

© 2017 Adamu Muhammad Noma, Abdullah Muhammed, Mohamad Afendee Mohamed and Zuriati Ahmad Zulkarnain.

This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Literature Reviews

A Review on Heuristics for Addition Chain Problem: Towards

Efficient Public Key Cryptosystems

1
Adamu Muhammad Noma, 1Abdullah Muhammed,

2
Mohamad Afendee Mohamed and

1
Zuriati Ahmad Zulkarnain

1Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, Serdang, 43000, Selangor, Malaysia
2Faculty of Informatics and Computing, Universiti Sultan ZainalAbidin, Besut, 22200, Terengganu, Malaysia

Article history

Received: 03-12-2016
Revised: 03-03-2017
Accepted: 27-05-2017

Corresponding Author:
Abdullah Muhammad
Faculty of Computer Science
and Information Technology,
Universiti Putra Malaysia,
Serdang, 43000, Selangor,
Malaysia
Email: adamnoma@yahoo.com

Abstract: Field exponentiation and scalar multiplication are the pillars of and
the most computationally expensive operations in the public key
cryptosystems. Optimizing the operation is the key to the efficiency of the
systems. Analogous to the optimization is solving addition chain problem. In
this study, we survey from the onset of the addition chain problem to the
state-of-the-art heuristics for optimizing it, with the view to identifying
fundamental issues that when addressed renders the heuristics most optimal
mean of minimizing the two operations in various public key cryptosystems.
Thus, our emphasis is specifically on the heuristics: Their various constraints
and implementations efficiencies. We present possible ways forwards toward
the optimal solution for the addition chain problem that can be efficiently
applied for optimal implementation of the public key cryptosystems.

Keywords: Heuristics, Addition Chain Problem, Modular Exponentiation,
Scalar Multiplication, Public Key Cryptosystem

Introduction

Public Key Cryptosystems (PKC) are substitution-
based encryption systems for which security depends
mostly on Integer Factorization Problem (IFP), Discrete
Logarithm Problem (DLP) or Elliptic Curve Discrete
Logarithm Problem (ECDLP). Every entity has two
distinct keying materials: One kept secret while the other
in public domain. Any party wishing to communicate
with other accesses the communicating party’s authentic
public key in the domain. Two parties employing Secret
Key Cryptosystem (SKC) utilizes the capability of the
PKC to exchange the keying materials securely in public
channel, provided they authenticate one another. An
entity communicating with many others has access to
their respective public key in the public domain, as at
when needed. Only one entity is in possession of a given
private key and hence any message it signed can be used
to trail back to it: Which serves as both non-repudiation
and authentication mechanisms. Therefore, PKCs offer
broader functionalities than SKC by facilitating key
exchange and an elegant digital signature mechanism
that also facilitates authentication and non-repudiation.
Implementation-wise, PKCs depend on extensive field
(modular) exponentiation or scalar multiplication.

In the given Field Fp, exponentiation x
e mod p and

point scalar multiplication eP are the basis and most
resource consuming operations in the PKC that render
their utilization feasible only for special purpose: Likes
key exchange and digital signature. For the system to
be computationally secured, the integer e size should be
around 160 to 2048-bit. While the PKC security
depends on the size of e, the operations are highly
involved with large-sized e. Two basic approaches to
optimize these operations are design of efficient
multiplication hardware or utilizing some optimization
algorithm. From the latter point, the
exponentiation/scalar multiplication involves chains of
repeated multiplications/additions, thus has an additive
properties with respect to the e. Fortunately thus, the
operation can be abstractly approached as an Addition
Chain Problem (ACP) with a view to finding the
corresponding shortest (or optimal) Addition Chain
(AC). The AC for the e represents the sequence of
multiplications or additions required in the respective
operation. The ACP is generally regarded as NP-hard.

This paper surveys ACP as applies to optimizing
modular exponentiations and scalar multiplications in
various PKC. Primarily, we concentrate on state-of-the-
art heuristic works on the problem and their implications

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

276

on the PKC. We discuss only theoretical findings that
have a significant impact on the heuristic. The paper is
organized thus: We proceed in this section with a brief
description of PKC basics and the roles of
exponentiations/scalar multiplication in each. The
section is rounded with a technical description of
modular exponentiation and scalar multiplication. In the
next section, we focused on the heuristics and
metaheuristics for the ACP. Section 3 concludes the
survey and present recommendations based on.

Public Key Cryptosystems (PKC)

In PKC, an entity A is associated with pair of
keying materials kpr and kpu. While kpr is held secret as
its private key, kpu is made public for any entity
wishing to communicate with the A. The needed
conditions are that kpu is authentic that of A and kpr is
computationally intractable with the knowledge of
only kpu. Basic PKCs include Diffie-Hallman key
exchange system (Diffie and Hellman, 1976a), RSA
(Rivest et al., 1978), ElGamal-based system
(ElGamal, 1985) and Elliptic Curve Cryptosystem
(ECC) (Koblitz, 1987; Miller, 1986).

Diffie and Hallman (1976b) pioneered the solution to
key distribution problem in SKC, called the Diffie-
Hallman key exchange scheme. Basically for two parties
A an B to exchange a secret key kA,B:

• Large primes p,q/(p-1) and q’s generator a is agreed

on (may be supplied by a trusted third party)
• A and B choose a uniformly random and secret

numbers xA, xB < q respectively

• A evaluates Ax

A
y a mod p= and sends to B, similarly

B sends back Bx

B
y a mod p=

• Both then compute , () () A Bx x

A B B Ak y mod p y mod p= = ,

at their respective ends

An adversary is left with the problem of evaluating
either xA = dloga,p (yB) or xB = dloga,p (yA) called
Diffie-Hallman Problem (DHP), that is a DLP.
Currently the fastest DLP algorithms are Pollard rho
(Pollard, 1975) and number field sieving (Joux and
Lercier, 2003). Approximately 2048-bit p and q≈p/2
are considered computationally as secured as SKC
such as AES (Adrian et al., 2015; Dahshan et al.,
2015; Robshaw and Yin, 1998).

Note of the field exponentiations involving very large
exponents, each of an expected order of ≈21000 that are

involved in the algorithms: , ,A B BX X X

A
a a Y and AX

B
Y .

ElGamal (1985) proposed full featured DLP-based
cryptosystem, which has been the basis for such DSS
and S/MIME email security (Stallings, 2011). The PKC
is in principle similar to Diffie-Hallman algorithm

except that A makes available the set { }, , , Ax

Aa q p y a= in

public domain as its required public keying material. An
entity B wishing to communicate with the A partitions its
message M into 0≤Mi<p; And for each Mi, it selects a
random exponent 1<xBi<q, then generates and sends a

key/message pair (C1,C2): Where 1
Bix

Bi
C y a= = and

2
Bix

A i
C y M= × . When the pair reaches A the message is

recovered as 1
1 2()Ax

i
M C C−= .

RSA is developed by Rivest at al. (1978), The
algorithm (Koc, 1994) consists of pair of public key
(e,N) (N = p × q: Where p, q are large primes of fairly
the same bit-length and that 1<e<φ = (p-1)(q-1), gcd(e,φ)
= 1) and a private key (d,N) 1<d<φ, e × d ≡ 1 mod φ). A
message M is RSA-encrypted as Y = M

e mod N and
decrypted as Yd mod N = (Me)d mod N = M.

Note that e and N are open to public while d, p and q
are kept secret. The problem of determining d given the e
and N is that of computing e−1 mod φ. Thus N has to be
factored into q and p, hence an IFP (May, 2004). As p
and q grows large the factoring is assumed to be
computationally infeasible. Given the present computing
power, its assumed that 1024-bit p, q and therefore about
2048-bit N are sufficient (NIST, 2013).

The field exponentiations in the RSA has been the
most expensive operation that renders it less attractive
for general purpose data encryption, apart from the less

rigorous key exchange and digital signature One means
of reducing this operation is in utilizing well-known e =
3,17 and 216+1 as public key. However, the first 2 are
vulnerable to attacks using Chinese Remainder Theorem
(CRT) (Boneh, 1999). Furthermore, d is such that d>n

1/4
for the system to be secured (Wiener, 1990; Boneh and
Durfee, 2000). However, employing CRT along with
Fermat theorems to factor d reduces the exponentiation
length by factor of 3 to 4 (Stallings, 2011).

Elliptic Curve Cryptosystem (ECC) (Miller, 1985;
Koblitz, 1987) is yet an emerging general purpose
PKC, requiring less key size while giving similar
functionality and level of security. For a prime p>3, an
elliptic curve over the field Fp is a set of solutions (x,y)
for an equation of the form:

2 3:E Y X AX B= + + (1)

such that A,B∈Fp and 4A

3 +27B
2 ≠ 0.

The set of points on E with coordinates in Fp is the
set E(Fp) = {(x,y): x,y∈Fp, y

2 = x3 + Ax + B}∪{0}. O is a
point at infinity and represents the identity in E.

ECC over binary extension field
2mF also exists and is

applicable to cryptographic systems. But, for the general
discussion, ECC over Fp suffices. Refer to (Robshaw and
Yin, 1998; Koblitz et al., 2000; Hankerson et al., 2004)
for details on the ECC.

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

277

The set of points satisfying the Equation 1 forms an
additive group under special addition, hence the basis for
its use in the cryptography: That is for any points P,Q
and R in E, P + Q = Q + P;P + O = P;P + (-P) = O where
-P: (x, y) = (x, y) and (P + Q) + R = P + (Q + R).

