computer Science 2017, 13 (8): 320.328

DOI: 10.3844/jcssp.2017.320.328

328

Guohui Wang, T.S., 2010. The impact of virtualization

on network performance of Amazon EC2 data

center, INFOCOM, San Diego, CA.

Hou, B., F. Chen, Z. Ou, R. Wang and M. Mesnier,

2016. Understanding I/O performance behaviors of

cloud storage from a client's perspective.

Proceedings of the 32th Symposium on Mass

Storage Systems and Technologies, May 2-6, IEEE

Xplore Press, USA, pp: 1-12.

 DOI: 10.1109/MSST.2016.7897089

Huang, K. and K. Begnum, 2013. The Hydra: A layered,

redundant configuration management approach for

cloud-agnostic disaster recovery. Proceedings of the

IEEE 5th International Conference on Cloud

Computing Technology and Science, Dec. 2-5,

IEEE Xplore press, UK.

 DOI: 10.1109/CloudCom.2013.158

Jin, H., J. Jiayu, X.H. Sun, Y. Chen and R. Thakur,

2012. CHAIO: Enabling HPC Applications on Data-

Intensive File Systems. Proceeding of the 41st

International Conference on Parallel Processing,

Sept. 10-13, IEEE Xplore press, USA.

 DOI: 10.1109/ICPP.2012.1

Manjaly, J.S. and S. Jisha, 2009. A comparative study on

open source cloud computing frameworks. Int. J.

Eng. Comp. Sci., 2: 2026-2029.

Masud, R., 2010 High Performance Computing with

Cloud. withCloudsRaihanMasud.pdf

Mazandarani, A. and H. Momeni, 2013. QOS-Aware

scientific application scheduling algorithm in

cloud environment. J. Comp. Eng. Intelligent

Systems, 4: 21-30.

Nanos, A., G. Goumas and N. Koziris, 2007. Exploring

I/O virtualization data paths for MPI applications in

a Cluster of VMs: A networking perspective.

Proceedings of the 2010 Conference on Parallel

Processing Euro-Par, Aug. 31-Sep. 03, ACM, Italy,

pp: 665-671.

Nanos, A., G. Goumas and N. Koziris, 2010. Exploring

I/O Virtualization data paths for MPI applications in

a Cluster of VMs: A networking perspective.

Proceedings of the Conference on Parallel

processing (Euro-Par’10), Ischia, Italy.

Noronha, R. and D.K. Panda, 2008. IMCa: A High

Performance Caching Front-End for GlusterFS on

InfiniBand, Proceedings of the 37th International

Conference on Parallel Processing, Sept. 9-12, IEEE

Xplore press, USA. DOI: 10.1109/ICPP.2008.84

O’Donnacha, F., E. Ragnoli, S. Venugopal, S.C. James

and K. Katrinis, 2016. On the efficiency of

executing hydro-environmental models on cloud.

154: 199-206. DOI: 10.1016/j.proeng.2016.07.447

Phillip, C.C. and G. Andrzej, 2011. IaaS Clouds Vs.

Clusters for HPC: A Performance Study.

Proceedings of the 2nd International Conference on

Cloud Computing, GRIDS and Virtualization Cloud

Computing, Sep. 25-30. Italy, pp: 39-45.

Robinson, N. and T. Hacker, 2012. Comparison of VM

deployment Methods for HPC education.

Proceedings of the 1st Annual Conference on

Research in Information Technology (RIIT12),

Calgary, AB, Canada.

Rogeiro, J., M. Rodrigues, A. Azevedo, A. Oliveira and

J.P. Martins et al., 2017. Running high resolution

coastal models in forecast systems: Moving from

workstations and HPC cluster to cloud resources.

Adv. Eng. Software Workstat.

 DOI: 10.1016/j.advengsoft.2017.04.002

Sempolinski, P. and D. Thain, 2010. Cloud computing
technology and science. Proceedings of the IEEE

2nd International Conference on Cloud Computing
Technology and Science (CloudCom’ 10), IN, USA.
pp: 1-4. DOI: 10.4018/ijghpc.2013100101

Shan, H., K. Antypas and J. Shalf, 2008. Characterizing and
predicting the I/O performance of HPC applications
using a parameterized synthetic benchmark.

Proceedings of the ACM/IEEE Conference on
Supercomputing, Nov. 15-21, ACM, USA.

Younge, A.J., R. Henschel, J.T. Brown, G. von

Laszewski and J. Qiu et al., 2011. Analysis of

virtualization technologies for high performance

computing environments. Proceedings of the IEEE

International Conference on Cloud Computing, Jul.

4-9, IEEE Xplore press, USA.

 DOI: 10.1109/CLOUD.2011.29

