
 

 
© 2017 Adamu Muhammad Noma, Abdullah Muhammed, Mohamad Afendee Mohamed and Zuriati Ahmad Zulkarnain. 

This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

Journal of Computer Sciences 

 

 

 

Literature Reviews 

A Review on Heuristics for Addition Chain Problem: Towards 

Efficient Public Key Cryptosystems 
 

1
Adamu Muhammad Noma, 1Abdullah Muhammed, 

2
Mohamad Afendee Mohamed and 

1
Zuriati Ahmad Zulkarnain

 

 
1Faculty of Computer Science and Information Technology, 

Universiti Putra Malaysia, Serdang, 43000, Selangor, Malaysia 
2Faculty of Informatics and Computing, Universiti Sultan ZainalAbidin, Besut, 22200, Terengganu, Malaysia 

 
Article history 

Received: 03-12-2016 
Revised: 03-03-2017 
Accepted: 27-05-2017 
 
Corresponding Author: 
Abdullah Muhammad 
Faculty of Computer Science 
and Information Technology, 
Universiti Putra Malaysia, 
Serdang, 43000, Selangor, 
Malaysia 
Email: adamnoma@yahoo.com 

Abstract: Field exponentiation and scalar multiplication are the pillars of and 
the most computationally expensive operations in the public key 
cryptosystems. Optimizing the operation is the key to the efficiency of the 
systems. Analogous to the optimization is solving addition chain problem. In 
this study, we survey from the onset of the addition chain problem to the 
state-of-the-art heuristics for optimizing it, with the view to identifying 
fundamental issues that when addressed renders the heuristics most optimal 
mean of minimizing the two operations in various public key cryptosystems. 
Thus, our emphasis is specifically on the heuristics: Their various constraints 
and implementations efficiencies. We present possible ways forwards toward 
the optimal solution for the addition chain problem that can be efficiently 
applied for optimal implementation of the public key cryptosystems. 
 
Keywords: Heuristics, Addition Chain Problem, Modular Exponentiation, 
Scalar Multiplication, Public Key Cryptosystem 

 

Introduction  

Public Key Cryptosystems (PKC) are substitution-
based encryption systems for which security depends 
mostly on Integer Factorization Problem (IFP), Discrete 
Logarithm Problem (DLP) or Elliptic Curve Discrete 
Logarithm Problem (ECDLP). Every entity has two 
distinct keying materials: One kept secret while the other 
in public domain. Any party wishing to communicate 
with other accesses the communicating party’s authentic 
public key in the domain. Two parties employing Secret 
Key Cryptosystem (SKC) utilizes the capability of the 
PKC to exchange the keying materials securely in public 
channel, provided they authenticate one another. An 
entity communicating with many others has access to 
their respective public key in the public domain, as at 
when needed. Only one entity is in possession of a given 
private key and hence any message it signed can be used 
to trail back to it: Which serves as both non-repudiation 
and authentication mechanisms. Therefore, PKCs offer 
broader functionalities than SKC by facilitating key 
exchange and an elegant digital signature mechanism 
that also facilitates authentication and non-repudiation. 
Implementation-wise, PKCs depend on extensive field 
(modular) exponentiation or scalar multiplication.  

In the given Field Fp, exponentiation x
e mod p and 

point scalar multiplication eP are the basis and most 
resource consuming operations in the PKC that render 
their utilization feasible only for special purpose: Likes 
key exchange and digital signature. For the system to 
be computationally secured, the integer e size should be 
around 160 to 2048-bit. While the PKC security 
depends on the size of e, the operations are highly 
involved with large-sized e. Two basic approaches to 
optimize these operations are design of efficient 
multiplication hardware or utilizing some optimization 
algorithm. From the latter point, the 
exponentiation/scalar multiplication involves chains of 
repeated multiplications/additions, thus has an additive 
properties with respect to the e. Fortunately thus, the 
operation can be abstractly approached as an Addition 
Chain Problem (ACP) with a view to finding the 
corresponding shortest (or optimal) Addition Chain 
(AC). The AC for the e represents the sequence of 
multiplications or additions required in the respective 
operation. The ACP is generally regarded as NP-hard. 

This paper surveys ACP as applies to optimizing 
modular exponentiations and scalar multiplications in 
various PKC. Primarily, we concentrate on state-of-the-
art heuristic works on the problem and their implications 
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on the PKC. We discuss only theoretical findings that 
have a significant impact on the heuristic. The paper is 
organized thus: We proceed in this section with a brief 
description of PKC basics and the roles of 
exponentiations/scalar multiplication in each. The 
section is rounded with a technical description of 
modular exponentiation and scalar multiplication. In the 
next section, we focused on the heuristics and 
metaheuristics for the ACP. Section 3 concludes the 
survey and present recommendations based on. 

Public Key Cryptosystems (PKC) 

In PKC, an entity A is associated with pair of 
keying materials kpr and kpu. While kpr is held secret as 
its private key, kpu is made public for any entity 
wishing to communicate with the A. The needed 
conditions are that kpu is authentic that of A and kpr is 
computationally intractable with the knowledge of 
only kpu. Basic PKCs include Diffie-Hallman key 
exchange system (Diffie and Hellman, 1976a), RSA 
(Rivest et al., 1978), ElGamal-based system 
(ElGamal, 1985) and Elliptic Curve Cryptosystem 
(ECC) (Koblitz, 1987; Miller, 1986). 

Diffie and Hallman (1976b) pioneered the solution to 
key distribution problem in SKC, called the Diffie-
Hallman key exchange scheme. Basically for two parties 
A an B to exchange a secret key kA,B: 
 
• Large primes p,q/(p-1) and q’s generator a is agreed 

on (may be supplied by a trusted third party) 
• A and B choose a uniformly random and secret 

numbers xA, xB < q respectively 

• A evaluates  Ax

A
y a mod p=  and sends to B, similarly 

B sends back  Bx

B
y a mod p=  

• Both then compute , ( ) ( )  A Bx x

A B B Ak y mod p y mod p= = , 

at their respective ends 
 

An adversary is left with the problem of evaluating 
either xA = dloga,p (yB) or xB = dloga,p (yA) called 
Diffie-Hallman Problem (DHP), that is a DLP. 
Currently the fastest DLP algorithms are Pollard rho 
(Pollard, 1975) and number field sieving (Joux and 
Lercier, 2003). Approximately 2048-bit p and q≈p/2 
are considered computationally as secured as SKC 
such as AES (Adrian et al., 2015; Dahshan et al., 
2015; Robshaw and Yin, 1998). 

Note of the field exponentiations involving very large 
exponents, each of an expected order of ≈21000 that are 

involved in the algorithms: , ,A B BX X X

A
a a Y  and AX

B
Y . 

ElGamal (1985) proposed full featured DLP-based 
cryptosystem, which has been the basis for such DSS 
and S/MIME email security (Stallings, 2011). The PKC 
is in principle similar to Diffie-Hallman algorithm 

except that A makes available the set { }, , , Ax

Aa q p y a= in 

public domain as its required public keying material. An 
entity B wishing to communicate with the A partitions its 
message M into 0≤Mi<p; And for each Mi, it selects a 
random exponent 1<xBi<q, then generates and sends a 

key/message pair (C1,C2): Where 1
Bix

Bi
C y a= =  and 

2
Bix

A i
C y M= × . When the pair reaches A the message is 

recovered as 1
1 2( )Ax

i
M C C−= . 

RSA is developed by Rivest at al. (1978), The 
algorithm (Koc, 1994) consists of pair of public key 
(e,N) (N = p × q: Where p, q are large primes of fairly 
the same bit-length and that 1<e<φ = (p-1)(q-1), gcd(e,φ) 
= 1) and a private key (d,N) 1<d<φ, e × d ≡ 1 mod φ). A 
message M is RSA-encrypted as Y = M

e mod N and 
decrypted as Yd mod N = (Me)d mod N = M. 