For any two points P1(x1,y1), P2(x2,y2) where P1 ≠ -P2

and P1, P2 ≠ O: P1(x1,y1) + P2(x2,y2) = P3(x3,y3). Such that
x3 = λ2–x1–x2,y3 = λ(x1-x3) –y1 and:

2 1
1 2

2 1

2
1

1 2

1

3

2

y y
if P P

x x

x A
if P P

y

λ

− ≠ −
= 

+ =


 (2)

Note that the operation, even as termed point

addition, actually involves some additions,
subtractions multiplication and inversions in the field:
Thus, referred to as Elliptic Curve Addition (ECADD)
and Elliptic Curve Doubling (ECDBL) when P1 ≠ P2
and P1 = P2 respectively.

Furthermore, operationally-wise cryptosystem based
on elliptic curve involves repeatedly adding point P in
the form of P + P + P + ⋅⋅⋅ + P = eP, that is e times,
called scalar multiplication. For example ECC version of
Diffie-Hallman key exchange by two parties A and B
involved agreeing on a unique E: y2 = x3 + ax + b, the
prime p over which E is defined and a point P on E.
Thus (E,p,P) are public. Party A privately selects a scalar
eA, evaluates eAP and pass it to B. Similarly party B
passes eBP to A. Both parties evaluate eAeBP at their ends
and the x coordinate serves as their common secret key.

The security of the ECC also depends on the size of
e. It is determined by the difficulty of evaluating e given
P and Q = eP, which is ECDLP. The fastest known
algorithm to solve ECDLP in E(Fp) is estimated to take

p steps (Hoffstein et al., 2014): Thus it is fully

exponential algorithm. Consequently, it is assumed that
around 160-bit ECC provides equal security to 1024-bit
RSA (Maletsky, 2015). Therefore, the ECC provides
similar functionality but with superior advantages in
term of less key size: Translating to bandwidth savings
and faster implementation.

Note, scalar multiplication is isomorphic to AC. Thus
a number of addition/doublings in it is minimal with
optimal AC for the scalar e. Another good aspect of
optimizing its operations is that an inversion of P(x1, y1)
is virtually cost-free as compared to multiplicative
inversion in other PKC.

Field Exponentiation versus Scalar Multiplications

as Addition Chain Problem

Exponentiation, evaluation of power (Knuth, 1998),
involves computing y = xe given x and positive integer e.
A basic feasible method for the computation is the

square-and-multiply algorithm (Knuth, 1998): e is
expressed in binary form and x is held as the partial
result; Beginning from and skipping the Most Significant
Bit (MSB), the result is squared par bit and if the bit is 1
it is again multiplied by x. For example, x13: 1310 = 11012
and therefore x13 = (((x2

x)2)2)x = x-x2-x3-x6-x12-x13 On the
other hand, evaluating eP involves series of addition of
the P e-times. In a similar manner to x

e, this can be
achieved by series of addition and/or doublings. E.g.,
13P = 2(2(2P + P)) + P = P-2P-3P-6P-12P-13P,
requiring equal number of additions as that of the
multiplications in the x

13. Additionally, the numbers of
operations correspond respectively to that of terms in the
sequences x/P, x

2/2P,…x
e/eP: The respective

powers/coefficients form a sequence of AC for e. Thus
finding shortest AC corresponds to that of the number of
operation required. Therefore, henceforth, we
disambiguate problem of minimizing both modular
exponentiation and scalar multiplication as ACP.

Definition 1

Given an integer e, a sequence A: a0 = 1, a1 = 2,
a3,…, ar = e, is said to be an Addition Chain (AC) for e
if for all i ≥ 1, ai = aj + ak, i>j≥k. The length of the AC is
denoted as r.

The shortest r for which there exists an AC of e is
denoted by l(e).

Other variants of AC are star-chain (Brauer, 1939),
Addition-Subtraction Chain (ASC) (Morain and Olivos,
1990) and Addition Sequence (AS) (Yao, 1976).

Definition 2

An ai, i>0, of an AC A is said to be a star if ai = ai-1 +
ak, k<i; an AC A is said to be a star-chain if all ai∈A, i>0,
are star; the shortest length of star-chain for an integer e
is denoted as l*(e).

Definition 3

An Addition Sequence (AS) of an integer vector E =
{ei: 1 ≤i≤s} such that 1<e1<e2<⋅⋅⋅<es is a sequence
1,2,a2,…,aL = es satisfying the properties of an AC in
Definition 1 and that all ei, 1≤i≤s are in the sequence..

Definition 4

The length of e (denoted as) n(e) is define as the
minimum number of bits to represent e in binary form as
e = (en−1en−2⋅⋅⋅e0)2, while H(e) is the number of non-zero
bits (weight) in the binary form. We use n to indicate an
arbitrary n-bit integer.

The problem of finding shortest AC exists and
persists for over hundred years (Dellac, 1984). Scholz
(1937) raised the fundamental question of what is the
least number of multiplications to evaluate xe given x and
e. Knuth (1998) once described ACP as a mathematical
problem of which no conjecture is safe. The problem

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

278

received ample efforts from both theoretical studies
(Brauer, 1939; Downey et al., 1981; Mignotte, 2011;
Thurber, 1973, 1993; Yao, 1976; Knuth, 1998) and
algorithmic perspective in search for the optimal AC
(Bahig, 2006; 2011; Bos and Coster, 1990; Clift, 2011;
Thurber, 1999), to mention but a few. ACP is an NP-
hard, while its generic ASP is proven as NP-complete
problem (Downey et al., 1981). Therefore, heuristic
(Bos and Coster, 1990; Gelgi and Onus, 2006; Koc,
1995; Lee et al., 2006; Park et al., 1999) and
metaheuristic (Cruz-Cortés et al., 2005; 2008;
Jose-Garcia et al., 2011; León-Javier et al., 2009;
Osorio-Hernández et al., 2009; Dominguez-Isidro and
Mezura-Montes, 2011; Dominguez-Isidro et al., 2015)
have become alternative approaches in searching for near
optimal solution for the ACP.

We are motivated by the potentials of deterministic
heuristics and metaheuristic in searching for near optimal
solution for the ACP, especially as applied to various
PKC. However, we observed various fundamental issues
that are needed to be considered/addressed, at first in
selecting particular heuristic/metaheuristic for the
problem; secondly for the appropriate method to be able
to search for a nearest optimal AC and for the result to
be most suitable for PKCs; and for the search process by
the heuristic to be as efficient as possible. While ACP
heuristics/metaheuristic for PKC is central to our survey,
we consider both the time and space efficiencies in
solving the problem: This is particularly in
considerations of the varying platforms, with varying
constraints, of deploying PKC. Therefore, in the
remaining of the survey, we review those various
heuristics for the ACP with emphasis on their
implementation efficiencies; effectiveness in finding the
(near) optimal AC; as well as their implication
constraints in the context of the PKC, with respect to
both speed and memory requirements. We study only
those theoretical studies and/or exhaustive methods for
which results have direct implications for the
formulation of the heuristics. We use the terms method
and algorithm interchangeably.

Addition Chain Heuristic

Algorithms for finding (near) optimal AC can be
classified as exhaustive or heuristics. The exhaustive
approaches (Bahig, 2006; 2011; Clift, 2011; Thurber,
1999) normally end up generating optimal ACs for some
large set of integers. It takes a few days to months of
computer cluster operation to do so. Normally, the
generated optimal ACs are for small integers far from the
ones utilized in PKCs.

An AC heuristic algorithm alg generates AC for an
integer e, Aalg(e) = a0,a1,…, ar = ewith length lalg(e) = r,
such that lalg(e) ≥ l(e). The objective of alg is to
minimize lalg(e) → l(e) and it is said to find an (shortest)

optimal AC for e if lalg(e) = l(e). In addition to this
objective, we consider the algorithm efficiency in
finding the solution and amount memory required when
applying the solution in various PKC.

Binary Method

In binary method, a binary form of e is processed
in a sequence of doublings and an optional addition,
depends upon the given digit value that is 1 or 0
respectively. For n-bit e = en-1en-2…e0, in binary form,
the method generates an AC Abin(e) having length
lbin(e) as presented in Algorithm 1.

Algorithm 1: Binary Method

Input e = en-1en-2…e0; Output: Abin(e) = {a0,a1,…,ar = e}.
1: Abin(e) = {a0 = 1}, i = 1
2: for j: n-2 to 0 do
3: Abin(e): = Abin(e)∪{2ai-1} and i = i +1
4: if ej = 1 then Abin(e):= Abin(e)∪{ai-1+1} and i = i+1
7: end for
8: return Abin(e)

() ()() 2
bin

l e n e H e= + − (3)

On the average, lbin(e) = ()3

2
n e .

Binary method is efficient in terms implementation and
utilizes minimal memory resources. It can also be applied
directly in PKC implementation, without the need to find
the AC for the given exponent/scalar a priory. Algorithm 2
shows the procedure in the (field) exponentiation.

Algorithm 2: Binary Exponentiation

Input x, p, e = en−1en−2… e0; Output: y = xe mod p.
1: y:= x
2: for j: = n-2 to 0 do
3: y:= y × y mod p
4: if ej = 1 then y:= y × x mod p
7: end for
8: return y

Point scalar multiplication Q = eP is similar to
Algorithm 2 except that x is replaced by P, y by Q,
squaring in step 3 by ECDBL and multiplication in step
4 by ECADD. Note, only 2-units of storage are needed
for the base x and the (partial) result y.

