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Abstract: The Map/Reduce paradigm has dominated cloud computing 

since its beginnings. However, there are some scenarios in which 

Map/Reduce is not the best model. Once such situation is a system that 

collects data dynamically, with intermittent arrival times. In this study, we 

study a modified form of Map/Reduce that uses a load balancer to distribute 

work, rather than simply assigning a Map node in an ad-hoc fashion. We 

show that this approach performs significantly better than standard 

Map/Reduce. In particular, it reduces the amount of time data is waiting in 

a queue to be processed. 
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Introduction 

Current Challenges  

Given a parallelized algorithm A, a set of resources 

R (typically a set of virtual machines and I/O channels 

in the cloud) and a set of data D, it is usually 

straightforward to distributed this data to the resources 

R. Assuming that the resources are uniform and that the 

number of resources is N = |R|, then the standard 

approach would be to assign D/N data values to each 

resource. This is what is referred to as a “static model,” 

because all the data D is available in advance, before 

the algorithm is run. 

This simple approach will not work for the “dynamic 

model,” where new data can arrive while the algorithm is 

running. Simulated systems will typically follow the 

static model, while production systems with live data 

being produced by sensors will typically follow the 

dynamic model (Darema, 2004). Furthermore, in the 

dynamic data model the data may be arriving according 

to a “smooth” distribution or a “punctuated” distribution. 

In a smooth distribution, the number of data items that 

arrive in a time interval T is always the same. In a 

punctuated distribution, the data can arrive at any time 

(Yin et al., 2013). As an example, consider CPU fan 

speed. In a smooth distribution model, the CPU fan 

speed would be adjusted according to the CPU 

temperature sensor. The temperature sensor would be 

read every T seconds, so that in this case there would 

always be 1 new data point per measurement. In a 

punctuated distributions model, the CPU fan speed 

would be adjusted only if the CPU temperature 

exceeded a certain threshold value V. In this model 

there could be long intervals during which there is no 

data (because the temperature is less than V during that 

interval), followed by one or more data points in which 

the fan speed has to be changed because the CPU 

temperature has exceeded the threshold (Darema, 

2005). Since the future history of the CPU temperature 

is effectively unpredictable, it is also not possible to 

determine the number of data points that will arrive 

during the interval T. 

For a system with dynamic data, the simple D/N 

allocation algorithm is unlikely to work. Data must be 

distributed uniformly to each resource (Chandra et al., 

2003). If time T has passed and the amount of data that 

has arrived is Dactual < D/N, then it may be better to wait 

before sending any of this data to a resource. If Dactual > 

D/N then it may be better to partition the data, sending 

some of it to one or more resources, while keeping the 

rest of the data in a queue. 

The fundamental question for a system with dynamic 
data is “What is the best strategy for distributing this 

data to the resources?” For the purposes f this document 
we define the “best strategy” to be the one that finishes 
processing a fixed amount of data D in the least amount 
of time. This paper proposes a data distribution strategy 
based on a specific form of load balancing and 
demonstrates that this load balancing approach performs 

significantly better than the static D/N approach. 
This paper addressed the current challenges 

associated with load balancing in cloud-based dynamic 

data settings. It further introduced the load balancing to 

provide some insights about the current problems in 

resource allocations. Then, the simulation environment is 
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introduced followed by the method and results. The 

obtained result is discussed at the end of the paper from 

different perspectives.  

Load Balancing 

The problem of resource allocation is a common 

problem that arises in many different scenarios     

(Shirazi et al., 1995). In our particular situation we are 

faced with a resource allocation problem that is very 

similar to the problem of web server architecture in the 

face of high traffic. Heavily used web sites (for example 

cnn.com) may have millions of page load requests per 

minute (Bharadwaj, 1996). The typical solution that is 

used features replication (putting the page data on 

multiple servers), caching (keeping a copy of a formatted 

web page so long as the content has not changed) and 

load balancing (Ranganathan et al., 2002). For our 

purposes replication and caching are not needed, but load 

balancing is needed. In the server case, a load balancer is 

an algorithm that routes tasks to the least busy machine 

that it can locate. Unfortunately the concept of “least 

busy” is not well defined. It depends on a number of 

factors, including CPU load, memory availability and 

I/O bandwidth. When we specify our particular form of 

load balancer algorithm we will provide a precise 

definition of how a machine (typically a virtual 

machine) can compute its own “busy factor” so that the 

load balancer can decide how to distribute data to 

available machine resources. 

There is another critical way in which our distributed 

algorithm differs from web server load balancing. This is 

the issue of granularity. For a web browser loading a 

web page, the user is unlikely to notice the difference 

between 0.5 sec to load and 0.6 sec to load, but will 

certainly notice the difference between 0.5 and 5 sec. 

