

© 2017 Belkacem Athamena and Zina Houhamdi. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

An Exception Management Model in Multi-Agents Systems

1
Belkacem Athamena and

2
Zina Houhamdi

1Department of Management and MIS, Al Ain University of Science and Technology, Al Ain, UAE
2Department of Software Engineering, Al Ain University of Science and Technology, Al Ain, UAE

Article history

Received: 27-12-2016

Revised: 07-02-2017

Accepted: 29-05-2017

Corresponding Author:

Belkacem Athamena

Department of Management

and MIS, Al Ain University of

Science and Technology, Al

Ain, UAE

Email: athamena@gmail.com

Abstract: Multi-Agents Systems (MAS) are modern approaches that need

an additional investigation to improve their reliability and adaptability

levels. Exception management is one way to reach this goal and this paper

is dedicated to this specific subject. The purpose of this document is to

examine the exception concept in MAS domain and to suggest a model

adjusted to MAS challenges such as heterogeneity, openness and

particularly agents’ autonomy. Previous attempts in the agent’s society

have concluded set of findings that demonstrated the necessity of exception

handling in MAS at the system level. The handling includes management

and the needed processes related to management. The attainment up to now

can be applied only to special MAS type. Usually, agents are non-

autonomous and the system-level strategies need an impeccable

cooperation between agents in the exception handling process. In our

proposed model, the agent’s ability to approach exceptions by itself is

considered as a prerequisite to assure agent autonomy. Then, exception

handling depends on agent-level processes to deal with the limitations of

contemporary attainments and thus, they are complementary. Agent

preserves the ability to independently decide when to activate exception

handling and when to receive system-level help or believe in its skills.

Keywords: Multi-Agent System, Agent Autonomy, Exception Handling

Introduction

MAS belong to the most recent versions of intelligent

systems. They are made of software programs called

agents that work concurrently and collaborate to complete

the system functionalities in a certain context (Weiss,

2013). They are used in case of a complex task that can be

decomposed into a set of sub-tasks: Agents work out the

assigned sub-tasks and they collaborate to produce a

global output. The notable characteristic of MAS consists

of the feature that agent is assumed autonomous decision-

making entity (Houhamdi and Athamena, 2012). That is,

agents, collaborate to fulfill their jobs. However, they

haven’t direct authority through others and they can

decline to collaborate (Athamena and Houhamdi, 2012).

In order to guarantee the autonomy, agent state

should be hidden and can’t be read or updated by others

agents. The agent has then local techniques to

collaborate with others and to divulge or conceal details

of its state. Consequently, the autonomy concept is

appropriate to today software requirements. The tasks

globalization and the Internet emergence require having

entities collaborate across workstations connected by a

network. The entities are organizations, societies, or

people who are autonomous and desire to protect their

private data. The software developers need to carry the

tasks of the participants, either online using Internet or

within a small environment using a local network. These

participants may be modeled as autonomous agents that

operate in a social system. Thus MAS is remarkably

appropriate to the actual requirements. MAS are suitable

software frameworks to cope with these concerns and

produce relevant solutions to the software developers.

Besides the MAS fitness to actual requirements in
the software engineering, autonomous agents are
moreover encouraging techniques to the eternal
increase needs of tasks’ computerization. The
previous entities cooperate to perform their tasks and
these activities are repetitious and sometimes
needless, but their completion needs a special
autonomy ratio. Bringing software agents to help or
act for users in the completion of their activities has
been an objective from the arrival of Artificial
Intelligence system with a unique agent.

Diverse methods are developed to improve the

software reliability and Exception Management is one of

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

141

them which is reputably known for its power and

simplicity. Decentralized execution has demonstrated that

exception management techniques need particular

improvements for distributed systems and achievements in

software design and component-based software

engineering has set out the necessity for new methods

also. MAS present challenging characteristics that require

reexamining the exception topic (Goodenough, 1975;

Platon et al., 2006).

The purpose of this paper is to supply the agent with

exception handling skills. An execution model is at the

top of these skills to identify exceptions and get ready

the agent for their handling. The model proposed in this

document guarantees the agents’ autonomy by

developing a new execution model that ensures the agent

keeps itself control during the task processing even with

the detection of exceptions. Thus, the agent settles

without help (stand-alone) if a situation is an exception

or not, consequently increases more its autonomy.

Background

MAS seem like an efficient solution to actual

problems in the different application domain. During

the literature survey, the current research achievements

can’t establish some properties required by the software

developer and the end-users from modern applications

and that were incipiently pledged by agent community

as advantageous characteristics. Among these

characteristics that need more investigation and

considered as hard to realize are reliability and

adaptability. The two properties are linked to the MAS

reaction to unusual circumstance, namely exception.