However, the method is least effective in finding
optimal AC. But Knuth (1998) proves that for e with
H(e)≤4, lbin(e) = l(e), except the following categories of e
= 2A +2B +2C +2D, A >B >C >D having H(e) = 4:

• A-B = C-D (e.g.: e = 1510 = 11112 = 23+22+21+20)
• A-B = C-D +1 (e.g.: e = 2310 = 101112 =

24+22+21+20)

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

279

• A-B = 3, = C-D = 1 (e.g.: e = 3910 = 1001112 =
25+22+21+20)

• A-B = 5, B-C = C-D = 1 (e.g.: e = 13510 =
100001112 = 27+22+21+20)

all having l(e) = n(e) +1 = lbin(e)-1.

Considering its efficiency, the binary method may be
a good candidate as an initial solution for other more
effective heuristics/metaheuristic and that needless for
search for optimality for the e's with H(e)<4.

M-ary (2
k
-ary) Method

m-ary or 2k-ary method is an extension for the binary
method. The method is traceable to Brauer (1939), but
witnesses various enhancements (Knuth, 1998; Thurber,
1973; Koc, 1995; Park et al., 1999). An n-bit e =
en−1en−2…e0 is padded (where necessary) with trail of 0s
to the multiple of k. It is then partitioned into w = n/k
fixed k-bit words: mi, i = w-1,…,0, mw−1 being the Most
Significant Word (MSW). Thus, 0≤mi =

(eik+k−1eik+k−2…eik)
1

0
2

k k

ik jj
e

−

+=
<∑ and

1

0
2

w ik

ii
e m

−

=
=∑ .

Initially the values 2 2 1, , ,
k

x x x −… , corresponding to all

possible im
x , are pre-computed. The algorithm proceed

by scanning the most significant k bits mw-1, raising the

corresponding 1wm
x − to the power of 2k as the partial

result. This is followed by subsequent scanning of the
remaining mi, i = w-2, w-3,…,0 each time multiplying

the partial result by im
x and raising it to the power of 2k

as: 1 12 4,w wm mx x− − ,⋅⋅⋅, 12k
wmx − , ()1 21 2

2 22 . ,
kk

w w
w w

m mm mx x x
− −− −

+
,⋅⋅⋅,

()2
1 2 1 0

2 2 2
.

n k n k k
w wm m m m ex x x

− −
− −+ +…+

= . That is beginning from
1wm

x − , k-time squaring are performed, followed by

multiplying the partial result by the next im
x until the last

0m
x is multiplied by. Let Am(e) be AC generated by m-ary
for e, the process, in the form of addition chain, is
presented in Algorithm 3.

Algorithm 3: m-ary method.
Input e,k; Output: Am(e) = {a0,a1,…,ar = e}.
1: Am(e):= {1, 1+1 = 2, 2+1 = 3,…,2k-1}
2: pad e with trailing 0s so that k divides n(e)
3: partition e into w = n/k k-bit words mi: i = w-1…0
4: r:= 2k-2; ar:= mw-1∈Am(e)
5: for i = w-2 down to 0 do
6: for j = 0 to k-1 do
7: r:= r +1
8: Am(e):= Am(e)∪{ar:= 2ar-1}
9: end for
10: if mi ≠ 0
11: r:= r +1
12: Am(e):= Am(e)∪{ar:= ar-1+ mi}
13: end if

14: end for
15: return Am(e).

From Algorithm 3, step 1 requires 2k-2 additions to
pre-compute all possible values mi up to 2k-1. In step 8,
there are (w-1) k = (n/k-1)k doubling. While in step 12
an addition is performed only when mi ≠ 0. Having k-bit
mi in which each bit is equally likely to be 1 or 0, Pr(mi =

0) = Pr(eik+k-1 = 0×…× eik = 0) =
0

1
(1 / 2)

k−∏ = 2−k. Thus

Pr(mi ≠ 0) = 1-2−k. Therefore, for the w-1mi, an average
of (w-1)(1-2−k) = (n/k-1) (1-2−k) additions are
performed. Hence, on the average m-ary AC length for
n-bit e using k-bit partitions lm(n,k) is:

() () () ()(), 2 2 1 1 1 2k k

m
n nl n k k

k k
   = − + − + − −    (4)

An even shorter length is obtainable when the pre-

computation is delayed until after the partitioning: The
corresponding additions is reducible by 2k-1-max(mi):
max(mi) being mi with the largest value. E.g., an m-ary
optimal AC length for 62-bit e =
360698408451099195710, is found to be 83 using k = 3.

According to Knuth (1998), computing all
2i

q:q<2k−i,i>0 can be omitted in the pre-computing stage,
thereby saving (1+ n) mod k additions. Similarly,
Thurber (1973) generalized that all even mi>2 can be
computed when needed at the addition stage, by adding
their respective odd halves before the last doubling. For
example, given e = 3010 ֏ 111102 ֏ 011-110 (3, 6)
and k = 3: Instead of 1-2-3-4-5-6 ֏ 3-6-12-24-30
(24+6) with length 9, the AC is generated as: 1-2-3 ֏ 3-
6-12-15(12+3)-30 having length 7. Consequently, e =
360698408451099195710 have an AC-length 81 and
Equation 4 reduces to:

() () ()()1, 2 1 1 1 2k k

m
n nl n k k

k k
−    = + − + − −    (5)

From (5), the additions reduces with increase in k.

However, the length of the pre-computation increases
exponentially with the k size (thus henceforth we refer
this as k-constraint). Thus, Koc (1995) estimated optimal
values of k to be around 3 to 7 for n ≤ 2048es.

m-ary can also be efficiently applied as binary
method, but requires additional 2k−1 units of memory to
hold the pre-computed values. Therefore, it is suitable
for one-time and infrequent exponentiation/scalar
multiplications. The choice of k is important to achieving
both optimal computation and memory utilization.

Window-based Addition Chain Methods

Window-based methods (Bos and Coster, 1990;
Thurber, 1999; Koc, 1995) are enhancements of m-ary

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

280

that form partitions mi of arbitrary length of 0s. In the
partitioning process, the leading zeros in a given k-bit
Non-zero Window partition (NW), mi ≠ 0 are also carved
out and merged with subsequent zeros encounter to form
a Zero Window partition (ZW). The ZW takes any
arbitrary length, until a non-zero bit is again
encountered. In other word, only NW is restricted to an
odd value with n(NW)≤k. Thus, pre-computation of the
odd values up to 2k-1 costs (2k-2)/2+1 = 2k−1 additions.
The number of NWs is also reduced on the average. The
method is also referred to as Constant Length Non-zero
Window (CLNW) (Park et al., 1999). The AC algorithm
is presented in Algorithm 4.

Algorithm 4: CLNW
Input: e,k; Output: Aw(e) = {a0,a1,…,ar = e}.
1: Aw:= {1,2,3,3+2 = 5, 5+2 = 7,…, 2k-1}
2: Partition e into mi: i = w-1, w-2,…,0 such that if mi ≠ 0
then MSB(mi) = LSB(mi) = 1 and n(mi)≤k
3: r:= 2k-1; ar:= mw-1∈Aw(e)
4: for i = w-2 down to 0 do
5: for j = 1 to n(mi) do
6: r:= r +1
7: Aw:= {Aw(e)}∪{ar:= 2ar−1}
8: end for
9: if mi ≠ 0
10: r:= r +1
11: Aw(e):= { Aw(e)}∪{ ar:= ar−1 + mi}
12: end if
13: end for
14: return Aw(e)

LSB(x) and MSB(x) indicate the most and the least
significant bit of x respectively. The equivalent right-to-
left version of Algorithm 4 is structurally similar except
that step 6-8 are preceded by 9-12, ar is initialized as m0
and all the loops are reversed.

The Variable Length Non-zero Window (VLNW)
version further restructure NW having a fairly long trail
of zeros within, e.g.: 1100001. Constructing NW is
terminated upon encounter of a predetermined q
consecutive zeros; Transition to ZW begins with the q
zeros. The strategy minimizes n(NW) and/or maximizes
the weight; and the proportionate number of ZWs is also
maximized. On the average, the number of NW is also
reduced (Park et al., 1999). Both the CLNW and VLNW
are referred to as Sliding Window Methods (SWM).

Empirically, an SWM AC length for an n-bit e
utilizing k-bit NW is evaluated thus: Beginning from the
MSW, let there be ms,ms−1,…,m1,s≤w NWs in the
partition of e; the pre-computation stage involves
generating AC consisting of all odd numbers up to 2k-1
at the cost of 2k−1 additions, in which only the unique
NWs are needed. But in practice the largest NW in the
given partition may be less than 2k-1. Therefore, when

the pre-computation is deferred until it is known, the cost

reduces to
()max

2
im 

 
 

. Beginning with mw−1, there are n-

n(mw−1) doublings and s-1 additions corresponding to the
remaining NW. Thus, the AC length lswm(e,k) is given as:

() () () ()1

max
, 1

2
i

swm w

m
l e k n e n m s−

 
= + − + − 

 
 (6)

Equation 6 is independent of partitioning parameters

and is, in fact, generic for the family of window-based
methods (Binary, m-ary and SWM).

We denote lcw(e,k) and lvw(e,k,q) as the length for an
AC generated by CLNW Acw(e,k) and VLNW Avw(e,k,q)
respectively. Proceeding with example for e =
3606984084510991957, exhausting all optimal windows
parameters k = [3,7] and q = [1,4], we get lcw(e,3) =
lvw(e,3,2) = lvw(e,4,2) = lvw(e,4,3) = 77.

