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Abstract: The progressive growth in the volume of digital data has become 

a technological challenge of great interest in the field of computer science. 

That comes because, with the spread of personal computers and networks 

worldwide, content generation is taking larger proportions and very 

different formats from what had been usual until then. To analyze and 

extract relevant knowledge from these masses of complex and large volume 

data is particularly interesting, but before that, it is necessary to develop 

techniques to encourage their resilient storage. Very often, storage systems 

use a replication scheme for preserving the integrity of stored data. This 

involves generating copies of all information that, if lost by individual 

hardware failures inherent in any massive storage infrastructure, do not 

compromise access to what was stored. However, it was realized that 

accommodate such copies requires a real storage space often much greater 

than the information would originally occupy. Because of that, there is error 

correction codes, or erasure codes, which has been used with a 

mathematical approach considerably more refined than the simple 

replication, generating a smaller storage overhead than their predecessors 

techniques. The contribution of this work is a fully decentralized storage 

strategy that, on average, presents performance improvements of over 80% 

in access latency for both replicated and encoded data, while minimizing by 

55% the overhead for a terabyte-sized dataset when encoded and compared 

to related works of the literature.  
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Introduction 

Large-scale data, or Big Data, resilient storage is one 

of the major problems addressed in terms of infrastructure 

support in computer science (Alnafoosi and Steinbach, 

2013) (Hashem et al., 2015). This means that when it 

comes to valuable information, storage systems design 

needs planning in such a way that no data is ever lost, 

regardless of external faults or factors common to any 

computational environment, such as hard disk failures 

and server crashes. In this sense, many of the existing 

state-of-the-art technologies use a replication 

methodology, which consists of entirely copying and 

storing data at different locations, often 

geographically distant, thus adding a degree of 

redundancy (Gonizzi et al., 2015). Although this 

technique has proved to be reasonably efficient in 

several scenarios and is still pertinent in many contexts, 

pure replication has its disadvantages. The biggest and 

most obvious is the increase in the required disk capacity 

to store a given dataset, which also implies a greater 

overhead on each update to keep identical copies as well 

as increases in hardware time and resources costs 

(Weatherspoon and Kubiatowicz, 2002). In this sense, 

new techniques have been progressively studied and 

introduced in distributed environments, with emphasis 

on methods that use error correction codes, also known 

as erasure codes (Khan et al., 2012). Erasure coding 
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algorithms split a data object d into n parts, each part 

significantly smaller than d. Not being full copies, these 

parts are instead generated using algebraic and logical 

operations in order to store only a fraction of the original 

data. Given an arbitrary number k < n, optimal erasure 

coding algorithms provide that the data object d can be 

fully restored by combining any k parts, therefore 

tolerating up to any combination of possible n-k failures. 

As these parameters (n, k) are configurable, an erasure 

coding algorithm could provide the same fault-

tolerance of replication methods, but instead providing 

much less storage overhead (Li and Li, 2013). As 

examples of method application we can cite the research 

of Hyun et al. (2017; Al-Awami and Hossanein, 2016; 

Gribaudo et al., 2016). 

To avoid having to transfer all parts of an erasure 

coded data object through the network of a distributed 

system every time the object is accessed, which could 

stress the network and decrease access time, one 

alternative is to use some sort of caching mechanism. A 

very common caching technique is LRU, which 

implements a least recently used policy, swapping data 

in and out of the faster access storage area based on 

how recent was the last request to it (Li et al., 2014). 

There is, though, an alternative technique with far 

better hit ratio (Megiddo and Modha, 2004), which 

means better usage of the limited cache area, than LRU. 

Albeit having more complex implementation, the 

adaptive replacement cache, or ARC, policy utilizes the 

history of content removed from the cache and 

dynamically allocates data on the faster access storage 

based on both recency and frequency. 