Reliability concerns the software qualities, about

dependability, availability, security and safety (Weyns et

al., 2005). Accordingly, software is reliable if it can

provide continual services, it doesn’t provoke harms and

it ensures the participant's privacy. In the MAS context,

such investigation is in fact related to the traditional

software engineering subjects, particularly, in the

distributed systems field. Limited works discuss

explicitly problems related to MAS (Athamena and

Houhamdi, 2012; Guessoum et al., 2006; 2004;

Houhamdi and Athamena, 2011a; Sichman et al., 1994).

Fault tolerance methods including replication and

monitoring are applied to autonomous agents to certify

certain degree of reliability. The main problem with the

actual techniques is the difficulty to find an agent-

oriented approach that is accepted as a Software

Engineering approach and respects all MAS properties,

more precisely the autonomy property.

Adaptability is the ability of the software to reach its

goal regardless local and/or external problems. The

external problems are related to the environment which

is dynamic and usually undependable. So, Adaptability

describes how well the MAS accommodates to local or

external stress. MAS without adaptability feature

operates inappropriately when the agents behave in a

unpredicted way, or the environment doesn’t meet the

desired requirements. On the other hand, MAS with

high adaptability level can accommodate to

modification in the behavior of the agents or the

context and continue to operate correctly. Accordingly,

Adaptability is unavoidable to ensure reliability. On the

other hand, it is linked to the notion of self-recovery

software and usually autonomic computing. An

autonomous agent is supposed to be adaptable: To

fulfill their tasks in spite of the exceptional situation.

Consequently, the MAS reliability can depend on

the adaptability of its agents. The majority of the

adaptability techniques are macro-approaches since

they consider the entire system, conversely the micro-

approaches focus on the agent. Interaction protocols,

distributed algorithms and other system-level methods

are an example of macro approaches where the agents

act with the certain level of adaptability (Klein et al.,

2003). But, the achievements of micro approaches are

very fewer, in spite of the advantage of having agents

extremely adaptable about their autonomy. Few

investigations have been done, for example, commitment

protocol and self-controlled agent (Mallya and Singh,

2005) and many problems need to be solved,

encompassing the hybrid approach that combines the

macro and micro approaches.

There are a lot of techniques to enhance the MAS

reliability and adaptability. They belong to Artificial

Intelligence, Distributed Computing and Software

Engineering fields and they can be applied to MAS

under some constraints (Platon et al., 2006). Among

these techniques, we can find Exception Handling which

is established for many years in programming languages

and recognized as a useful and robust mechanism, but

simple in its concepts. If a program encounters an

unusual situation such as missed parameters or

unexpected type, an Exception Handling Mechanism

(EHM) deviates the execution flow to a handler (a

program prepared to control a particular circumstance for

the benefit of the main program). The EHM redirects the

execution flow, on handler termination, back to the main

program. The fundamental EHM is represented in Fig. 1.
An EHM includes supplementary tools to consider

the exceptions including the handler identification from

the program call stack in case non-availability of the

handler. The call stack contains a list of procedure calls

that are performed during the program execution. If no

handler is found at exception occurrence, a handler is

searched and asked the prior caller in the call stack. The

exploration carries on until identification of a handler or

the call stack is empty. In the last case, the program isn’t

able to manage the exception and must abort.

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

142

Fig. 1. Exception handling mechanism

In the MAS context, the EHM concept is interesting;

however, the distribution and autonomy are two

challenges making hard the application of this concept.

Works in distributed computing indicated that the

exception handling semantics is insufficient to solve

problems like simultaneous exceptions (Issarny, 2001).

In decentralized systems, simultaneous exceptions

happen when collaborating agents detect exceptions

which are parallel and must be handled. The difficulty is

in the determination of the handling order and how to

resynchronize the processes to collaborate effectively.

Also, agent autonomy increases the difficulty in the

collaboration when the agent refuses to cooperate in the

management of exceptions detected by others. Thus,

EHM in distributed systems must be powerful to deal

with the possible collaboration rejection from some

agents. MAS are software, so the previous mechanism of

exception is still helpful. Autonomy and distribution

require new techniques to solve the problems they

produce. Particularly, the exception extend isn’t limited

to the agent level, but also the entire system.

Autonomy is an agent property. This concept is
intangible and hard to describe in a formal and explicit

manner. Different definitions are suggested related to the
application domain but usually perceived as the
exclusion of global control (Houhamdi and Athamena,
2011b). In the dictionary, the Formal definition of
autonomy is the quality or state of being self-governing;
more accurately: The right of self-control. For an

artificial agent, autonomy is a more realistic concept.

Definition

Autonomy is the ability to make a decision without

support from other agents and to possess a self-control

and private information.