According to Koc (1995) analysis, thought biased in
respect n(e) (Park et al., 1999), for n = [128,2048]
CLNW and VLNW gain 7-3% and 8-5% fewer additions
respectively over m-ary. The gains depend on the
selective (k,q) parameter values, even as in general
SWM share the same k-constraint.

Note on Windows-Based Addition Chain Methods

Window-based AC algorithms are state-of-the-art
feasible methods for exponentiation/scalar multiplication:
Consequent to their implementation efficiency and
minimal memory requirement. However, none of the
methods guarantees any (near) optimal AC. The
resulting optimality is also tightened to the choice of
optimal window parameters. We regard the methods as
optimal approaches when an exponent/scalar e is not
known and/or frequently changed in the course of
running an application. However, in PKCs, an e is
normally utilized multiple times and, at times, an
application partially chooses random e. In this case, a
general parameter for the n-bit class of e may not be
suitable particularly for it. Therefore, a yet adaptive
means of determining suitable parameters for the
individual exponent is needed, for the method to be even
more effective. Upon preliminary empirical analysis, we
present in Table 1 the range of optimal windows
parameters that result in the most optimal SWM AC.

Table 1. Optimal parameter range for SWM
n k q

32-127 2-4 1-4
128-255 3-5 2-4
256-511 4-6 2-5
512- 639 4-6 3-5
640-1023 5-6 3-5
1024-2048 6-7 4-6

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

281

Moreover, to reduce the negative effect of the k-
constrains, Bos and Coster (1990) proposes finding AS
for the sequence of the unique NW. The AS-length
depends on that of the largest NW max(mi), an NW with
the longest expected AC and the number of the NWs s.
Yao (1976) related the upper bound AS-length L for a
sequence vector V = (v1,v2,…,vs), v1<v2<…<vs as:

() () () ()()
1

lg lg / lg lg 2
s

s i ii
L V v c v v

=
≤ + × +∑ (7)

where, c is constant and (henceforth) lg(x) = log2(x). The
worst case scenario occurs when s = 2k−1, that is mi ≠ 0, i
= 1,…,2k−1, in which L = 2k−1. As demonstrated in
(Nedjah and Mourelle, 2005; Bos and Coster, 1990;
Cruz-Cortés et al., 2008; Dominguez-Isidro and
Mezura-Montes, 2011; Dominguez-Isidro et al., 2015),
an even better result is expectedly obtainable with a
well-formulated AS algorithm.

Heuristics for Addition-Subtraction Chain Problem

A class of algorithms that is related to the family of
windows methods is that of Addition Subtraction
Problem (ACSP). ACSP is a special case of ACP in
which subtraction (inversion as applied to
exponentiation) is also allowed.

Definition 5

Given an integer e, the sequence A: a0 = 1, a1 = 2,
a3,…,ar = e, is said to be an Addition-Subtraction Chain
(ASC) for e if ∀i≥1, ai = aj ± ak, i>j≥k.

ASC heuristic algorithms are proprietary to scalar
multiplications as in ECC due to the negligible cost of
inversion in its field. We demonstrate the strength of
the subtraction with the class of e = 2n-1. These es
exhibit the longest binary AC-length of 2(n-1), having
n-1 doubling and n-1 additions, as: 1,2, 2+1, 22+21,
22+21 + 1,…,2n−1 +⋅⋅⋅+ 1 = 2n-1. But by admitting
subtraction in the AC, the same binary method
produces shortest AC with length n +1 by performing
n doubling and a subtraction, as 1,2,22,23,…,2n, 2n-1.
In general any sequence of consecutive k non-zero bits
11…1 = 1×2k−1 +1×2k−2 +⋅⋅⋅+1×20 = 2k-1 could be
recoded with k +1 bits as 100…-1 = 1×2k

+0×2k−1+0+⋅⋅⋅ -1×20 = 2k-1 (henceforth -1 is coded 1).
The former has H(e) = k while in the latter H(e) = 2.
Therefore, the idea is to reduce the number of
additions due to H(e) that follows the doublings. In
this regard balanced ternary ()1,0,1 recoding (Knuth,
1998) is re-introduced to minimize the non-zero density
in any given e where possible.

Various signed binary (ternary) recoding methods
exist, with Non-Adjacent Form (NAF) (Eǧecioǧlu and
Koç, 1994; Reitwiesner, 1960; Morain and Olivos,

1990) being canonical that minimizes H(e) from
asymptotic n/2 to n/3. A kNAF is a signed equivalent
of m-ary and reduces the density asymptotically to
1/(k+1) (Okeya, 2004). Similarly, in (Laith and Kuo,
1997), the m-ary version of Modified Signed Digit
(MSD) is proposed, having the same non-zero density
as the kNAF but demonstrating an improved empirical
result: This is possibly due to the m-ary lookup table
with sparse bits. Mutual Opposite Form (MOF)
(Okeya, 2004) is similar to NAF, but with the
advantage of having left-to-right version. The left-to-
right recoding eliminates the need for two parses and
additional n-bit memory required in the NAF process
is reduced to 1 (or k-bit for its kMOF version).
Basically for an n -bit e:

() ()2MOF e e e= ≪ � (8)

All the operations in Equation 8 are bitwise.
On the other hand, Complementary Recoding (CR)

(Balasubramaniam and Karthikeyan, 2007) is easier as
1+ bitwise complement of e are bitwise-subtracted from
2n(e)+1. That is:

() () 12 1n eCR e e+= � � (9)

Note that Equation 9 is also equivalent to 2n(e)+2-e.

However, CR unconditionally results in additional 1 bit
to a recoded e and is only effective in reducing the H(e)
when H(e)>n/2. As n-bit e has its (n+1) -bit recoded
CR(e) related as:

()() ()1H CR e n H e= + − (10)

Therefore, CR rather increases the non-zero bit

density when H(e)>n/2. But this is not the case for
other recoding methods. For example, given e =
2406610 = 1011110000000102: H(24066) = 6 and

() 224066 10 10000 1 1 1 111110CR = . Therefore

H(CR(24066)) = 10. But the NAP(24066) =

10 1000 1000000010 . As for suitable recoding for
method for the formal SWM, it is an open problem
(Win et al., 1998).

Other Heuristics for Addition Chain Problem

Various other deterministic heuristics for ACP
exists, that result in minimal length AC than binary
family. Famous among them are Factor and Power-
tree methods.

Factor method factors e as e = yz. Note that xe = xyz =
(xy)z. Thus, AC for e = yz reduces to the AC for y
followed by that for z, wherein 1 is replaced by y and a
prime e is decomposed into e = yz +1. The AC length lf
by the method can be obtained recursively as:

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

282

()
() ()

() ()

1 2

1 2
f

l y l z if e composite

l e l y l z if e prime

if e

 + =


= + + < =
 =

 (11)

Therefore, the method recursively factors e into its

smallest prime factors and subsequently evaluates the
corresponding ACs as described.

Power-tree also recursively generates the AC for e,
prior to which at least all that of e/2 must have been
generated as the base (Knuth, 1998). Let the AC and its
length be denoted as Apt and lpt respectively, then:

() () { }pt pt jA e A b a b= ∪ + (12)

such that aj∈Apt(b), aj + b = e. Thus:

() () 1pt ptl e l b= + (13)

for some e/2≤b<e for which the AC is already generated.

Therefore, Power-tree method is a semi-exhaustive
algorithm. Moreover, the direction in which the b is
searched for, in the previously generated results,
determines the optimality of the corresponding AC:
Generally forward scan from the smallest to the
largest ones yields better result. To study it, we apply
the method to generate ACs for e = 1 to 4096. Optimal
accumulated AC length for the set is 54,408. Forward
scan in method yields 54,812 (99.26% optimal), while
the result for the backward scan is 61,457 (87.04%
optimal).

Both the factor and the power-tree methods, though
effective, are only feasible for relatively small integers.
For a large number, IFP in itself is an NP-complete
problem (Mohamed et al., 2011).

Gelgi and Onus (2006) propose improved versions
of both Factor and Power-tree methods: The proposed
Factor heuristic searches for the pair factors x,y: e =
xy whose ACs already computed to have shortest
length summands; Whereas in the power heuristic
(called Dynamic heuristic) given e, instead of
searching for AC for the first b whose ai = e-b, the
algorithm searches for the one with the shortest AC-
length among the already generated ACs.

Our preliminary investigations on the proposed
Dynamic heuristic revealed that its optimality is again
a function of the base ACs up to that of value δ that
are needed to be pre-computed and, for the algorithm
to guarantee any (near) optimality, the base ACs of at
least 1 to e/4 are needed to be evaluated by some
exhaustive method. For example we apply the method
to evaluate ACs for e = 1 to 4096, the resulting
accumulated AC-length is presented in Table 2.

Table 2. Accumulated AC-lengths for 1 to 4096 due to varied δ
and e = 4096 in Dynamic heuristic

δ e/32 e/8 e/4 e/2
Cum. AC-length 54,613 54,556 54,482 54,410
%Opt 99.62 99.73 99.86 ≈100

Cum: Cumulative; % Opt: Percentage Optimality

The method may not be feasible for large e with n of
order 128 to 2048, utilized in PKCs.