Note that e and N are open to public while d, p and q 
are kept secret. The problem of determining d given the e 
and N is that of computing e−1 mod φ. Thus N has to be 
factored into q and p, hence an IFP (May, 2004). As p 
and q grows large the factoring is assumed to be 
computationally infeasible. Given the present computing 
power, its assumed that 1024-bit p, q and therefore about 
2048-bit N are sufficient (NIST, 2013).  

The field exponentiations in the RSA has been the 
most expensive operation that renders it less attractive 
for general purpose data encryption, apart from the less 

rigorous key exchange and digital signature  One means 
of reducing this operation is in utilizing well-known e = 
3,17 and 216+1 as public key. However, the first 2 are 
vulnerable to attacks using Chinese Remainder Theorem 
(CRT) (Boneh, 1999). Furthermore, d is such that d>n

1/4 
for the system to be secured (Wiener, 1990; Boneh and 
Durfee, 2000). However, employing CRT along with 
Fermat theorems to factor d reduces the exponentiation 
length by factor of 3 to 4 (Stallings, 2011). 

Elliptic Curve Cryptosystem (ECC) (Miller, 1985; 
Koblitz, 1987) is yet an emerging general purpose 
PKC, requiring less key size while giving similar 
functionality and level of security. For a prime p>3, an 
elliptic curve over the field Fp is a set of solutions (x,y) 
for an equation of the form: 
 

2 3:E Y X AX B= + +  (1) 
 
such that A,B∈Fp and 4A

3 +27B
2 ≠ 0. 

The set of points on E with coordinates in Fp is the 
set E(Fp) = {(x,y): x,y∈Fp, y

2 = x3 + Ax + B}∪{0}. O is a 
point at infinity and represents the identity in E. 

ECC over binary extension field 
2mF also exists and is 

applicable to cryptographic systems. But, for the general 
discussion, ECC over Fp suffices. Refer to (Robshaw and 
Yin, 1998; Koblitz et al., 2000; Hankerson et al., 2004) 
for details on the ECC. 
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The set of points satisfying the Equation 1 forms an 
additive group under special addition, hence the basis for 
its use in the cryptography: That is for any points P,Q 
and R in E, P + Q = Q + P;P + O = P;P + (-P) = O where 
-P: (x, y) = (x, y) and (P + Q) + R = P + (Q + R). 

For any two points P1(x1,y1), P2(x2,y2) where P1 ≠ -P2 

and P1, P2 ≠ O: P1(x1,y1) + P2(x2,y2) = P3(x3,y3). Such that 
x3 = λ2–x1–x2,y3 = λ(x1-x3) –y1 and: 
 

2 1
1 2

2 1

2
1

1 2

1

3

2

y y
if P P

x x

x A
if P P

y

λ

− ≠ −
= 

+ =


 (2) 

 
Note that the operation, even as termed point 

addition, actually involves some additions, 
subtractions multiplication and inversions in the field: 
Thus, referred to as Elliptic Curve Addition (ECADD) 
and Elliptic Curve Doubling (ECDBL) when P1 ≠ P2 
and P1 = P2 respectively. 

Furthermore, operationally-wise cryptosystem based 
on elliptic curve involves repeatedly adding point P in 
the form of P + P + P + ⋅⋅⋅ + P = eP, that is e times, 
called scalar multiplication. For example ECC version of 
Diffie-Hallman key exchange by two parties A and B 
involved agreeing on a unique E: y2 = x3 + ax + b, the 
prime p over which E is defined and a point P on E. 
Thus (E,p,P) are public. Party A privately selects a scalar 
eA, evaluates eAP and pass it to B. Similarly party B 
passes eBP to A. Both parties evaluate eAeBP at their ends 
and the x coordinate serves as their common secret key.  

The security of the ECC also depends on the size of 
e. It is determined by the difficulty of evaluating e given 
P and Q = eP, which is ECDLP. The fastest known 
algorithm to solve ECDLP in E(Fp) is estimated to take 

p steps (Hoffstein et al., 2014): Thus it is fully 

exponential algorithm. Consequently, it is assumed that 
around 160-bit ECC provides equal security to 1024-bit 
RSA (Maletsky, 2015). Therefore, the ECC provides 
similar functionality but with superior advantages in 
term of less key size: Translating to bandwidth savings 
and faster implementation. 

Note, scalar multiplication is isomorphic to AC. Thus 
a number of addition/doublings in it is minimal with 
optimal AC for the scalar e. Another good aspect of 
optimizing its operations is that an inversion of P(x1, y1) 
is virtually cost-free as compared to multiplicative 
inversion in other PKC.  

Field Exponentiation versus Scalar Multiplications 

as Addition Chain Problem 

Exponentiation, evaluation of power (Knuth, 1998), 
involves computing y = xe given x and positive integer e. 
A basic feasible method for the computation is the 

square-and-multiply algorithm (Knuth, 1998): e is 
expressed in binary form and x is held as the partial 
result; Beginning from and skipping the Most Significant 
Bit (MSB), the result is squared par bit and if the bit is 1 
it is again multiplied by x. For example, x13: 1310 = 11012 
and therefore x13 = (((x2

x)2)2)x = x-x2-x3-x6-x12-x13 On the 
other hand, evaluating eP involves series of addition of 
the P e-times. In a similar manner to x

e, this can be 
achieved by series of addition and/or doublings. E.g., 
13P = 2(2(2P + P)) + P = P-2P-3P-6P-12P-13P, 
requiring equal number of additions as that of the 
multiplications in the x

13. Additionally, the numbers of 
operations correspond respectively to that of terms in the 
sequences x/P, x

2/2P,…x
e/eP: The respective 

powers/coefficients form a sequence of AC for e. Thus 
finding shortest AC corresponds to that of the number of 
operation required. Therefore, henceforth, we 
disambiguate problem of minimizing both modular 
exponentiation and scalar multiplication as ACP. 

Definition 1 

Given an integer e, a sequence A: a0 = 1, a1 = 2, 
a3,…, ar = e, is said to be an Addition Chain (AC) for e 
if for all i ≥ 1, ai = aj + ak, i>j≥k. The length of the AC is 
denoted as r. 

The shortest r for which there exists an AC of e is 
denoted by l(e). 

Other variants of AC are star-chain (Brauer, 1939), 
Addition-Subtraction Chain (ASC) (Morain and Olivos, 
1990) and Addition Sequence (AS) (Yao, 1976). 

Definition 2 

An ai, i>0, of an AC A is said to be a star if ai = ai-1 + 
ak, k<i; an AC A is said to be a star-chain if all ai∈A, i>0, 
are star; the shortest length of star-chain for an integer e 
is denoted as l*(e). 

Definition 3 

An Addition Sequence (AS) of an integer vector E = 
{ei: 1 ≤i≤s} such that 1<e1<e2<⋅⋅⋅<es is a sequence 
1,2,a2,…,aL = es satisfying the properties of an AC in 
Definition 1 and that all ei, 1≤i≤s are in the sequence..  

Definition 4 

The length of e (denoted as) n(e) is define as the 
minimum number of bits to represent e in binary form as 
e = (en−1en−2⋅⋅⋅e0)2, while H(e) is the number of non-zero 
bits (weight) in the binary form. We use n to indicate an 
arbitrary n-bit integer. 

The problem of finding shortest AC exists and 
persists for over hundred years (Dellac, 1984). Scholz 
(1937) raised the fundamental question of what is the 
least number of multiplications to evaluate xe given x and 
e. Knuth (1998) once described ACP as a mathematical 
problem of which no conjecture is safe. The problem 



Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289 
DOI: 10.3844/jcssp.2017.275.289 

 

278 

received ample efforts from both theoretical studies 
(Brauer, 1939; Downey et al., 1981; Mignotte, 2011; 
Thurber, 1973, 1993; Yao, 1976; Knuth, 1998) and 
algorithmic perspective in search for the optimal AC 
(Bahig, 2006; 2011; Bos and Coster, 1990; Clift, 2011; 
Thurber, 1999), to mention but a few. ACP is an NP-
hard, while its generic ASP is proven as NP-complete 
problem (Downey et al., 1981). Therefore, heuristic  
(Bos and Coster, 1990; Gelgi and Onus, 2006; Koc, 
1995; Lee et al., 2006; Park et al., 1999) and 
metaheuristic (Cruz-Cortés et al., 2005; 2008;          
Jose-Garcia et al., 2011; León-Javier et al., 2009; 
Osorio-Hernández et al., 2009; Dominguez-Isidro and 
Mezura-Montes, 2011; Dominguez-Isidro et al., 2015) 
have become alternative approaches in searching for near 
optimal solution for the ACP.  