Thus, for page loads, the granularity is very small, 

because it is based on the human perception of time. 

The distributed algorithms we use often need to 

perform complex cryptographic operations. These 

operations put high demands on the CPU, since even a 

single operation may take seconds (Cardellini et al., 

1999). Thus, these algorithms have a very large 

granularity. They also put high demand on memory, 

because the algorithms need to allocate very large 

blocks of memory in order to run. The I/O bandwidth 

requirements are different, however. Typical algorithms 

will require very high I/O bandwidth during 

initialization, in order to distribute the key material. 

After the initialization phase is complete, however, I/O 

requirements are typically very low. During this steady 

state phase of the algorithm the I/O packets will consist 

of new data elements or partial results, which will 

require far less bandwidth than key exchange. When we 

describe our load balanced algorithm we will show how 

initialization cost is handled. 

Simulation Environment 

In order to validate our load balancing algorithm to 

the greatest extent we wish to perform experiments on 

many different configurations. In an actual cloud 

deployment it may be difficult to adjust some of the 

parameters that we wish to vary. For this reason we 

chose to implement and test our algorithm on a 

simulated cloud environment, namely cloudsim 4.0. 

Cloudsim is a Java-based cloud simulation environment 

that allows the developer control of all parameters within 

a configuration, from the most local parameters 

(individual characteristics of a single virtual machine) to 

the most global parameters (network configuration 

within a data center). This environment is ideal for 

research on cloud algorithms without incurring the 

development limitations one would encounter in a 

specific cloud deployment. 

Using cloudsim also allowed us to build a generic 

plugin architecture to represent any algorithm. To do this 

we defined a Java interface named Ialgorithm. This 

interface defines methods for initialization, sending data, 

receiving data and also performing a computation based 

on data already received. Any Java class that implements 

this interface can be deployed to a computational 

resources. This allows us the flexibility to test the 

responsiveness of the load balancing algorithm for 

situations in which the computational resources have 

different algorithms deployed to them. This approach 

makes it easy to simulate a map/reduce framework, in 

which the control node is running one algorithm, the 

map nodes are running a second algorithm and the 

reduce node(s) are running a third algorithm. Since most 

of the algorithm work done so far has used a map/reduce 

paradigm, the idea of subclassing from the Ialgorithm 

interface has proven very useful in quickly setting up a 

simulation. Algorithms are packaged as Java jar files, so 

that it is easy to load them at compile time or runtime. 

Method 

The system architecture for our simulation work is 

shown in Fig. 1. 

The simulation has three operational phases: 

Initialization, run and termination. When the 

simulation is started it reads a fixed configuration file. 

From this file it learns the names of the jar files that 

will be used by itself, the load balancer, the map 

nodes and the reduce node(s). The control node sends 

a message to each node, commanding the node to load 

and run the appropriate jar file. The control node then 

performs its own initialization (such as the generation 

of crypto key material) and then commands the load 

balancer to gather initialization statistics. The load 

balancer then uses an algorithm named Init (describe 

below) to assign each computational node a score.
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Fig. 1. System architecture 

 

It sorts these scores from lowest to highest and delivers 

the sorted list to the control node. The control node then 

uses this list to command each computational node to 

perform its own initialization. Once the control node has 

received acknowledgments from each computational 

node that initialization is done, the control node reads the 

data source information from the configuration file and 

connects to the corresponding data source. Note that the 

control node may implement an immediate connection 

protocol, in which all data sources are connected during 

initialization, or it my implement a deferred connection 

protocol, in which some data sources can be added 

during runtime. Once the control node has finished 

connecting to data sources, it transitions to run mode. 

Run mode is straightforward. The control node 

queries each data source in a round robin fashion to see 

if data is available. If any data is available it reads that 

data. It then commands the load balancer to gather 

runtime data from each compute node. The load balancer 

then uses its algorithm Run, described below, to sort the 

runtime information into an array of triples of the form 

<NodeId, Load, HowMany>. Here NodeId is the 

identifier for each Map or Reduce node; Load is the load 

factor on that node; and, HowMany is the maximum 

number of data points that can be accepted by that node. 

The load balancer also collects the round trip time of the 

command/response sequence to each node and includes 

that information with the array. The array is then sent to 

the control node. The control node then typically 

implements a greedy allocation algorithm for the data 

points in its queue. The maximum number possible is 

sent to the least busy node; if there is any data left then 

the maximum amount of data is sent to the second least 

busy node and so forth. It may be the case that the 

greedy algorithm is unable to distribute all the newly 

arrived data because all the nodes are too heavily loaded. 