Mani (2013) proposed division-based AC method. It
is an attempt to design an AC algorithm that is as
efficient as metaheuristic-based algorithms (to be
detailed later) while avoiding the processing overhead,
by emulating windows-based methods. e is successively
divided by 2 while the quotient is tracked; the quotients’
sequence structure determines the selection of one base
ACs, to be utilized in building the e’s AC, out of 9 pre-
defined optimal star-chains; based on the partial AC
generated by the quotient, the AC is then systematically
built on the selected base AC. The method is potentially
as efficient as windows-based methods. However, we
observed that it results in little optimal AC than SWM.

Mohamed et al. (2011) proposed factorization-based
Decomposition Method (DM). e is initially factored into
powers of its primes factors p1,p2,…,pm such that

1 2

1 2
mnn n

m
e p p p= × ×…× . For each pi, a rule is applied, that

is similar to (and with same result as) the binary method,

to compute its AC. AC for 1

1
np follows from that of the

1
1 :1,2, ,

prp a… as a base, by repeatedly applying the base

AC structure while substituting the current last element
ar as the next first element a0n1-times. Thus, resulting
AC-length equals

11 pn l× . Similar procedure is applied on

the remaining : 2in

i
p i m= … , by substituting the last

element of the AC corresponding to 1

1
in

i
p −

− as the first

element of pi’s AC. Therefore, AC-length for e ldm(e) due
to DM Adm(e) is given as:

()
1

i

m

dm i p

i

l e n r
=

= ×∑ (14)

where, ()

ip bin ir l p= . The algorithm results in more

optimal ACs for large integer as compared to window-
based methods. However, it is most suitable for smooth
integers since prime factorization is an NP-complete
problem. Additionally, an even better result is obtainable
if a more optimal algorithm is utilized in evaluating the
ACs for the pi instead. For example, ldm(e =
15539×552113×92815) = 418. But 5521 has an AC with
length 15 (1-2-4-8-9-17-26-43-86-172-344-688-1376-
2752-5504-5521) which can be utilized, instead of
Abin(5521) having lbin = 17, to obtain shorter AC having
length 392 (26 less). Even on applying SWM, lswm(5521,
k = 3) = 16, a 405-length AC is obtained.

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

283

We generalized that windows-family methods are
efficient in terms of implementation but least effective in
finding (near) optimal AC; there are feasible windows-
based heuristic that generates more optimal results for
specific classes of integers (Mohamed et al., 2011) or
proprietary to ECC (Balasubramaniam and Karthikeyan,
2007; Chang et al., 2003; Joye and Yen, 2000; Morain and
Olivos, 1990; Okeya, 2004); Others, like factor and
power methods, are feasible only for small-sized integers
far from those utilized in PKCs; Exhaustive methods
have been the most effective but often finding optimal
results requires months of computer-cluster efforts
(Bahig, 2006; 2011; Clift, 2011). There is yet to be any
algorithm alg that can answer that for any given eAalg(e)
has lalg(e) = l(e). However, many studies have been
carried out at establishing theoretical optimal ACs, at
least for some classes of integers, without necessarily
finding the exact AC sequence. Even as the study are yet
to yield the objective in general but have been able to
establish some bounds, cost function and specialized set
of integers which are useful in searching for (near)
optimal ACs. The resulting studies are valuable in
designing yet effective heuristics for the ACP.

Theoretical Results and Asymptotic Bounds for

ACP

Downey et al. (1981) prove that ASP is an NP-
complete problem. ACP, even yet to be proven as an NP-
complete, is an NP-hard problem that is believed to be
complete as well. An upper bound for l(e) is given
(Knuth, 1998) as:

() () ()lg 1l e e H e≤   + −  (15)

According to Thurber (1973), for all e such that

n(e)<17:

() () ()()lg lgl e e H e ≥ +  (16)

l(e) lower bound is (Schönhage, 1975):

() () ()()lg lg 2.13l e e H e ≥ + −  (17)

Therefore, from (15) and (17):

() ()() () () ()lg lg 2.13 lg 1e H e l e e H e + − ≤ ≤   + −   (18)

For all e such that H(e)<4, l(e) = lg(e) + H(e) -1 =

lbin(e).
Equation 18 along with (7) are viable tools in

controlling windows-based ACP heuristics, to search
efficiently toward the optimal results: Equation 7 can be
utilized to evaluate a partition without generating the

actual AC while using Equation 18 to decide on its
optimality or otherwise.

In respect of the cost functions:

() ()*l e l e≥ (19)

Huge number of e exist for which l*(e) = l(e). It was

widely conjectured that for any e there exists star-
chain(s) with l

*(e) = l(e). However, Hansen (1957)
proves the otherwise; as exemplified in (Knuth, 1998).
Notwithstanding, ACP heuristics generate (near)
optimal star-chains and the chain is sufficient for

practical purpose Bahig (2011) even proves that for
any e there exists optimal AC(s) such that the last four
(4) steps are stars. He further proves that for all e:
n(e)≤218 the last half elements of their optimal ACs are

star; and finally conjectured that all last
()

2

l e 
  

-steps are

star. We observed that in optimal ACs for any e all steps

after
2

m

e
a

 ≥   
 are star and are well-defined.

Consequently, heuristics should revert to local-search
after generating the am.

According to Thurber (1993), there exist from a very
few to a large number of minimal ACs for any given e,
referred to as MNC(e). The NMC depends on the
cardinality of e and, to some extends, pattern of 1s in its
binary form. However, he concluded that NMC(e) is
erratic with respect to the e. Similar studies on star
subsets of the optimal AC (i.e., l*(e)⊂ l(e)) may assist in
optimizing ACP heuristics: This is in view of the fact
that the algorithms generate the star-chains;
Additionally, it is easier to find optimal (star) chains for
e with large NMC as compared to their counterparts.

Knuth (1998) backed theoretical findings with many
empirical results that aid in benchmarking ACP
algorithms. Among the results are for set small of es for
which the ACs known but considered special for the
uniqueness of their optimal ACs. Refer to (Knuth, 1998)
for the list. Similarly, c(r) is defined as smallest e for
which l(e) = r. Furthermore, Knuth (1998) compiled c(1)
to c(27) while Clift (2011) found up to c(38).
Dominguez-Isidro et al. (2015) reported another set of es
termed “hard” because of the relative hardness in
finding their optimal AC by deterministic heuristics.
The set consists of 3243679; 3493799; 3459835;
3235007; 3230591; 3182555; 3440623; 3704431;
3234263; 3352927; 3926651; 3922763; 2948207, each
having l = 27. While the results do not contribute to the
development of any ACP heuristic, they serve as test-
beds for evaluating ACP heuristics. Recently,
exploiting solution for ACP witnesses a huge turning
point where efforts have since been shifted towards
exploring various metaheuristic.

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

284

Metaheuristic Algorithms for ACP

Cruz-Cortés et al. (2005) formulate GA model for
ACP. Variable-length chromosomes represent the AC;
ai elements of the AC are mapped against genes in the
chromosome; the AC-length represents the
chromosome fitness. Initially, a set of star-chains for e
are randomly generated. A one point crossover is
utilized; whereby two ACs (parents) generate a pair of
new upspring. A crossover point is selected at random
in each of the parents and all the elements (genes)
before the respective points are copied into generating
child chromosomes. The AC pair being generated
(children) and parent ACs are then interchanged
(crossed); and the rule applied to generate the
remaining elements of the parent ACs are utilized to
generate that of the children ACs. The process is
followed by mutating the children, in which in each
two points i,j: 2≤j<i<(lGA-2) (where lGA is an AC
length) are selected at random. An element ai +1 is
replaced with ai + aj; and all the remaining upper
elements (genes) are replaced by randomly alternating
between doubling (ai = 2ai−1) and star (ai = ai−1 + aj,j<i-
1) steps. The union of the parents and children are
ranked in order of their fitness and the first half fitted
ones are selected for the next iteration (generation).
The process is repeated for a number of generations
and, finally, the fittest valid AC(s) is returned.

Utilizing 100 parents par generation for 300
generations (as reported), a total number of 60000 ACs
for e are generated and space corresponding to 200 ACs
is required, through the life-span of the algorithm. It
generates (near) optimal ACs, than deterministic
heuristics earlier detailed, for small sets of integers; at
the expense of the estimated memory/processing
overheads. To utilize the resulting AC in PKC, memory
units corresponding to the AC-length is required.

Osorio-Hernández et al. (2009) proposed an
improved version of the GA, in which only valid ACs
are retained in the population; Two-point crossover is
utilized; and Lucas (ai = ai−1 + ai−2) is introduced among
the steps, at Pr = 0.2. Double step is given Pr = 0.7. To
generate the valid AC, whenever the last ai = ai−1 +
aj>e,aj is replaced by ak such that ai = ai−1 + ak≤e,k<j.
The ak is sequentially searched down the AC.
Additionally, 4 mutants per child are produced, whereby
the fittest among them is selected. Thus, 240000 ACs are
evaluated and memory corresponding to 200 ACs
needed. An even more optimal result is realized
consequent to the mentioned improvements.