We are motivated by the potentials of deterministic 
heuristics and metaheuristic in searching for near optimal 
solution for the ACP, especially as applied to various 
PKC. However, we observed various fundamental issues 
that are needed to be considered/addressed, at first in 
selecting particular heuristic/metaheuristic for the 
problem; secondly for the appropriate method to be able 
to search for a nearest optimal AC and for the result to 
be most suitable for PKCs; and for the search process by 
the heuristic to be as efficient as possible. While ACP 
heuristics/metaheuristic for PKC is central to our survey, 
we consider both the time and space efficiencies in 
solving the problem: This is particularly in 
considerations of the varying platforms, with varying 
constraints, of deploying PKC. Therefore, in the 
remaining of the survey, we review those various 
heuristics for the ACP with emphasis on their 
implementation efficiencies; effectiveness in finding the 
(near) optimal AC; as well as their implication 
constraints in the context of the PKC, with respect to 
both speed and memory requirements. We study only 
those theoretical studies and/or exhaustive methods for 
which results have direct implications for the 
formulation of the heuristics. We use the terms method 
and algorithm interchangeably. 

Addition Chain Heuristic 

Algorithms for finding (near) optimal AC can be 
classified as exhaustive or heuristics. The exhaustive 
approaches (Bahig, 2006; 2011; Clift, 2011; Thurber, 
1999) normally end up generating optimal ACs for some 
large set of integers. It takes a few days to months of 
computer cluster operation to do so. Normally, the 
generated optimal ACs are for small integers far from the 
ones utilized in PKCs.  

An AC heuristic algorithm alg generates AC for an 
integer e, Aalg(e) = a0,a1,…, ar = ewith length lalg(e) = r, 
such that lalg(e) ≥ l(e). The objective of alg is to 
minimize lalg(e) → l(e) and it is said to find an (shortest) 

optimal AC for e if lalg(e) = l(e). In addition to this 
objective, we consider the algorithm efficiency in 
finding the solution and amount memory required when 
applying the solution in various PKC.  

Binary Method 

In binary method, a binary form of e is processed 
in a sequence of doublings and an optional addition, 
depends upon the given digit value that is 1 or 0 
respectively. For n-bit e = en-1en-2…e0, in binary form, 
the method generates an AC Abin(e) having length 
lbin(e) as presented in Algorithm 1. 
 
Algorithm 1: Binary Method 

Input e = en-1en-2…e0; Output: Abin(e) = {a0,a1,…,ar = e}. 
1: Abin(e) = {a0 = 1}, i = 1 
2: for j: n-2 to 0 do 
3: Abin(e): = Abin(e)∪{2ai-1} and i = i +1 
4: if ej = 1 then Abin(e):= Abin(e)∪{ai-1+1} and i = i+1 
7: end for 
8: return Abin(e) 
 

( ) ( )( ) 2
bin

l e n e H e= + −  (3) 

 

On the average, lbin(e) = ( )3

2
n e .  

Binary method is efficient in terms implementation and 
utilizes minimal memory resources. It can also be applied 
directly in PKC implementation, without the need to find 
the AC for the given exponent/scalar a priory. Algorithm 2 
shows the procedure in the (field) exponentiation. 
 
Algorithm 2: Binary Exponentiation 

Input x, p, e = en−1en−2… e0; Output: y = xe mod p. 
1: y:= x 
2: for j: = n-2 to 0 do 
3: y:= y × y mod p 
4: if ej = 1 then y:= y × x mod p 
7: end for 
8: return y 
 

Point scalar multiplication Q = eP is similar to 
Algorithm 2 except that x is replaced by P, y by Q, 
squaring in step 3 by ECDBL and multiplication in step 
4 by ECADD. Note, only 2-units of storage are needed 
for the base x and the (partial) result y.  

However, the method is least effective in finding 
optimal AC. But Knuth (1998) proves that for e with 
H(e)≤4, lbin(e) = l(e), except the following categories of e 
= 2A +2B +2C +2D, A >B >C >D having H(e) = 4: 
 
• A-B = C-D (e.g.: e = 1510 = 11112 = 23+22+21+20) 
• A-B = C-D +1 (e.g.: e = 2310 = 101112 = 

24+22+21+20) 
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• A-B = 3, = C-D = 1 (e.g.: e = 3910 = 1001112 = 
25+22+21+20) 

• A-B = 5, B-C = C-D = 1 (e.g.: e = 13510 = 
100001112 = 27+22+21+20)  

 
all having l(e) = n(e) +1 = lbin(e)-1. 

Considering its efficiency, the binary method may be 
a good candidate as an initial solution for other more 
effective heuristics/metaheuristic and that needless for 
search for optimality for the e's with H(e)<4. 

M-ary (2
k
-ary) Method 

m-ary or 2k-ary method is an extension for the binary 
method. The method is traceable to Brauer (1939), but 
witnesses various enhancements (Knuth, 1998; Thurber, 
1973; Koc, 1995; Park et al., 1999). An n-bit e = 
en−1en−2…e0 is padded (where necessary) with trail of 0s 
to the multiple of k. It is then partitioned into w = n/k 
fixed k-bit words: mi, i = w-1,…,0, mw−1 being the Most 
Significant Word (MSW). Thus, 0≤mi = 

(eik+k−1eik+k−2…eik)
1

0
2

k k

ik jj
e

−

+=
<∑ and 

1

0
2

w ik

ii
e m

−

=
=∑ . 

Initially the values 2 2 1, , ,
k

x x x −… , corresponding to all 

possible im
x , are pre-computed. The algorithm proceed 

by scanning the most significant k bits mw-1, raising the 

corresponding 1wm
x −  to the power of 2k as the partial 

result. This is followed by subsequent scanning of the 
remaining mi, i = w-2, w-3,…,0 each time multiplying 

the partial result by im
x and raising it to the power of 2k 

as: 1 12 4,w wm mx x− − ,⋅⋅⋅, 12k
wmx − , ( )1 21 2

2 22 . ,
kk

w w
w w

m mm mx x x
− −− −

+
,⋅⋅⋅, 

( )2
1 2 1 0

2 2 2
.

n k n k k
w wm m m m ex x x

− −
− −+ +…+

= . That is beginning from 
1wm

x − , k-time squaring are performed, followed by 

multiplying the partial result by the next im
x  until the last 

0m
x is multiplied by. Let Am(e) be AC generated by m-ary 
for e, the process, in the form of addition chain, is 
presented in Algorithm 3. 
 
Algorithm 3: m-ary method. 
Input e,k; Output: Am(e) = {a0,a1,…,ar = e}. 
1: Am(e):= {1, 1+1 = 2, 2+1 = 3,…,2k-1} 
2: pad e with trailing 0s so that k divides n(e) 
3: partition e into w = n/k k-bit words mi: i = w-1…0 
4: r:= 2k-2; ar:= mw-1∈Am(e) 
5: for i = w-2 down to 0 do 
6:  for j = 0 to k-1 do 
7:  r:= r +1 
8:  Am(e):= Am(e)∪{ar:= 2ar-1} 
9: end for 
10: if mi ≠ 0 
11:  r:= r +1 
12:  Am(e):= Am(e)∪{ar:= ar-1+ mi} 
13: end if 

14: end for 
15: return Am(e). 
 