In this case, the control node queues up the remaining 

data points for the next iteration. Once the data has been 

received by the Map and Reduce nodes, each node 

processes it according to the selected algorithm. This 

may involve Map nodes sending partial data to Reduce 

nodes and also for Reduce node(s) to send partial data 

back to the control nodes. Then transmissions are 

handled using asynchronous I/O, since the amount of 

data in these packets is typically very small. 

The termination phase can be triggered by two 

events. If all data sources report that they have sent all 

available data, the control node closes the connections to 

the data sources and sends a termination command to all 

nodes. The termination phase can also be entered if there 

is an iteration counter present in the configuration file. 

Such a counter indicates the maximum number of 
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iterations of the simulation may run. Once this counter is 

reached, the control node again close all data 

connections and sends a termination command to all 

nodes. Note that the load balancer is not used for 

termination processing. Once all the Map nodes have 

completed processing, they will send their final data, 

along with a termination command, to the Reduce 

node(s). Once the Reduce node(s) have finished all their 

processing, they will send the final data to the control 

node and append a termination flag to indicate that all 

processing is done. At this point it is the responsibility of 

the control node to handle the results according to the 

configuration file. This may involve generation of 

graphs, construction of tables, logging, or any other 

supported termination action's from each node: CPU 

load average L, percentage of available memory M, 

number of connections C and the time it takes the node 

to read a block (4096 bytes) from global storage R. The 

score for that node is then computed as C*(k1*R + k2*M 

+ k3*L), where k1, k2 and k3 are configurable constants. 

This approach is sometimes called connection-based 

load balancing, because the more data connections a 

node has, the higher its score will be. The algorithm Run 

requests the following information from each node: L, 

M, C; the amount of time it takes to read a small block 

(512) bytes from a network socket; and the number of 

available data slots in the node D. It is assumed that each 

computational node implements a slot allocation policy, 

where newly arrived data is placed into an array of slots. 

As data is processed by the computational algorithm, 

slots are emptied. Thus we can write D = TD-TI, where 

TD is the total number of slots and TI is the number f 

slots currently in use. It is certainly not necessary to use 

a slot based allocation policy, but simple experiments 

have shown that this is the best memory allocation 

strategy. When each node starts up it requests a single 

allocation large enough to hold all slots. If, instead, each 

node were to allocated memory when needed and free 

memory when not needed then the memory utilization 

percentage M would fluctuate wildly and it would be 

very unlikely to achieve optimum allocation. The run 

algorithm uses the score of C*(k1*S + k2*M + k3*L) and 

provides D as the value of HowMany. 

Results 

In evaluating the results of the simulation, we 

compare computation time and other factors versus the 

naive D/N allocation strategy discussed in the first part 

of this document. In particular comparative data will be 

presented for scenarios with 10-100 Vms allocated to 

Map nodes, 1 VM allocated for both the control 

algorithm and the load balancer and 1 VM allocated for 

the Reduce node. We will compare total time of 

execution (Fig. 2) and also the average time spent in a 

blocked state waiting for data (Fig. 3). These figures 

clearly show that the load balancing approach provides a 

significant improvement in resource allocation for 

dynamic data. In our simulations data delivery (size and 

timing) is modeled as random, although alternative 

scenarios using different data delivery strategies yield 

almost identical results. 

 

 
 

Fig. 2. Normalized execution time for D/N (red) and LB (blue) algorithms 
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Fig. 3. Average blocking time 

 

The obtained result enrich previous findings on the 

role of graph partitioning of (Khayyat et al., 2013) in 

which using single method is considered to be 

insufficient for minimizing end-to-end computation. This 

is usually apply when the data is very large or the 

runtime behavior of the algorithm is unknown, an 

adaptive approach is needed. The result also provide 

more support to the work of previous work in (Hao et al., 

2009) who argued about the effectiveness of a basic 

network infrastructure to migrate virtual machines across 

multiple networks without losing service continuity. 

Authors in Hao et al. (2009) assumed that providing a 

mechanisms using a network-virtualization architecture 

that relies on a set of distributed forwarding elements 

with centralized control would help enhancing dynamic 

cloud-based services. As such, the present work extend 

the previous efforts on the potential of Map/Reduce in 

cloud related applications.  

Conclusion 

In this study we have presented a novel method for 

distribution and processing of dynamic data, particularly 

in the case of computationally difficult algorithms that 

take a long time to process. We have used a load balancer 

algorithm to mediate the distribution of data. By every 

performance measure this approach performs better and a 

naive strategy of distributing the data evenly over all 

compute nodes. We have also developed a simulation 

framework that is easily extensible to simulations of other 

cloud-based algorithms. Future works can further study 

the feasibility of the proposed method in various cloud 

related systems. This include extending the simulation 

environment to include additional settings. 
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