Nedjah and Mourelle (2004; 2006) applied
distributed multi-agent ant system ACO, while
León-Javier et al. (2009) use the PSO. Both are similar
to GA. In the ACO, a similar set of parameters to the GA
is used but the improved GA discussed performs
comparably better. PSO evaluates 30,000 ACs and

requires memory space equivalent to 30 ACs. But
reported PSO results are for es with n<12: These are by
far smaller than ones utilized in PKC. Similarly, the GA-
based heuristic was reported by Rodriguez-Cristerna and
Torres-Jimenez (2013), in which factorial number
system is used in the AC representation. The algorithm is
fortified with special neighborhood and distribution
function. The reported results are also for relatively
small integers. Nedjah and Mourelle (2006) reported a
promise-looking result from ACO, for up to 1024-bit
integers. However, the report may either be incomplete
to justify the result: For example, the reported Table 2
showing 1024-bit integers having average AC-length of
1022 is contrary to Equation 17. Moreover, considering
the large number of integers in the given range,
sampling characteristics of the represented set has to be
stated clearly. For example, Kunihiro and Yamamoto
(2000) show that optimality of AC for e is a function of
H(e): Those e with very few and those with almost all
non-zero bits in the corresponding binary forms
represent the integers for which their optimal ACs are
easy to obtain; Whereas those es having on the average
n/2 bits density constitute the most difficult set for which
to find the optimal ACs. Cruz-Cortés et al. (2008) and
Dominguez-Isidro et al. (2015) opined that
metaheuritics, generally, return (nearest) optimal ACs
for relatively small to medium integers. In their
respective Artificial Immune System (AIS) and AC
Evolutionary Programming (ACEP), SWM is integrated
to handle large integers. This followed from a proposal
pioneered by Bos and Coster (1990).

Bos and Coster (1990) show that computing AS
corresponding to the NW in SWM gives room for an even
larger k. An algorithm called Makesequnce is applied to
generate the AS. Given a vector of NW V = {v1,v2,…,vs},
the algorithm begins with protosequence AS = {1,2,
v1,v2,…,vs}. Four rules are defined for the process:

• Approximation: if vi + vj = vk-ε:i≤j<k and ε is small

positive integer then insert vi + ε into the sequence.
E.g., 49-67-85-117 ⟼ 49-50-67-85-117 (where
49+67 = 117-1)

• Division: if vi is divisible by a small prime p then

add
2

, , ,i iv v
p

p p
… into the sequence. E.g., 17-48 ⟼

16-17-32-48 (where p = 2 and 2 divides 48)
• Halving: take a small number t that occurs earlier in

the sequence and insert vi-t,
()

, , ,
2 4 2

i i i

u

v t v t v t− − −
… for

some u. E.g., 14-382⟼14-23-46-92-184-368-382
(where t = 14 and vi = 382)

• Lucas: construct Lucas sequence where necessarily
so that vi is last element of the Lucas sub-chain.
E.g., 4-23⟼4-5-9-14-23

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

285

And finally, remove any redundancy. Some
weighting function where attached in selecting the rule,
but (as reported) it does not yield any better result. For a
set of NW with the largest window vs≤1000:

() ()3
lg 1

2
sL NW v s≤ + + (20)

The algorithm is demonstrated having a good result

for 512-bit integers, in which about 2/3 of the bits are
non-zero. But the criteria for applying the four (4) rules
is left open. Therefore, the heuristic is left as a
framework with the hope of yielding a nearly optimal
result. Cruz-Cortés et al. (2008) adopted the
approximation rule in an AIS-based AC algorithm,
wherein it is called Insertion.

AIS is also nature-inspired swamp intelligent-based
AC algorithm. Its simplified version for the AC mimics
the pattern matching between antigen and antibody and
clonal selection principles. A cloning-mutation is applied
to a generation of antibodies and mutated clones with the
highest affinity are retained for the next generation. An
immune memory mechanism is used to retain some
subset of higher affinity clones for future immunity. e is
mapped to an antigen, the antibody and it affinity being
the corresponding AC and its length (Aai(e),lai(e))
respectively. Cloning involves creating new AC from
stimulated existing one with higher affinity (shorter
length) and is followed by hypermutation (perturbation
of the new AC). A cloned AC with low affinity is
receptor-edited (replaced) with ones with higher affinity.
The process is repeated for a number of generations and
those clones with the highest affinity are finally returned.

Analytically, the algorithm generates a population of
N of ACs for e. Best P among them are selected for
cloning/mutation. Beginning from the one(s) with the
shortest length, first batch from the P is utilized to clone
another N ACs; then N/2 are cloned, utilizing the second
batch; until all the P ACs are exhausted. Each of the
cloned AC is then mutated into a pair. If e is even, best d
among the 2P ACs are kept for later reference and
finally best N ACs are selected for the next generation.
The process is repeated for say g generations. Therefore,
the algorithm generates and evaluates at least gPN ACs
and N + d AC-units of memory is required. For example
given g = 25,N = 45, d = 0.1N and P = 0.25N: 12375
evaluations are made, requiring memory resources
equivalent to 49 ACs.

AIS utilizes least resources among the metaheuristic
discussed. It also returns competitively good results for
small integers. As for the large ones, the algorithm
partitions e just as in SWM detailed. However, in this
case an arbitrary larger MSW mw−1 is utilized (normally
6 to 20-bit). Then AIS AC algorithm is applied to
evaluate the AC for the MSW. The AC serves as an

input, along with the remaining unique NWs, for the
Insertion-based AS heuristic to generate the sequence
and the AC-length is determined as:

() () ()1, , 1vw wl e k q L NW n n m w−= + − + − (21)

The process is repeated with varying length MSW,

but normally fixed k,q at 6,q respectively. The AC with
the shortest length is returned.

In the AIS-based sequence generation, given ordered
protosequence from the NW{1,2,m1,m2,…,ms}, the
algorithm inserts ms-ms−1 that is not in the sequence and
sort it again; the procedure continues with the pair (ms−1,
ms−2),…, (mi,mi−1),…, (m0,m1), inserting mi-mi−1 that does
not exists and sorting the sequence to maintain the order.
The estimated AS-length is given as:

() ()4
lg 2

3
sL NW m s≤ + + (22)

ACEP (Dominguez-Isidro et al., 2015) utilizes the

same method while adopting Evolutionary Programming
(EP) model (Dominguez-Isidro and Mezura-Montes,
2011) for generating the initial AC.

EP is an evolutionary computation algorithm in
which generations are produced asexually without a
parental selection process. In the model, the process of
solution encoding, initial population generation and the
probability function are similar to that of GA
(Osorio-Hernández et al., 2009), where N individual
ACs are generated. t-mutants are created from each of the
N ACs and the best among them is selected as the
respective offspring. In the replacement process, each AC
competes with q random ACs among the union of the N
parent ACs and their offspring; while the number of wins
(number of times individual AC-length is shortest among
its competitors) is recorded. The ACs are then sorted
according to their wins and first-half with highest
frequency of wins are selected for next generations. The
process is repeated for MAXGEN number of generations.
Thus, the algorithm generates N × q × t × MAXGEN AC in
the process and requires N AC-units of memory. For
example given the value for N, q, t and MAXGEN are
100,10,4 and 23 respectively, 92,000 AC are evaluated.

ACEP reported slightly better result than AIS for
small integers, while both are roughly equal for large
ones. But in respect of computing/memory resource AIS
is comparably better. To be implemented in PKC, both
requires memory units equivalent to the respective AS-
length for the NW vector. However, the integer sets
utilized by both are insufficient to generalize their
effectiveness behaviors-being very small.

On a general note: Metaheuristics applied on ACP are
largely nature-inspired, evolutionary or swamp
intelligence-based, that are also population-oriented;

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

286

with ACEP considered the most successful one reported
so far. Jose-Garcia et al. (2011) employed trajectory-
based Simulated Annealing (SA) but exhibited less
promising results. The metaheuristics could be regarded
as second most optimal approaches for ACP-superior
ones being exhaustive methods. In relation to PKC, the
ACs are generated/determined independently before
being applied. They are also less efficient as compared to
window-based methods: This is partly obvious as they
are a sort of compromise, but partly it is due to the
population-dependence. The resulting optimality
degenerates as the integers become relatively large
(Dominguez-Isidro et al., 2015). Consequently, it is
generally believed that SWM still remains the most
feasible optimal method for large integers, albeit with the
k -constraint (Bos and Coster, 1990; Cruz-Cortés et al.,
2008; Dominguez-Isidro et al., 2015). Therefore, hybrid
of metaheuristic-SWM have emerge as an alternative
approach, in which the metaheuristic overcome the k-
constrain in the SWM. Worthy of nothing is that finding
optimal AS for the NW vector, on which the hybrid
depends, is an NP-complete problem (Downey et al.,
1981). Thus expecting high-quality solution requires
well-formulated algorithm for the ASP.