Ma et al. (2013) proposed the CAROM storage 

architecture in their work, which was one of the first in 

academic literature to suggest the combined use of 

replication and erasure codes. The work focuses on cloud 

environments and the tests performed at a datacenter 

level. There is a per-datacenter global caching strategy 

implemented, which however uses the very simple LRU 

algorithm. This caching strategy uses RAM as a media 

for faster access. More details on this cache are 

available, but the architecture used is not Peer-to-Peer 

(P2P), which may lead to single point of failure issues. 

Later in related works we find Robot storage 

architecture (Yin et al., 2013), which relies on the sole 

usage of erasure codes for data storage and ignores 

replication as combined approach, which according to 

recent studies may be an error (Gribaudo et al., 2016). 

However, it still presents good results and proposes a 

mix of architectures, since in a general overview there 

is clearly the figure of the master computers, which 

are those responsible for encoding and decoding the 

stored data, as well as controlling the metadata. On a 

second part, the authors use a P2P ring network of 

computers for data storage only and no further 

processing. It does not present any caching strategy to 

optimize access to this data. 

The work proposed as the HDFS-Xorbas architecture 

(Sathiamoorthy et al., 2013) relies on the HDFS 

distributed file system (Borthakur, 2008). For that 

reason, the architecture is similar or more likely an 

extension to this file system, which design is master-

slave and therefore subject to single point of failure 

problems. The main contribution of the paper is to 

provide an erasure codes scheme for HDFS, which 

initially uses only three-way replication. The work’s 

proposal is a new type of code and authors implement it 

in an integrated way to this already existing technology, 

with good results, but still forcing the use of erasure 

codes or replication, not both together. It also does not 

use any kind of caching mechanism. 
The work proposed by Tang et al. (2015), the MICS 

architecture, is more recent and based partially on the 
previous work that brought the CAROM architecture, 
but with some notable differences. It uses a 
management model with multiple masters and proposes 
the storage in the form of objects, besides having as 
one of the main contributions the creation of an update 
function for the stored objects, since this function 
usually depends on removing the object and reinserting 
it, because there is no direct update. At the end of the 
article, the authors suggest that the use of cache could 
be desirable in works of this nature, but they chose not 
to implement in their case. 

The work proposed as the HRSPC architecture    

(Li et al., 2016) focuses on directly improving some 

aspects of erasure codes in order to merge them into a 

mixed algorithm rather than using the two techniques 

separately as other works. This, however, makes the 

work much more theoretical than applied. Not many 

architectural details are given and although it does 

work well as other works, it does not use P2P 

architecture explicitly, but it does suggest some 

concepts in that sense. It also does not feature a cache 

system, though it does suggest that using such a 

technique can reduce disk read costs. 

The outline of this paper is organized as follows: 

First, there will be a section to describe the developed 

work, along with the contributions related to previous 

works. The following sections will present materials, 

methods and experiments performed in order to evaluate 

our work. There will be a section dedicated to the 

discussion of results obtained and how these results 

relate to other works in literature. The final section will 

present conclusions on this paper. 

Proposed Work and Contributions 

This work contribution is comprised of a fully 

decentralized storage architecture with a cache 

mechanism to improve response time. The architecture 

was named Griddler - namesake to a Japanese numerical 
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puzzle in which the objective is to reconstruct data that 

at first is unknown.  

The developed solution complements and expands 

the other storage architectures in order to study the 

possibility and benefits of a fully decentralized P2P 

storage system to mitigate single points of failure in a 

network of nodes. Li and Liao (2005) comment about 

load balancing problem in P2P systems in their research. 