From Algorithm 3, step 1 requires 2k-2 additions to 
pre-compute all possible values mi up to 2k-1. In step 8, 
there are (w-1) k = (n/k-1)k doubling. While in step 12 
an addition is performed only when mi ≠ 0. Having k-bit 
mi in which each bit is equally likely to be 1 or 0, Pr(mi = 

0) = Pr(eik+k-1 = 0×…× eik = 0) = 
0

1
(1 / 2)

k−∏  = 2−k. Thus 

Pr(mi ≠ 0) = 1-2−k. Therefore, for the w-1mi, an average 
of (w-1)(1-2−k) = (n/k-1) (1-2−k) additions are 
performed. Hence, on the average m-ary AC length for 
n-bit e using k-bit partitions lm(n,k) is: 
 

( ) ( ) ( ) ( )( ), 2 2 1 1 1 2k k

m
n nl n k k

k k
   = − + − + − −     (4) 

 
An even shorter length is obtainable when the pre-

computation is delayed until after the partitioning: The 
corresponding additions is reducible by 2k-1-max(mi): 
max(mi) being mi with the largest value. E.g., an m-ary 
optimal AC length for 62-bit e = 
360698408451099195710, is found to be 83 using k = 3. 

According to Knuth (1998), computing all 
2i

q:q<2k−i,i>0 can be omitted in the pre-computing stage, 
thereby saving (1+ n) mod k additions. Similarly, 
Thurber (1973) generalized that all even mi>2 can be 
computed when needed at the addition stage, by adding 
their respective odd halves before the last doubling. For 
example, given e = 3010 ֏  111102 ֏ 011-110 (3, 6) 
and k = 3: Instead of 1-2-3-4-5-6 ֏ 3-6-12-24-30 
(24+6) with length 9, the AC is generated as: 1-2-3 ֏ 3-
6-12-15(12+3)-30 having length 7. Consequently, e = 
360698408451099195710 have an AC-length 81 and 
Equation 4 reduces to: 
 

( ) ( ) ( )( )1, 2 1 1 1 2k k

m
n nl n k k

k k
−    = + − + − −     (5) 

 
From (5), the additions reduces with increase in k. 

However, the length of the pre-computation increases 
exponentially with the k size (thus henceforth we refer 
this as k-constraint). Thus, Koc (1995) estimated optimal 
values of k to be around 3 to 7 for n ≤ 2048es.  

m-ary can also be efficiently applied as binary 
method, but requires additional 2k−1 units of memory to 
hold the pre-computed values. Therefore, it is suitable 
for one-time and infrequent exponentiation/scalar 
multiplications. The choice of k is important to achieving 
both optimal computation and memory utilization.  

Window-based Addition Chain Methods 

Window-based methods (Bos and Coster, 1990; 
Thurber, 1999; Koc, 1995) are enhancements of m-ary 
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that form partitions mi of arbitrary length of 0s. In the 
partitioning process, the leading zeros in a given k-bit 
Non-zero Window partition (NW), mi ≠ 0 are also carved 
out and merged with subsequent zeros encounter to form 
a Zero Window partition (ZW). The ZW takes any 
arbitrary length, until a non-zero bit is again 
encountered. In other word, only NW is restricted to an 
odd value with n(NW)≤k. Thus, pre-computation of the 
odd values up to 2k-1 costs (2k-2)/2+1 = 2k−1 additions. 
The number of NWs is also reduced on the average. The 
method is also referred to as Constant Length Non-zero 
Window (CLNW) (Park et al., 1999). The AC algorithm 
is presented in Algorithm 4. 
 
Algorithm 4: CLNW 
Input: e,k; Output: Aw(e) = {a0,a1,…,ar = e}. 
1: Aw:= {1,2,3,3+2 = 5, 5+2 = 7,…, 2k-1} 
2: Partition e into mi: i = w-1, w-2,…,0 such that if mi ≠ 0 
then MSB(mi) = LSB(mi) = 1 and n(mi)≤k 
3: r:= 2k-1; ar:= mw-1∈Aw(e) 
4: for i = w-2 down to 0 do 
5:  for j = 1 to n(mi) do 
6:  r:= r +1 
7:  Aw:= {Aw(e)}∪{ar:= 2ar−1} 
8: end for 
9: if mi ≠ 0 
10:  r:= r +1 
11:  Aw(e):= { Aw(e)}∪{ ar:= ar−1 + mi} 
12: end if 
13: end for 
14: return Aw(e) 
 

LSB(x) and MSB(x) indicate the most and the least 
significant bit of x respectively. The equivalent right-to-
left version of Algorithm 4 is structurally similar except 
that step 6-8 are preceded by 9-12, ar is initialized as m0 
and all the loops are reversed.  

The Variable Length Non-zero Window (VLNW) 
version further restructure NW having a fairly long trail 
of zeros within, e.g.: 1100001. Constructing NW is 
terminated upon encounter of a predetermined q 
consecutive zeros; Transition to ZW begins with the q 
zeros. The strategy minimizes n(NW) and/or maximizes 
the weight; and the proportionate number of ZWs is also 
maximized. On the average, the number of NW is also 
reduced (Park et al., 1999). Both the CLNW and VLNW 
are referred to as Sliding Window Methods (SWM).  

Empirically, an SWM AC length for an n-bit e 
utilizing k-bit NW is evaluated thus: Beginning from the 
MSW, let there be ms,ms−1,…,m1,s≤w NWs in the 
partition of e; the pre-computation stage involves 
generating AC consisting of all odd numbers up to 2k-1 
at the cost of 2k−1 additions, in which only the unique 
NWs are needed. But in practice the largest NW in the 
given partition may be less than 2k-1. Therefore, when 

the pre-computation is deferred until it is known, the cost 

reduces to
( )max

2
im 

 
 

. Beginning with mw−1, there are n-

n(mw−1) doublings and s-1 additions corresponding to the 
remaining NW. Thus, the AC length lswm(e,k) is given as: 
 

( ) ( ) ( ) ( )1

max
, 1

2
i

swm w

m
l e k n e n m s−

 
= + − + − 

 
 (6) 

 
Equation 6 is independent of partitioning parameters 

and is, in fact, generic for the family of window-based 
methods (Binary, m-ary and SWM). 

We denote lcw(e,k) and lvw(e,k,q) as the length for an 
AC generated by CLNW Acw(e,k) and VLNW Avw(e,k,q) 
respectively. Proceeding with example for e = 
3606984084510991957, exhausting all optimal windows 
parameters k = [3,7] and q = [1,4], we get lcw(e,3) = 
lvw(e,3,2) = lvw(e,4,2) = lvw(e,4,3) = 77. 

According to Koc (1995) analysis, thought biased in 
respect n(e) (Park et al., 1999), for n = [128,2048] 
CLNW and VLNW gain 7-3% and 8-5% fewer additions 
respectively over m-ary. The gains depend on the 
selective (k,q) parameter values, even as in general 
SWM share the same k-constraint.  

Note on Windows-Based Addition Chain Methods 

Window-based AC algorithms are state-of-the-art 
feasible methods for exponentiation/scalar multiplication: 
Consequent to their implementation efficiency and 
minimal memory requirement. However, none of the 
methods guarantees any (near) optimal AC. The 
resulting optimality is also tightened to the choice of 
optimal window parameters. We regard the methods as 
optimal approaches when an exponent/scalar e is not 
known and/or frequently changed in the course of 
running an application. However, in PKCs, an e is 
normally utilized multiple times and, at times, an 
application partially chooses random e. In this case, a 
general parameter for the n-bit class of e may not be 
suitable particularly for it. Therefore, a yet adaptive 
means of determining suitable parameters for the 
individual exponent is needed, for the method to be even 
more effective. Upon preliminary empirical analysis, we 
present in Table 1 the range of optimal windows 
parameters that result in the most optimal SWM AC. 
 