Conclusion

Based this survey on various works/studies on the
ACP, following are highlights of issues worth
considering, apart from optimality, specifically when
designing ACP heuristic for PKC:

• Implementation memory requirement. Binary

method is least effective in respect of the optimal
exponentiation/scalar multiplication operations but
is the most economical in terms memory resource
utilization. It requires two units of memory only:
One for the intermediary result whiles the other for
the base. SWM, in general, are next to binary,
requiring 2k−1 units for the pre-computed windows.
As for the other metaheuristic, it depends on the
implementation. But it is obvious that during the AC
search/generation population-based algorithms
require much memory, depending on the number of
population; this is apart from the memory required
to store the intermediate results corresponding to the
elements in the AC when implemented

• Processing overhead in search for the optimal AC.
Again binary method and SWM utilizing fixed
windows parameters (k,q) can be applied with
negligible processing overhead. However,
considering the poor performance of binary in terms
of optimality and that SWM using fixed parameters
does not guarantee optimal result, it is worth at least
searching for the optimal window parameter for a
fairly large integer in PKC and when a known and

large integer is to be utilized at least twice it is more
economical to evaluate its (near) optimal AC prior
to the actual exponentiation/scalar multiplication:
Most of the PKCs keys are in this category. In fact,
for the likes of RSA, the corresponding AC may be
pass/stored along with the other key parameters as is
the tradition with CRT of the private key d

• Multiplication versus squaring. Squaring is generally
regarded as more efficient than multiplying two
different numbers. As such, an AC with more
proportionate doubling than addition will be faster in
term of its corresponding exponentiation. However,
this is different in ECC’s scalar multiplication where
both ECADD and ECDBL involve some number of
multiplications, squaring and inversions

• AC/AS representation for very large integers with
hundreds to a few thousands ACs lengths. The AC
sequence encoding is another issue worth given
attention to. A good candidate for this is star-chain,
where only one “parent” needs to be remembered for
the child element to be reconstructed. Additionally,
smaller integer structure can be used to only keep
track of the AC elements and their parents’ positions.
For example, given all 512-bit integers, their star-
chain can be structurally represented using 10-bit
integers, say, as 2,3(1),5,9,10(4),...,511(x): That is for
a 511-lngth AC beginning from 1 as its 0th element;
where a number in bracket is omitted doubling is
implied e.g., 1,4, 6 and 7; the number in bracket
points at the second parent of the given element; and
where absent a Lucas is implied

We conclude that metaheuristic-based AC algorithms

provide a competitively nearer optimal solution to the
ACP in a practically reasonable period of time, albeit
with some. However, for the large integers, the edge
between the metaheuristic and SWM is still little.
Therefore, there is a need for a yet efficient hybrid of the
heuristic/metaheuristic that is capable of evaluating (to
the nearest) optimal AC for any arbitrary integer. This is
achievable by exploiting the analytical works for suitable
boundaries and cost function; then integrating the
deterministic SWM into some efficient metaheuristic-not
necessarily complex population-based ones – to arrive at
the most optimal compromise and achieve the nearest
optimal result. We observed that the following approaches
could be a success path to an optimal AC heuristic:

• Investigating the star elements distribution in the

star-chain could provide a good cost function for a
yet successful algorithm

• The probability distribution of the star elements in
the optimal ACs is expected to be a key to
effectiveness of an algorithm by simulating the
optimality

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

287

• Instead of population-based metaheuristic, it may be
better to apply trajectory-based one such as great
deluge algorithm (Duek, 1993) that was successfully
applied in other similar problems (McMullank,
2007; Duek, 1993), by giving it tight boundaries and
good cost function

• There is yet the need for well-formulated ASP heuristic
• For very large integers, considering the efficiency of

SWM but with its k-constraints, an algorithm in the
point 4 could be integrated to effectively handle
sequence of larger-sized windows

• Point 1 to 5 could be tailored to the specific case of the
ECC

Acknowledgement

This research was partially supported by the
Malaysian Ministry of Higher Education [Grant No:
FRGS/1/2015/ICT03/UNISZA/02/1] and [Grant No:
FRGS/1/2014/ICT03/UPM/03/1].

Author’s Contributions

Adamu Muhammad Noma: Carried out the review
process of the materials selected by the other authors,
that are included in the review and forwards same for
further review by the authors.

Abdullah Muhammad: Contributed in the design
and flow of the review and in the selection and
evaluation of the relevant heuristic-based works
included.

Zuriati Ahmad Zurkannain: Coordinate the review
process and ensure both the heuristic and security aspect
are relevant and professionally reviewed

Mohamad Afendee Mohamed: Initiated the
framework for the review process and the selection and
evaluation of the PKCs works included in the review.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and no ethical issues involved.

References

Adrian, D., K. Bhargavan, Z. Durumeric, P. Gaudry and
J.A. Green et al., 2015. Imperfect forward secrecy:
How Diffie-Hellman fails in practice. Proceedings
of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Oct. 12-12,
ACM, pp: 5-7. DOI: 10.1145/2810103.2813707

Bahig, H.M., 2006. Improved generation of minimal
addition chains. Computing, 78: 161-172.

 DOI: 10.1007/s00607-006-0170-6

Bahig, H.M., 2011. Star reduction among minimal length
addition chains. Computing, 91: 335-352.

 DOI: 10.1007/s00607-010-0122-z
Balasubramaniam, P. and E. Karthikeyan, 2007. Elliptic

curve scalar multiplication algorithm using
complementary recoding. Applied Math.
Comput., 190: 51-56. DOI: 10.1016/j.amc.2007.01.015

Boneh, D. and G. Durfee, 2000. Cryptanalysis of RSA with
private key d less than N

0.292. IEEE Trans. Inform.
Theory, 46: 1339-1349. DOI: 10.1109/18.850673

Boneh, D., 1999. Twenty years of attacks on the RSA
cryptosystem. Notice AMS, 46: 203-213.

Bos, J. and M. Coster, 1990. Addition chain heuristics.
Proceedings of the 9th Annual International
Cryptology Conference on Advances in Cryptology,
Aug. 20-24, Springer, New York, pp: 400-407.

 DOI: 10.1007/0-387-34805-0_37
Brauer, A., 1939. On addition chains. Bull. AMS, 45:

736-739. DOI: 10.1090/s0002-9904-1939-07068-7

Chang, C.C., Y.T. Kuo and C.H. Lin, 2003. Fast
algorithms for common-multiplicand multiplication
and exponentiation by performing complements.
Proceeding of the 17th International Conference on
Advanced Information Networking and
Applications, Mar. 29-29, IEEE Xplore Press, pp:
807-811. DOI: 10.1109/aina.2003.1193005

Clift, N.M., 2011. Calculating optimal addition chains.
Computing, 91: 265-284.

 DOI: 10.1007/s00607-010-0118-8
Cruz-Cortés, N., F. Rodríguez-Henríquez, R. Juárez-

Morales and C.A. Coello-Coello, 2005. Finding
optimal addition chains using a genetic algorithm
approach. Proceedings of the International
Conference on Computational Intelligence and
Security, Dec. 15-19, Springer-Verlag, pp: 208-215.
DOI: 10.1007/11596448_30

Cruz-Cortés, N., F. Rodríguez-Henríquez, R. Juárez-
Morales and C.A. Coello-Coello, 2008. An artificial
immune system heuristic for generating short
addition chains. IEEE Trans. Evolut. Comput., 12:
1-24. DOI: 10.1109/tevc.2007.906082

Dahshan, H., A. Kamal and A. Rohiem, 2015. A
threshold blind digital signature scheme using
elliptic curve dlog-based cryptosystem. Proceedings
of the IEEE 81st Vehicular Technology Conference,
May 11-14, IEEE Xplore Press, pp: 1-5.

 DOI: 10.1109/vtcspring.2015.7145653
Dellac, H., 1894. Question 49. L’Intermédiaire Math.
Diffie, W. and M.E. Hellman, 1976a. New directions

in cryptography. IEEE Trans. Inform. Theory, 22:
644-654. DOI: 10.1109/tit.1976.1055638

Diffie, W. and M.E. Hellman, 1976b. Multiuser
cryptographic techniques. Proceedings of National
Computer Conference and Exposition, Jun. 7-10,
ACM, pp: 109-112. DOI: 10.1145/1499799.1499815

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

288

Dominguez-Isidro, S. and E. Mezura-Montes, 2011. An
evolutionary programming algorithm to find
minimal addition chains. Proceedings of the
Congreso Internacional de Ingeníería Electrónica,
Instrumentación y Computación, Minatitlén
Veracruz, Jun. 22-24, México, pp: 1-5.

Dominguez-Isidro, S., E. Mezura-Montes, N. Cruz-Cortés
and F. Rodríguez-Henríquez, 2015. Evolutionary
programming for the length minimization of addition
chains. Eng. Applied Artif. Intell., 37: 125-134.

 DOI: 10.1016/j.engappai.2014.09.003
Downey, F., B. Leong and R. Seith, 1981. Computing

sequences with addition chains. SIAM J. Comput.,
10: 638-646. DOI: 10.1137/0210047

Duek, G., 1993. New optimization heuristics: The great
deluge algorithm and the record-to-record travel. J.
Comput. Phys., 104: 86-92.

 DOI: 10.1006/jcph.1993.1010
Eǧecioǧlu, Ö. and Ç.K. Koç, 1994. Exponentiation using

canonical recoding. Theor. Comput. Sci., 129:
407-417. DOI: 10.1016/0304-3975(94)90037-x

ElGamal, T., 1985. A public key cryptosystem and a
signature scheme based on discrete logarithms.
IEEE Trans. Inform. Theory, 31: 469-472.

 DOI: 10.1109/tit.1985.1057074
Gelgi, F. and M. Onus, 2006. Heuristics for minimum

Brauer chain problem. Proceedings of the 21st
International Conference on Computer and Information
Sciences, Nov. 01-03, Springer-Verlag, Istanbul,
Turkey, pp: 47-54. DOI: 10.1007/11902140_7

Hankerson, D., A. Menezes and S. Vanstone, 2004.
Cryptography Basics. In: Guide to Elliptic Curve
Cryptography, Hankerson, D., A. Menezes and S.
Vanstone (Eds.), Springer-Verlag, New York, pp: 2-3.

Hansen, W., 1957. Untersuchungen über die Scholz-
Brauers chen addition sketten und deren
verallgemeinerung. Göttingen, Wiss. Prüfungsamt,
Schriftl. Hausarbeit zum Staatsexamen.