There is no single point of failure, as we use the Chord 

P2P protocol (Stoica et al., 2001). While an evaluation 

determines on whether a fully distributed system favors 

performance in data encoding and decoding, we also 

consider and provide replication as an alternative 

available when necessary. By supporting simultaneously 

and not alternately, replication and erasure coding of 

data, it is unique amongst other architectures because it 

supports efficient storage for data both hot - frequently 

accessed, more suitable for replication - and cold - 

rarely accessed, more suitable for coding. Awareness of 

hot and cold data access patterns is imperative for Big 

Data systems and analytics, as shown by authors of 

previous works (Kambatla et al., 2014). In addition to 

those contributions, this work studies the behavior of 

an improved cache algorithm that overcomes the 

limitations of the LRU algorithm used in CAROM. For 

this work, the selected cache algorithm was ARC, an 

Adaptive Replacement Cache algorithm, which 

integrates the architecture. ARC well knowingly 

outperforms LRU and experimental results for disk-read 

large web requests have shown scenarios where the hit 

ratio for ARC is over 40% and LRU just about 27% 

(Megiddo and Modha, 2004). 

On Fig. 1 it is possible to observe a simple read 

operation and the placement of the cache, which is also 

local to each node and not global, as in CAROM. The 

read, or GET, operation converts the requested input 

key, for example “video1.mp4”, into an unique string 

by means of a secure hashing algorithm. That key is 

used to exactly identify the data object, which was 

previously stored in the network and has the same hash. 

Such behavior is defined by the Chord protocol. The 

search goes through the adaptive replacement cache 

area, which has two lists for both recently and 

frequently used data and these lists size increase or 

decrease based on another two metadata lists, the ghost 

lists. All cached data is stored on RAM. Given a cache 

hit, data returns without further operations. After a 

chache miss, the request forwards to other peers of the 

network using a routing table, also known as finger 

table. Ultimately the request resorting to disk if not 

found in any cache areas of any nodes. 

Figure 2 is a representation of the complete topology 

used in Griddler architecture, which is a ring, as 

necessary for the Chord protocol. The use of cache on 

each node is the great differential of this architecture. 

 
 
Fig. 1. Overview of access by means of ARC, in Griddler 

 

 
 
Fig. 2. Network topology for storage environment 

 

Materials and Methods 

There were four experiments conducted in order to 

produce this manuscript in order to measure latency of 

access with and without cache, processing time for 

encoding data, processing time for decoding data and 

total overhead of data when replicated or encoded. In 

order to write this paper the testing environment used 

hardware virtualization running on a single physical 

computer, although we are considering future 

experiments in larger distributed environments. The 

general specifications of the physical computer were 

an Intel Core i7 Haswell - 4700MQ 2.4 GHz, 6 MB 

Cache (3.40 GHz with Max Turbo) processor, 16 GB 

Corsair Vengeance DDR3 (1600 MHZ)/(2×8 GB) 
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RAM and a 1TB-7200 RPM HDD. Atop the hardware, 

there were several virtual servers with one virtual 

CPU, 2 GB of RAM and 50 GB storage space, 

connected to the same virtual network. All virtual 

nodes created use the 64-bit version of the Linux 

operating system. Our data varied between single-

object sets with a few megabytes up to a 1 terabyte set 

with thousands of objects, thus not standing back when 

compared to other works. 

Griddler consists entirely of C/C++ code, 

including programming libraries that implement the 

methods for performing the measurements described 

on the tests section. Experiments were conducted 

under low stress, nearly idle, operating systems, with 

dedicated resource usage and a short interval between 

each test. As it will be described on each test, we 

utilize standard methods for obtaining the results in 

each tests, always working with the average of a 

relevant amount of measurements, such as defined by 

the RFC 2544 (Bradner and McQuaid, 1999) for 

latency measurements. Reproducing the following 

tests would be as simple as to recompile the code on a 

different Linux environment. The source code is not 

yet available but full disclosure is something the 

authors are considering, even though it is under 

constant improvements. 

Results 

The first experiment intended to verify the latency of 

data access, with and without the use of the cache. For 

this experiment, latency measurement model followed 

the definitions of RFC 2544 therefore the average of 20 

measurements performed for each data object, which in 

this case are large binaries. The measurements incurred 

from the variation of the size of objects stored with 

three-way replication or with erasure coding. For this 

and following tests, the erasure coding algorithm used 

was Liberation (Plank, 2008) with parameters (6,2). 