Table 1. Optimal parameter range for SWM 
n k q 

32-127 2-4 1-4 
128-255 3-5 2-4 
256-511 4-6 2-5 
512- 639 4-6 3-5 
640-1023 5-6 3-5 
1024-2048  6-7 4-6 
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Moreover, to reduce the negative effect of the k-
constrains, Bos and Coster (1990) proposes finding AS 
for the sequence of the unique NW. The AS-length 
depends on that of the largest NW max(mi), an NW with 
the longest expected AC and the number of the NWs s. 
Yao (1976) related the upper bound AS-length L for a 
sequence vector V = (v1,v2,…,vs), v1<v2<…<vs as: 
 

( ) ( ) ( ) ( )( )
1

lg lg / lg lg 2
s

s i ii
L V v c v v

=
≤ + × +∑  (7) 

 
where, c is constant and (henceforth) lg(x) = log2(x). The 
worst case scenario occurs when s = 2k−1, that is mi ≠ 0, i 
= 1,…,2k−1, in which L = 2k−1. As demonstrated in 
(Nedjah and Mourelle, 2005; Bos and Coster, 1990; 
Cruz-Cortés et al., 2008; Dominguez-Isidro and  
Mezura-Montes, 2011; Dominguez-Isidro et al., 2015), 
an even better result is expectedly obtainable with a 
well-formulated AS algorithm. 

Heuristics for Addition-Subtraction Chain Problem  

A class of algorithms that is related to the family of 
windows methods is that of Addition Subtraction 
Problem (ACSP). ACSP is a special case of ACP in 
which subtraction (inversion as applied to 
exponentiation) is also allowed. 

Definition 5 

Given an integer e, the sequence A: a0 = 1, a1 = 2, 
a3,…,ar = e, is said to be an Addition-Subtraction Chain 
(ASC) for e if ∀i≥1, ai = aj ± ak, i>j≥k. 

ASC heuristic algorithms are proprietary to scalar 
multiplications as in ECC due to the negligible cost of 
inversion in its field. We demonstrate the strength of 
the subtraction with the class of e = 2n-1. These es 
exhibit the longest binary AC-length of 2(n-1), having 
n-1 doubling and n-1 additions, as: 1,2, 2+1, 22+21, 
22+21 + 1,…,2n−1 +⋅⋅⋅+ 1 = 2n-1. But by admitting 
subtraction in the AC, the same binary method 
produces shortest AC with length n +1 by performing 
n doubling and a subtraction, as 1,2,22,23,…,2n, 2n-1. 
In general any sequence of consecutive k non-zero bits 
11…1 = 1×2k−1 +1×2k−2 +⋅⋅⋅+1×20 = 2k-1 could be 
recoded with k +1 bits as 100…-1 = 1×2k 

+0×2k−1+0+⋅⋅⋅ -1×20 = 2k-1 (henceforth -1 is coded 1 ). 
The former has H(e) = k while in the latter H(e) = 2. 
Therefore, the idea is to reduce the number of 
additions due to H(e) that follows the doublings. In 
this regard balanced ternary ( )1,0,1 recoding (Knuth, 
1998) is re-introduced to minimize the non-zero density 
in any given e where possible.  

Various signed binary (ternary) recoding methods 
exist, with Non-Adjacent Form (NAF) (Eǧecioǧlu and 
Koç, 1994; Reitwiesner, 1960; Morain and Olivos, 

1990) being canonical that minimizes H(e) from 
asymptotic n/2 to n/3. A kNAF is a signed equivalent 
of m-ary and reduces the density asymptotically to 
1/(k+1) (Okeya, 2004). Similarly, in (Laith and Kuo, 
1997), the m-ary version of Modified Signed Digit 
(MSD) is proposed, having the same non-zero density 
as the kNAF but demonstrating an improved empirical 
result: This is possibly due to the m-ary lookup table 
with sparse bits. Mutual Opposite Form (MOF) 
(Okeya, 2004) is similar to NAF, but with the 
advantage of having left-to-right version. The left-to-
right recoding eliminates the need for two parses and 
additional n-bit memory required in the NAF process 
is reduced to 1 (or k-bit for its kMOF version). 
Basically for an n -bit e: 
 

( ) ( )2MOF e e e= ≪ �  (8) 

 
All the operations in Equation 8 are bitwise.  
On the other hand, Complementary Recoding (CR) 

(Balasubramaniam and Karthikeyan, 2007) is easier as 
1+ bitwise complement of e are bitwise-subtracted from 
2n(e)+1. That is: 
 

( ) ( ) 12 1n eCR e e+= � �  (9) 

 
Note that Equation 9 is also equivalent to 2n(e)+2-e. 

However, CR unconditionally results in additional 1 bit 
to a recoded e and is only effective in reducing the H(e) 
when H(e)>n/2. As n-bit e has its (n+1) -bit recoded 
CR(e) related as: 
 

( )( ) ( )1H CR e n H e= + −  (10) 

 
Therefore, CR rather increases the non-zero bit 

density when H(e)>n/2. But this is not the case for 
other recoding methods. For example, given e = 
2406610 = 1011110000000102: H(24066) = 6 and 

( ) 224066 10 10000 1 1 1 111110CR = . Therefore 

H(CR(24066)) = 10. But the NAP(24066) = 

10 1000 1000000010 . As for suitable recoding for 
method for the formal SWM, it is an open problem 
(Win et al., 1998).  

Other Heuristics for Addition Chain Problem 

Various other deterministic heuristics for ACP 
exists, that result in minimal length AC than binary 
family. Famous among them are Factor and Power-
tree methods. 

Factor method factors e as e = yz. Note that xe = xyz = 
(xy)z. Thus, AC for e = yz reduces to the AC for y 
followed by that for z, wherein 1 is replaced by y and a 
prime e is decomposed into e = yz +1. The AC length lf 
by the method can be obtained recursively as: 
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( )
( ) ( )

( ) ( )
 

1 2

1  2
f

l y l z if e composite

l e l y l z if e prime

if e

 + =


= + + < =
 =

 (11) 

 
Therefore, the method recursively factors e into its 

smallest prime factors and subsequently evaluates the 
corresponding ACs as described.  

Power-tree also recursively generates the AC for e, 
prior to which at least all that of e/2 must have been 
generated as the base (Knuth, 1998). Let the AC and its 
length be denoted as Apt and lpt respectively, then: 
 

( ) ( ) { }pt pt jA e A b a b= ∪ +  (12) 

 
such that aj∈Apt(b), aj + b = e. Thus: 
 

( ) ( ) 1pt ptl e l b= +  (13) 

 
for some e/2≤b<e for which the AC is already generated.  

Therefore, Power-tree method is a semi-exhaustive 
algorithm. Moreover, the direction in which the b is 
searched for, in the previously generated results, 
determines the optimality of the corresponding AC: 
Generally forward scan from the smallest to the 
largest ones yields better result. To study it, we apply 
the method to generate ACs for e = 1 to 4096. Optimal 
accumulated AC length for the set is 54,408. Forward 
scan in method yields 54,812 (99.26% optimal), while 
the result for the backward scan is 61,457 (87.04% 
optimal). 

Both the factor and the power-tree methods, though 
effective, are only feasible for relatively small integers. 
For a large number, IFP in itself is an NP-complete 
problem (Mohamed et al., 2011).  

Gelgi and Onus (2006) propose improved versions 
of both Factor and Power-tree methods: The proposed 
Factor heuristic searches for the pair factors x,y: e = 
xy whose ACs already computed to have shortest 
length summands; Whereas in the power heuristic 
(called Dynamic heuristic) given e, instead of 
searching for AC for the first b whose ai = e-b, the 
algorithm searches for the one with the shortest AC-
length among the already generated ACs. 

Our preliminary investigations on the proposed 
Dynamic heuristic revealed that its optimality is again 
a function of the base ACs up to that of value δ that 
are needed to be pre-computed and, for the algorithm 
to guarantee any (near) optimality, the base ACs of at 
least 1 to e/4 are needed to be evaluated by some 
exhaustive method. For example we apply the method 
to evaluate ACs for e = 1 to 4096, the resulting 
accumulated AC-length is presented in Table 2. 