Hoffstein, J., J. Pipher and J. H. Silverman, 2014. The
Elliptic Curve Discrete Logarithm Problem. In: An
Introduction to Mathematical Cryptography,
Hoffstein, J., J. Pipher and J. H. Silverman, (Eds.),
Springer, New York, pp: 310-312.

Jose-Garcia, A., H. Romero-Monsivais, C.G. Hernandez-
Morales, A. Rodriguez-Cristerna and I. Rivera-Islas
et al., 2011. A simulated annealing algorithm for the
problem of minimal addition chains. Proceedings of
the 15th Portugese Conference on Progress in
Artificial Intelligence, Oct. 10-13, Springer-Verlag,
Lisbon, Portugal, pp: 311-325.

 DOI: 10.1007/978-3-642-24769-9_23
Joux, A. and R. Lercier, 2003. Improvements to the

general number field sieve for discrete logarithms in
prime fields. A comparison with the Gaussian
integer method. Math. Comput., 72: 953-967.

 DOI: 10.1090/s0025-5718-02-01482-5

Joye, M. and S. Yen, 2000. Optimal left-to-right binary
signed digit recoding. IEEE Trans. Comput., 49:
740-748. DOI: 10.1109/12.863044

Koblitz, N., 1987. Elliptic curve cryptosystems. Math.
Comput., 48: 203-209. DOI: 10.2307/2007884

Koblitz, N., A. Menezes and S. Vanstone, 2000. The
state of elliptic curve cryptography. Designs Codes
Cryptography, 19: 173-193.

 DOI: 10.1023/a:1008354106356
Koc, C.K., 1994. High-speed RSA implementation.

Technical Report TR 201, RSA Laboratories,
Redwood City, CA.

Koc, C.K., 1995. Analysis of sliding windows techniques
for exponentiation. Comput. Math. Applic., 3: 17-24.
DOI: 10.1016/0898-1221(95)00153-p

Knuth, D.E., 1998. Evaluation of Powers. In: The Art of
Computer Programming, Knuth, D.E. (Ed.),
Addison-Wesley, USA, pp: 461-485,

Kunihiro, N. and H. Yamamoto, 2000. New methods for
generating short addition chains. IEICE Trans.
Fund. Electr. Commun. Comput. Sci., 83: 60-67.

Laith, C. and W. Kuo, 1997. Speeding up the
computations of elliptic curve cryptosystems.
Comput. Math. Applic., 3: 29-36.

 DOI: 10.1016/s0898-1221(97)00017-5
Lee, Y., H. Kim, S. Hong and H. Yoon, 2006. Expansion

of sliding window method for finding shorter
addition/subtraction-chains. Int. J. Net. Security, 2:
34-40.

León-Javier, A., N. Cruz-Cortés, M.A. Moreno-
Armendáriz and S. Orantes-Jiménez, 2009. Finding
minimal addition chains with a particle swarm
optimization algorithm. Proceedings of the 8th
Mexican International Conference on Artificial
Intelligence, Nov. 09-13, Springer Berlin Heidelberg,
pp: 680-691. DOI: 10.1007/978-3-642-05258-3_60

Maletsky, K., 2015. RSA Vs ECC comparison for
embedded systems. White Paper, Atmel.

Mani, K., 2013. Generation of addition chain using
deterministic division based method. IJCSET, 1:
553-560.

May, A., 2004. Computing the RSA secret key is
deterministic polynomial time equivalent to
factoring. Proceedings of the Annual International
Cryptology Conference, (ICC’ 04), Springer Berlin
Heidelberg, pp: 213-219.

 DOI: 10.1007/978-3-540-28628-8_13
McMullank, P., 2007. An extended implementation of

the great deluge algorithm for course timetabling.
Proceedings of the International Conference on
Computational Science, (CCS’ 07), Springer Berlin
Heidelberg, pp: 538-545.

 DOI: 10.1007/978-3-540-72584-8_71
Mignotte, M., 2011. A note on addition chains. Int. J.

Algebra, 5: 269-274.

Adamu Muhammad Noma et al. / Journal of Computer Sciences 2017, 13 (8): 275.289
DOI: 10.3844/jcssp.2017.275.289

289

Miller, V.S., 1985. Use of elliptic curves in
cryptography. Proceedings of the Conference on the
Theory and Application of Cryptographic
Techniques, (ACT’ 85), Springer Berlin Heidelberg,
pp: 417-428. DOI: 10.1007/3-540-39799-x_31

Mohamed, M.A., M.R. Md Said, K.A. Mohd Atan and
Z.A. Zurkarnain, 2011. Shorter addition chain for
smooth integers using decomposition method. Int. J.
Comput. Math., 88: 2222-2232.

 DOI: 10.1080/00207160.2010.543456
Morain, F. and J. Olivos, 1990. Speeding up the

computations on an elliptic curve using addition-
subtraction chains. Inform. Theor. Applic., 24:
531-543.

NIST, 2013. Digital Signature Standard (DSS). FIPS
186-4

Nedjah, N. and L.D.M. Mourelle, 2004. Finding minimal
addition chains using ant colony. Proceedings of the
International Conference on Intelligent Data
Engineering and Automated Learning, Aug. 25-27,
Springer Berlin Heidelberg, pp: 642-647.

 DOI: 10.1007/978-3-540-28651-6_94
Nedjah, N. and L.D.M. Mourelle, 2005. Efficient pre-

processing for large window-based modular
exponentiation using ant colony. Proceedings of the
9th International Conference on Knowledge-Based
Intelligent Information and Engineering Systems,
Sept. 14-16, Springer Melbourne, Australia, pp:
640-646. DOI: 10.1007/11554028_89

Nedjah, N. and L.D.M. Mourelle, 2006. Towards
minimal addition chains using ant colony
optimization. J. Math. Model Algor. 5: 525-543.
DOI: 10.1007/s10852-005-9024-z

Okeya, K., 2004. Signed binary representations revisited.
Proceedings of the 24th Annual International
Cryptology Conference, Aug. 15-19, Santa Barbara,
California, USA, pp: 123-139.

 DOI: 10.1007/978-3-540-28628-8_8
Osorio-Hernández, L.G., E. Mezura-Montes, N. Cruz-

Cortés and F. Rodríguez-Henríquez, 2009. A genetic
algorithm with repair and local search mechanisms
able to find minimal length addition chains for small
exponents. Proceedings of the IEEE Congress on
Evolutionary Computation, May 18-21, IEEE
Xplore Press, pp: 1422-1429.

 DOI: 10.1109/cec.2009.4983110
Park, H., K. Park and Y. Cho, 1999. Analysis of the

variable-length non-zero window method for
exponentiation. Comput. Math. Applic., 37: 21-29.
DOI: 10.1016/s0898-1221(99)00084-x

Pollard, J.M., 1975. A Monte Carlo method for
factorization. BIT Numerical Math., 15: 331-334.
DOI: 10.1007/bf01933667

Reitwiesner, G. W., 1960. Binary arithmetic. Adv.
Comput., 1: 231-308.

 DOI: 10.1016/s0065-2458(08)60610-5

Rivest, R.L., A. Shamir and L. Adleman, 1978. A
method for obtaining digital signatures and public-
key cryptosystems, ACM Commun., 21: 120-126.
DOI: 10.1145/359340.359342

Robshaw, M.J.B. and Y.L. Yin, 1998. Elliptic curve
cryptosystems. RSA Laboratories Technical Note,
RSA Data Security, Inc.

Rodriguez-Cristerna, A. and J. Torres-Jimenez, 2013. A
Genetic Algorithm for the Problem of Minimal
Brauer Chains for Large Exponents. In: Soft
Computing Applications in Optimization, Control
and Recognition: Studies in Fuzziness and Soft
Computing, Melin, P. and O. Castillo (Eds.),
Springer, Berlin, Heidelberg, pp: 27-51.

 DOI: 10.1007/978-3-642-35323-9_2
Scholz, A., 1937. Jahresbericht. Deutschen

Mathematiker-vereinigung. Auhfgabe, 252: 41-41.
Schönhage, A., 1975. A lower bound for the length of

addition chains. Theor. Comput. Sci., 1: 1-12.
 DOI: 10.1016/0304-3975(75)90008-0
Stallings, W., 2011. Overview. Cryptography and

Networks Security Principle and Practice, Stallings,
W. (Ed.), Pearson, New York, pp: 9-29.

Thurber, E. G., 1973. On addition chain l(mn)≤l(n)-b and
lower bounds for c(r). Duke Math. J., 40: 907-913.
DOI: 10.1215/s0012-7094-73-04085-4

Thurber, E.G., 1993. Addition chains-an erratic
sequence. Discrete Math., 122: 287-305.

 DOI: 10.1016/0012-365x(93)90303-b
Thurber, E.G., 1999. Efficient generation of minimal

length addition chain. SIAM J. Comput., 28:
1247-1263. DOI: 10.1137/s0097539795295663

Wiener, M.J., 1990. Cryptanalysis of short RSA secret
exponents. IEEE Trans. Infotm. Theor., 36: 553-558.
DOI: 10.1109/18.54902

Win, E., S. Mister, B. Preneel and M. Wiener, 1998. On
the performance of signature schemes based on
elliptic curves. Algorithmic Number Theory, 1423:
252-266. DOI: 10.1007/bfb0054867

Yao, A.C., 1976. On evaluation of powers. SIAM J.
Comput., 5: 331-336.

 DOI: 10.1080/02522667.1992.10699117