Results on Table 1 and Fig. 3 represent measurements 

for replicated data. Erasure coded data measurements 

follow on Table 2 and Fig. 4. 

Second experiment intends to show that each node 

has enough processing power to contribute for erasure 

encoding operations. Therefore, storage architecture 

would benefit from a fully decentralized strategy. There 

would be no need for masters or nodes with specific 

functions of processing and storage like previous works 

suggested. In this experiment a varying number n of 

binary data objects, each with 10 MB of size, composed 

each dataset. Datasets size varied from 50 GB up to 1 TB 

of data and operations ran on a single node. Results 

follow on Table 3 and Fig. 5. 

 
 
Fig. 3. Latency graphical comparison for replicated data (in 

seconds) 

 

 
 
Fig. 4. Latency graphical comparison for encoded data (in 

seconds) 

 

 
 
Fig. 5. Encoding time for different datasets (in seconds) 
 

On a similar fashion, the third experiment intends to 

show that each node has enough processing power to 

contribute for erasure decoding operations. In this 

experiment a varying number n of binary data objects, each 

with 10 MB of size, composed each dataset. Datasets size 

varied from 50 GB up to 1 TB of data and operations ran on 

a single node. Results follow on Table 4 and Fig. 6. 
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Fig. 6. Decoding time for different datasets (in seconds) 

 

 
 
Fig. 7. Overhead comparison for both redundancy techniques 

 
Table 1. Average latency for different objects, triple-replication 

Size  Cache-less ARC 

14 MB 0.075427s 0.027292s 

277 MB 1.069707s 0.196161s 

553 MB 2.176905s 0.385806s 

1,1 GB 15.241922s 0.808186s 

 
Table 2. Average latency for different objects, erasure coded 

Size Cache-less ARC 

26 MB 0.203074s 0.058756s 

519 MB 3.565754s 0.551705s 

1,1 GB 17.730196s 1.054749s 

1,6 GB 21.805975s 1.269461s 

 
Table 3. Encoding time for different volumes of data 

n Total size Time 

5000 50 GB 131.390s 

10000 100 GB 269.676s 

50000 500 GB 1389.382s 

100000 1 TB 3063.399s 

 
Table 4. Decoding time for different volumes of data 

n Total size Time 

5000 50 GB 89.237s 

10000 100 GB 183.615s 

50000 500 GB 874.102s 

100000 1 TB 1914.271s 

Table 5. Overhead for binary object storage (in bytes) 

Object size Replication 3x Erasure Coding 

52428 B 157284 B 70651 B 

104857 B 314571 B 140382 B 

157286 B 471858 B 210112 B 

209715 B 629145 B 279842 B 

262144 B 786432 B 349573 B 

314572 B 943716 B 420220 B 

367001 B 1101003 B 489951 B 

419430 B 1258290 B 559681 B 

471859 B 1415577 B 629411 B 

524288 B 1572864 B 699142 B 

576716 B 1730148 B 769790 B 

629145 B 1887435 B 839520 B 

681574 B 2044722 B 909250 B 

734003 B 2202009 B 978980 B 

786432 B 2359296 B 1048711 B 

838860 B 2516580 B 1119359 B 

891289 B 2673867 B 1189089 B 

943718 B 2831154 B 1258819 B 

996147 B 2988441 B 1328549 B 

1048576 B 3145728 B 1398280 B 

 

On a ring P2P network, each node would be able to 

receive and process requests like the ones tested above 

simultaneously. Therefore, by testing the performance of 

a single node processing, it is possible to estimate that a 

larger number of nodes processing requests in parallel 

would decrease the overall encoding and decoding times. 

P2P is then the only model that allows for maximum 

node contribution in such situations. 

The fourth experiment intends to show that although 

coding requires additional processing, it has much less 

overhead when compared to pure replication. 