Table 2. Accumulated AC-lengths for 1 to 4096 due to varied δ 
and e = 4096 in Dynamic heuristic 

δ e/32 e/8 e/4 e/2 
Cum. AC-length 54,613 54,556 54,482 54,410 
%Opt 99.62 99.73 99.86 ≈100 

Cum: Cumulative; % Opt: Percentage Optimality 
 

The method may not be feasible for large e with n of 
order 128 to 2048, utilized in PKCs. 

Mani (2013) proposed division-based AC method. It 
is an attempt to design an AC algorithm that is as 
efficient as metaheuristic-based algorithms (to be 
detailed later) while avoiding the processing overhead, 
by emulating windows-based methods. e is successively 
divided by 2 while the quotient is tracked; the quotients’ 
sequence structure determines the selection of one base 
ACs, to be utilized in building the e’s AC, out of 9 pre-
defined optimal star-chains; based on the partial AC 
generated by the quotient, the AC is then systematically 
built on the selected base AC. The method is potentially 
as efficient as windows-based methods. However, we 
observed that it results in little optimal AC than SWM. 

Mohamed et al. (2011) proposed factorization-based 
Decomposition Method (DM). e is initially factored into 
powers of its primes factors p1,p2,…,pm such that 

1 2

1 2
mnn n

m
e p p p= × ×…× . For each pi, a rule is applied, that 

is similar to (and with same result as) the binary method, 

to compute its AC. AC for 1

1
np  follows from that of the 

1
1 :1,2, ,

prp a… as a base, by repeatedly applying the base 

AC structure while substituting the current last element 
ar as the next first element a0n1-times. Thus, resulting 
AC-length equals 

11 pn l× . Similar procedure is applied on 

the remaining : 2in

i
p i m= … , by substituting the last 

element of the AC corresponding to 1

1
in

i
p −

− as the first 

element of pi’s AC. Therefore, AC-length for e ldm(e) due 
to DM Adm(e) is given as: 
 

( )
1

i

m

dm i p

i

l e n r
=

= ×∑  (14) 

 
where, ( )

ip bin ir l p= . The algorithm results in more 

optimal ACs for large integer as compared to window-
based methods. However, it is most suitable for smooth 
integers since prime factorization is an NP-complete 
problem. Additionally, an even better result is obtainable 
if a more optimal algorithm is utilized in evaluating the 
ACs for the pi instead. For example, ldm(e = 
15539×552113×92815) = 418. But 5521 has an AC with 
length 15 (1-2-4-8-9-17-26-43-86-172-344-688-1376-
2752-5504-5521) which can be utilized, instead of 
Abin(5521) having lbin = 17, to obtain shorter AC having 
length 392 (26 less). Even on applying SWM, lswm(5521, 
k = 3) = 16, a 405-length AC is obtained.  
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We generalized that windows-family methods are 
efficient in terms of implementation but least effective in 
finding (near) optimal AC; there are feasible windows-
based heuristic that generates more optimal results for 
specific classes of integers (Mohamed et al., 2011) or 
proprietary to ECC (Balasubramaniam and Karthikeyan, 
2007; Chang et al., 2003; Joye and Yen, 2000; Morain and 
Olivos, 1990; Okeya, 2004); Others, like factor and 
power methods, are feasible only for small-sized integers 
far from those utilized in PKCs; Exhaustive methods 
have been the most effective but often finding optimal 
results requires months of computer-cluster efforts 
(Bahig, 2006; 2011; Clift, 2011). There is yet to be any 
algorithm alg that can answer that for any given eAalg(e) 
has lalg(e) = l(e). However, many studies have been 
carried out at establishing theoretical optimal ACs, at 
least for some classes of integers, without necessarily 
finding the exact AC sequence. Even as the study are yet 
to yield the objective in general but have been able to 
establish some bounds, cost function and specialized set 
of integers which are useful in searching for (near) 
optimal ACs. The resulting studies are valuable in 
designing yet effective heuristics for the ACP. 

Theoretical Results and Asymptotic Bounds for 

ACP 

Downey et al. (1981) prove that ASP is an NP-
complete problem. ACP, even yet to be proven as an NP-
complete, is an NP-hard problem that is believed to be 
complete as well. An upper bound for l(e) is given 
(Knuth, 1998) as: 
 

( ) ( ) ( )lg 1l e e H e≤   + −   (15) 

 
According to Thurber (1973), for all e such that 

n(e)<17: 
 

( ) ( ) ( )( )lg lgl e e H e ≥ +   (16) 

 
l(e) lower bound is (Schönhage, 1975): 
 

( ) ( ) ( )( )lg lg 2.13l e e H e ≥ + −   (17) 

 
Therefore, from (15) and (17): 

 

( ) ( )( ) ( ) ( ) ( )lg lg 2.13 lg 1e H e l e e H e + − ≤ ≤   + −    (18) 

 
For all e such that H(e)<4, l(e) = lg(e) + H(e) -1 = 

lbin(e).  
Equation 18 along with (7) are viable tools in 

controlling windows-based ACP heuristics, to search 
efficiently toward the optimal results: Equation 7 can be 
utilized to evaluate a partition without generating the 

actual AC while using Equation 18 to decide on its 
optimality or otherwise.  

In respect of the cost functions: 
 

( ) ( )*l e l e≥  (19) 

 
Huge number of e exist for which l*(e) = l(e). It was 

widely conjectured that for any e there exists star-
chain(s) with l

*(e) = l(e). However, Hansen (1957) 
proves the otherwise; as exemplified in (Knuth, 1998). 
Notwithstanding, ACP heuristics generate (near) 
optimal star-chains and the chain is sufficient for 

practical purpose  Bahig (2011) even proves that for 
any e there exists optimal AC(s) such that the last four 
(4) steps are stars. He further proves that for all e: 
n(e)≤218 the last half elements of their optimal ACs are 

star; and finally conjectured that all last 
( )

2

l e 
  

-steps are 

star. We observed that in optimal ACs for any e all steps 

after 
2

m

e
a

 ≥   
 are star and are well-defined. 

Consequently, heuristics should revert to local-search 
after generating the am. 

According to Thurber (1993), there exist from a very 
few to a large number of minimal ACs for any given e, 
referred to as MNC(e). The NMC depends on the 
cardinality of e and, to some extends, pattern of 1s in its 
binary form. However, he concluded that NMC(e) is 
erratic with respect to the e. Similar studies on star 
subsets of the optimal AC (i.e., l*(e)⊂ l(e)) may assist in 
optimizing ACP heuristics: This is in view of the fact 
that the algorithms generate the star-chains; 
Additionally, it is easier to find optimal (star) chains for 
e with large NMC as compared to their counterparts.  