Experiments measured varying object sizes and values 

represent total number of bytes, for better precision. 

Results follow on Table 5 and Fig. 7. 

Discussion 

Regarding the caching mechanism used, given that 

ARC is notably an improvement of LRU in terms of hit 

ratio, the first question at hand was whether a per-node 

cache system on a P2P networked storage system would 

provide any benefits for data access. As it was shown in 

the first experiment, our cache system dramatically 

reduces access times on each node, providing over 80% 

improvement on access latency for both replicated and 

encoded data when compared to a cache-less alternative. 

Since each node may actively process requests, on a real 

environment several users would benefit from faster 

responses. Since ARC uses implementation in RAM, a 

lower latency than the hard disk was expected. Thus, the 

usage of ARC instead of LRU is an improvement from 

previous works, specifically over the CAROM 

architecture, but also improving all other works who do 

not consider caching mechanisms to improve access 
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Second and third experiments have shown that the 

current algorithms for erasure coding have feasible 

execution time on each node. Therefore, it is natural to 

want to maximize the number of processing nodes and in 

that sense the P2P model provides an optimal solution, 

since all nodes actively contributes to the whole system. 

Assuming a network of n nodes in parallel, such as a 

cluster in a Cloud environment, previous works used 

only n-k of those nodes for coding, but with our 

approach the actual performance gains in terms of 

processing time could easily be reach up to 100% in 

comparison, given that our work uses all n nodes. 

Separating processing nodes and storage nodes would 

only add additional network transfer time and for that 

reason, Griddler uses nodes for both functions. This is 

also an improvement from previous works, such as 

MICS and HRSPC. Both these works have some sort of 

master-slave relation in distributed storage, therefore 

having possible problems with single points of failure. 

The fourth experiment reinforced the importance of 

erasure codes in terms of storage overheads, thus 

surpassing previous works limited to replication. When 

compared to three-way replication, the same data, when 

coded, induces around 55% less overhead, in average. 

When it comes to Big Data, this characteristic would 

allow for larger volumes of data stored using the same 

hardware. When processing time is more of an issue than 

storage overhead, the proposed system is capable of 

storing data in replicated fashion as well, while some 

previous works were limited to erasure coding, such as 

Robot and HDFS-Xorbas. 

Conclusion and Future Works 

Efficient and secure storage of data is paramount in 

Big Data scenarios that rely on continuous access to 

information. At the same time as there is a considerable 

increase in data volume, which requires innovative 

technologies to increase storage capacity, it is even more 

important to use fault tolerance techniques for 

availability assurance such as replication and erasure 

codes. This scenario served as motivation for the work, 

which sought to develop a P2P data storage architecture 

with mixed fault tolerance, combining the two 

mentioned techniques, in an automated and configurable 

way. A fully decentralized topology lacks in similar 

works previously found in the literature and therefore 

this is an improvement. As an additional contribution, 

the proposed system implements a caching scheme, 

which led to an improvement in the speed of data access. 

For Griddler validation, our results were put in context 

with previous works shows another improvement, given 

that most works do not consider the usage o cache 

structures and the work that proposes the CAROM 

architecture uses an inferior cache algorithm than the one 

we use in our work. Access time of the data in the 

distributed system was measured, as well as other factors 

such as encoding and decoding time, with expressive 

results of over 80% response time gain for access and 

about 55% less general data overhead when encoding. It 

is evident that this work finds several applications in real 

situations and authors expect, when consolidating its 

development, to make it available in real situations that 

depend on large-scale distributed data storage. There is 

room for improvements, though, given that our work 

does not consider some relevant aspects of data storage, 

such as data security and privacy. We have yet to verify 

our architecture in larger computational environments 

for longer periods of time, with real user´s requests. 

There is also an interest in testing our caching 

mechanism with Solid-State Drives (SSD) instead of 

RAM in order to have larger cache areas available. 
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