Knuth (1998) backed theoretical findings with many 
empirical results that aid in benchmarking ACP 
algorithms. Among the results are for set small of es for 
which the ACs known but considered special for the 
uniqueness of their optimal ACs. Refer to (Knuth, 1998) 
for the list. Similarly, c(r) is defined as smallest e for 
which l(e) = r. Furthermore, Knuth (1998) compiled c(1) 
to c(27) while Clift (2011) found up to c(38). 
Dominguez-Isidro et al. (2015) reported another set of es 
termed “hard” because of the relative hardness in 
finding their optimal AC by deterministic heuristics. 
The set consists of 3243679; 3493799; 3459835; 
3235007; 3230591; 3182555; 3440623; 3704431; 
3234263; 3352927; 3926651; 3922763; 2948207, each 
having l = 27. While the results do not contribute to the 
development of any ACP heuristic, they serve as test-
beds for evaluating ACP heuristics. Recently, 
exploiting solution for ACP witnesses a huge turning 
point where efforts have since been shifted towards 
exploring various metaheuristic. 
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Metaheuristic Algorithms for ACP 

Cruz-Cortés et al. (2005) formulate GA model for 
ACP. Variable-length chromosomes represent the AC; 
ai elements of the AC are mapped against genes in the 
chromosome; the AC-length represents the 
chromosome fitness. Initially, a set of star-chains for e 
are randomly generated. A one point crossover is 
utilized; whereby two ACs (parents) generate a pair of 
new upspring. A crossover point is selected at random 
in each of the parents and all the elements (genes) 
before the respective points are copied into generating 
child chromosomes. The AC pair being generated 
(children) and parent ACs are then interchanged 
(crossed); and the rule applied to generate the 
remaining elements of the parent ACs are utilized to 
generate that of the children ACs. The process is 
followed by mutating the children, in which in each 
two points i,j: 2≤j<i<(lGA-2) (where lGA is an AC 
length) are selected at random. An element ai +1 is 
replaced with ai + aj; and all the remaining upper 
elements (genes) are replaced by randomly alternating 
between doubling (ai = 2ai−1) and star (ai = ai−1 + aj,j<i-
1) steps. The union of the parents and children are 
ranked in order of their fitness and the first half fitted 
ones are selected for the next iteration (generation). 
The process is repeated for a number of generations 
and, finally, the fittest valid AC(s) is returned. 

Utilizing 100 parents par generation for 300 
generations (as reported), a total number of 60000 ACs 
for e are generated and space corresponding to 200 ACs 
is required, through the life-span of the algorithm. It 
generates (near) optimal ACs, than deterministic 
heuristics earlier detailed, for small sets of integers; at 
the expense of the estimated memory/processing 
overheads. To utilize the resulting AC in PKC, memory 
units corresponding to the AC-length is required.  

Osorio-Hernández et al. (2009) proposed an 
improved version of the GA, in which only valid ACs 
are retained in the population; Two-point crossover is 
utilized; and Lucas (ai = ai−1 + ai−2) is introduced among 
the steps, at Pr = 0.2. Double step is given Pr = 0.7. To 
generate the valid AC, whenever the last ai = ai−1 + 
aj>e,aj is replaced by ak such that ai = ai−1 + ak≤e,k<j. 
The ak is sequentially searched down the AC. 
Additionally, 4 mutants per child are produced, whereby 
the fittest among them is selected. Thus, 240000 ACs are 
evaluated and memory corresponding to 200 ACs 
needed. An even more optimal result is realized 
consequent to the mentioned improvements.  

Nedjah and Mourelle (2004; 2006) applied 
distributed multi-agent ant system ACO, while        
León-Javier et al. (2009) use the PSO. Both are similar 
to GA. In the ACO, a similar set of parameters to the GA 
is used but the improved GA discussed performs 
comparably better. PSO evaluates 30,000 ACs and 

requires memory space equivalent to 30 ACs. But 
reported PSO results are for es with n<12: These are by 
far smaller than ones utilized in PKC. Similarly, the GA-
based heuristic was reported by Rodriguez-Cristerna and 
Torres-Jimenez (2013), in which factorial number 
system is used in the AC representation. The algorithm is 
fortified with special neighborhood and distribution 
function. The reported results are also for relatively 
small integers. Nedjah and Mourelle (2006) reported a 
promise-looking result from ACO, for up to 1024-bit 
integers. However, the report may either be incomplete 
to justify the result: For example, the reported Table 2 
showing 1024-bit integers having average AC-length of 
1022 is contrary to Equation 17. Moreover, considering 
the large number of integers in the given range, 
sampling characteristics of the represented set has to be 
stated clearly. For example, Kunihiro and Yamamoto 
(2000) show that optimality of AC for e is a function of 
H(e): Those e with very few and those with almost all 
non-zero bits in the corresponding binary forms 
represent the integers for which their optimal ACs are 
easy to obtain; Whereas those es having on the average 
n/2 bits density constitute the most difficult set for which 
to find the optimal ACs. Cruz-Cortés et al. (2008) and 
Dominguez-Isidro et al. (2015) opined that 
metaheuritics, generally, return (nearest) optimal ACs 
for relatively small to medium integers. In their 
respective Artificial Immune System (AIS) and AC 
Evolutionary Programming (ACEP), SWM is integrated 
to handle large integers. This followed from a proposal 
pioneered by Bos and Coster (1990). 

Bos and Coster (1990) show that computing AS 
corresponding to the NW in SWM gives room for an even 
larger k. An algorithm called Makesequnce is applied to 
generate the AS. Given a vector of NW V = {v1,v2,…,vs}, 
the algorithm begins with protosequence AS = {1,2, 
v1,v2,…,vs}. Four rules are defined for the process: 
 
• Approximation: if vi + vj = vk-ε:i≤j<k and ε is small 

positive integer then insert vi + ε into the sequence. 
E.g., 49-67-85-117 ⟼ 49-50-67-85-117 (where 
49+67 = 117-1) 

• Division: if vi is divisible by a small prime p then 

add 
2

, , ,i iv v
p

p p
…  into the sequence. E.g., 17-48 ⟼ 

16-17-32-48 (where p = 2 and 2 divides 48) 
• Halving: take a small number t that occurs earlier in 

the sequence and insert vi-t,
( )

, , ,
2 4 2

i i i

u

v t v t v t− − −
…  for 

some u. E.g., 14-382⟼14-23-46-92-184-368-382 
(where t = 14 and vi = 382) 

• Lucas: construct Lucas sequence where necessarily 
so that vi is last element of the Lucas sub-chain. 
E.g., 4-23⟼4-5-9-14-23 
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And finally, remove any redundancy. Some 
weighting function where attached in selecting the rule, 
but (as reported) it does not yield any better result. For a 
set of NW with the largest window vs≤1000: 
 

( ) ( )3
lg 1

2
sL NW v s≤ + +  (20) 

 
The algorithm is demonstrated having a good result 

for 512-bit integers, in which about 2/3 of the bits are 
non-zero. But the criteria for applying the four (4) rules 
is left open. Therefore, the heuristic is left as a 
framework with the hope of yielding a nearly optimal 
result. Cruz-Cortés et al. (2008) adopted the 
approximation rule in an AIS-based AC algorithm, 
wherein it is called Insertion. 

AIS is also nature-inspired swamp intelligent-based 
AC algorithm. Its simplified version for the AC mimics 
the pattern matching between antigen and antibody and 
clonal selection principles. A cloning-mutation is applied 
to a generation of antibodies and mutated clones with the 
highest affinity are retained for the next generation. An 
immune memory mechanism is used to retain some 
subset of higher affinity clones for future immunity. e is 
mapped to an antigen, the antibody and it affinity being 
the corresponding AC and its length (Aai(e),lai(e)) 
respectively. Cloning involves creating new AC from 
stimulated existing one with higher affinity (shorter 
length) and is followed by hypermutation (perturbation 
of the new AC). A cloned AC with low affinity is 
receptor-edited (replaced) with ones with higher affinity. 
The process is repeated for a number of generations and 
those clones with the highest affinity are finally returned.  

Analytically, the algorithm generates a population of 
N of ACs for e. Best P among them are selected for 
cloning/mutation. Beginning from the one(s) with the 
shortest length, first batch from the P is utilized to clone 
another N ACs; then N/2 are cloned, utilizing the second 
batch; until all the P ACs are exhausted. Each of the 
cloned AC is then mutated into a pair. If e is even, best d 
among the 2P ACs are kept for later reference and 
finally best N ACs are selected for the next generation. 
The process is repeated for say g generations. Therefore, 
the algorithm generates and evaluates at least gPN ACs 
and N + d AC-units of memory is required. For example 
given g = 25,N = 45, d = 0.1N and P = 0.25N: 12375 
evaluations are made, requiring memory resources 
equivalent to 49 ACs. 

AIS utilizes least resources among the metaheuristic 
discussed. It also returns competitively good results for 
small integers. As for the large ones, the algorithm 
partitions e just as in SWM detailed. However, in this 
case an arbitrary larger MSW mw−1 is utilized (normally 
6 to 20-bit). Then AIS AC algorithm is applied to 
evaluate the AC for the MSW. The AC serves as an 

input, along with the remaining unique NWs, for the 
Insertion-based AS heuristic to generate the sequence 
and the AC-length is determined as: 
 

( ) ( ) ( )1, , 1vw wl e k q L NW n n m w−= + − + −  (21) 

 
The process is repeated with varying length MSW, 

but normally fixed k,q at 6,q respectively. The AC with 
the shortest length is returned.  

In the AIS-based sequence generation, given ordered 
protosequence from the NW{1,2,m1,m2,…,ms}, the 
algorithm inserts ms-ms−1 that is not in the sequence and 
sort it again; the procedure continues with the pair (ms−1, 
ms−2),…, (mi,mi−1),…, (m0,m1), inserting mi-mi−1 that does 
not exists and sorting the sequence to maintain the order. 
The estimated AS-length is given as: 
 

( ) ( )4
lg 2

3
sL NW m s≤ + +  (22) 

 
ACEP (Dominguez-Isidro et al., 2015) utilizes the 

same method while adopting Evolutionary Programming 
(EP) model (Dominguez-Isidro and Mezura-Montes, 
2011) for generating the initial AC. 

EP is an evolutionary computation algorithm in 
which generations are produced asexually without a 
parental selection process. In the model, the process of 
solution encoding, initial population generation and the 
probability function are similar to that of GA    
(Osorio-Hernández et al., 2009), where N individual 
ACs are generated. t-mutants are created from each of the 
N ACs and the best among them is selected as the 
respective offspring. In the replacement process, each AC 
competes with q random ACs among the union of the N 
parent ACs and their offspring; while the number of wins 
(number of times individual AC-length is shortest among 
its competitors) is recorded. The ACs are then sorted 
according to their wins and first-half with highest 
frequency of wins are selected for next generations. The 
process is repeated for MAXGEN number of generations. 
Thus, the algorithm generates N × q × t × MAXGEN AC in 
the process and requires N AC-units of memory. For 
example given the value for N, q, t and MAXGEN are 
100,10,4 and 23 respectively, 92,000 AC are evaluated.  

ACEP reported slightly better result than AIS for 
small integers, while both are roughly equal for large 
ones. But in respect of computing/memory resource AIS 
is comparably better. To be implemented in PKC, both 
requires memory units equivalent to the respective AS-
length for the NW vector. However, the integer sets 
utilized by both are insufficient to generalize their 
effectiveness behaviors-being very small.  

On a general note: Metaheuristics applied on ACP are 
largely nature-inspired, evolutionary or swamp 
intelligence-based, that are also population-oriented; 
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with ACEP considered the most successful one reported 
so far. Jose-Garcia et al. (2011) employed trajectory-
based Simulated Annealing (SA) but exhibited less 
promising results. The metaheuristics could be regarded 
as second most optimal approaches for ACP-superior 
ones being exhaustive methods. In relation to PKC, the 
ACs are generated/determined independently before 
being applied. They are also less efficient as compared to 
window-based methods: This is partly obvious as they 
are a sort of compromise, but partly it is due to the 
population-dependence. The resulting optimality 
degenerates as the integers become relatively large 
(Dominguez-Isidro et al., 2015). Consequently, it is 
generally believed that SWM still remains the most 
feasible optimal method for large integers, albeit with the 
k -constraint (Bos and Coster, 1990; Cruz-Cortés et al., 
2008; Dominguez-Isidro et al., 2015). Therefore, hybrid 
of metaheuristic-SWM have emerge as an alternative 
approach, in which the metaheuristic overcome the k-
constrain in the SWM. Worthy of nothing is that finding 
optimal AS for the NW vector, on which the hybrid 
depends, is an NP-complete problem (Downey et al., 
1981). Thus expecting high-quality solution requires 
well-formulated algorithm for the ASP. 

Conclusion 

Based this survey on various works/studies on the 
ACP, following are highlights of issues worth 
considering, apart from optimality, specifically when 
designing ACP heuristic for PKC: 
 
• Implementation memory requirement. Binary 

method is least effective in respect of the optimal 
exponentiation/scalar multiplication operations but 
is the most economical in terms memory resource 
utilization. It requires two units of memory only: 
One for the intermediary result whiles the other for 
the base. SWM, in general, are next to binary, 
requiring 2k−1 units for the pre-computed windows. 
As for the other metaheuristic, it depends on the 
implementation. But it is obvious that during the AC 
search/generation population-based algorithms 
require much memory, depending on the number of 
population; this is apart from the memory required 
to store the intermediate results corresponding to the 
elements in the AC when implemented 

• Processing overhead in search for the optimal AC. 
Again binary method and SWM utilizing fixed 
windows parameters (k,q) can be applied with 
negligible processing overhead. However, 
considering the poor performance of binary in terms 
of optimality and that SWM using fixed parameters 
does not guarantee optimal result, it is worth at least 
searching for the optimal window parameter for a 
fairly large integer in PKC and when a known and 

large integer is to be utilized at least twice it is more 
economical to evaluate its (near) optimal AC prior 
to the actual exponentiation/scalar multiplication: 
Most of the PKCs keys are in this category. In fact, 
for the likes of RSA, the corresponding AC may be 
pass/stored along with the other key parameters as is 
the tradition with CRT of the private key d 

• Multiplication versus squaring. Squaring is generally 
regarded as more efficient than multiplying two 
different numbers. As such, an AC with more 
proportionate doubling than addition will be faster in 
term of its corresponding exponentiation. However, 
this is different in ECC’s scalar multiplication where 
both ECADD and ECDBL involve some number of 
multiplications, squaring and inversions 

• AC/AS representation for very large integers with 
hundreds to a few thousands ACs lengths. The AC 
sequence encoding is another issue worth given 
attention to. A good candidate for this is star-chain, 
where only one “parent” needs to be remembered for 
the child element to be reconstructed. Additionally, 
smaller integer structure can be used to only keep 
track of the AC elements and their parents’ positions. 
For example, given all 512-bit integers, their star-
chain can be structurally represented using 10-bit 
integers, say, as 2,3(1),5,9,10(4),...,511(x): That is for 
a 511-lngth AC beginning from 1 as its 0th element; 
where a number in bracket is omitted doubling is 
implied e.g., 1,4, 6 and 7; the number in bracket 
points at the second parent of the given element; and 
where absent a Lucas is implied 

 
We conclude that metaheuristic-based AC algorithms 

provide a competitively nearer optimal solution to the 
ACP in a practically reasonable period of time, albeit 
with some. However, for the large integers, the edge 
between the metaheuristic and SWM is still little. 
Therefore, there is a need for a yet efficient hybrid of the 
heuristic/metaheuristic that is capable of evaluating (to 
the nearest) optimal AC for any arbitrary integer. This is 
achievable by exploiting the analytical works for suitable 
boundaries and cost function; then integrating the 
deterministic SWM into some efficient metaheuristic-not 
necessarily complex population-based ones – to arrive at 
the most optimal compromise and achieve the nearest 
optimal result. We observed that the following approaches 
could be a success path to an optimal AC heuristic: 
 
• Investigating the star elements distribution in the 

star-chain could provide a good cost function for a 
yet successful algorithm 

• The probability distribution of the star elements in 
the optimal ACs is expected to be a key to 
effectiveness of an algorithm by simulating the 
optimality 
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• Instead of population-based metaheuristic, it may be 
better to apply trajectory-based one such as great 
deluge algorithm (Duek, 1993) that was successfully 
applied in other similar problems (McMullank, 
2007; Duek, 1993), by giving it tight boundaries and 
good cost function 

• There is yet the need for well-formulated ASP heuristic 
• For very large integers, considering the efficiency of 

SWM but with its k-constraints, an algorithm in the 
point 4 could be integrated to effectively handle 
sequence of larger-sized windows 

• Point 1 to 5 could be tailored to the specific case of the 
ECC 
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