The autonomy means that the agent is qualified to

assess its inputs and to deliver outputs without support

from other agents. Particularly, the agent can determine

the situations of collaborations (the environment

whereby the agent decides to collaborate with other

agents). The properties of owning the control flow and

local hidden data are important to guarantee the

autonomy: In the absence of these properties, the agent

can’t ensure that control isn’t captured by another

agent, even momentarily. The local hidden data

includes the agent knowledge and its state; accordingly,

the exclusion of this kind of data avoids autonomy,

because the agent will be inconsistent. Autonomy and

the agent encapsulation (similar to the object

encapsulation) are related. Nevertheless, the autonomy

certifies a powerful encapsulation concept to the agent,

because it can decide dynamically when to allow access

to the encapsulated data.

On the other side, MAS society has suggested

approaches to defining dependencies between agents.

These dependencies are directly connected to

autonomy because they essentially permit agents to

evaluate their contextual and resource relationships

with other agents and therefore to change their

behaviors autonomously (Weyns et al., 2005).

Contextual autonomy represents the degree of agent

autonomy toward other agents in a system.

Agent Autonomy has an additional impact on MAS

that is important and related to exception handling. It

accentuates the agents decoupling and the system

modularity. Both characteristics rise from the

autonomy definition that guarantees the agents

encapsulation. They are essential because they are

often required in exception management and fault-

tolerance methods. They make the software

architecture more robust since the propagation of

undesired situations (like errors) doesn’t diffuse to the

whole system, but only to a small set of modules.

Similar Works

Exception handling studies are conducted under

Artificial Intelligence and Software Engineering

research. Since MAS belong to these two domains,

various explicit results were achieved, both at theory

and practical levels. However, the majority of the

achievements don’t fall in line with the essential

requirements to manage exceptions in MAS:

Contemporary approaches consider agents as software

objects and then apply the programming exception

mechanism which is a well-known theory. They don’t

take into consideration the specific properties of MAS

such as openness, heterogeneity and autonomy.

The current achievements in distributed systems,

software design and previous research in MAS identify

additional important concerns to develop a mature

exception handling mechanism, reputably the

concurrency and dynamic issues in handling. The

existing techniques manage the MAS openness and

heterogeneity at a certain level, but unfortunately, they

can’t deal with the autonomy characteristic. The most

notable works that approach exception handling in MAS

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

143

are the Sentinel Architecture (Haegg, 1996), the

Sentinel-Like Agents (Klein et al., 2003), Commitment

Protocols (Mallya and Singh, 2005) and SaGE in the

Mad-Kit Platform (Souchon et al., 2004).

An unexpected output of this literature review is that

there is approximately no tentative to establish an

explicit definition of the exception concept in MAS,

particularly in the agent research society. Crucial terms

are defined in depth, for example, the agent death;

however, the exception term resides intuitive.

Accordingly, this work suggests an explicit definition of

Agent Exception and extends the traditional agent

execution model to approach the exception concept in

MAS in a better way. Regardless the model doesn’t

address the complete issues related to the agent

exception; it determines the basis for eventual studies

concerning autonomy propriety.

Exception in MAS requires special mechanisms to

assist developers in handling the exception. The

proposed model contributes to the current works by

defining the Agent Exception in the MAS context,

preserving the agent autonomy and preparing the agent

execution model. The suggested approach handles agent

exceptions at the agent level, while current research

handles the exceptions at the system level. The two

methods are complementary in their advantages to MAS.

The system level addresses the global exceptions

effectively, because of the central or distributed support

that coordinates the handling. The agent level addresses

the local and global exceptions in a decentralized

manner, which is more complex, thus inefficient,

however more flexible and powerful in the case of a

subset of agents facing exceptional situations.

Consequently, the system level improves the system

efficiency and the agent level improves the system

robustness, mainly because of the agent autonomy.

Our approach equips the agent with pertinent

capabilities related to exceptional situations and

preserves agent characteristics. Existing systems satisfy

part of the agent features, but our model addresses the

autonomy issue appropriately. The principal model

advantage compared to other systems is its robustness

and reduction of the developer task, in this manner, the

developer will focus on important processing matters.

Methods and Techniques

The Subsumption and BDI model are popular agent

frameworks. Still, these models have two weaknesses

related to agent exceptions. They don’t integrate

exception management mechanisms explicitly in the

agent execution model and also they don’t identify the

occurrence of agent exceptions. Exceptions are often

treated as programming exceptions and count on the

mechanisms of the used language. However, the agent

exceptions handling needs to consider the hypothesis of

MAS and good practice of Software Engineering asks to

isolate clearly the methods for exception management

from the methods for the application logic. The purpose

of this paper is to develop a new execution model of an

agent that incorporates exception handling facilities and

the previous separation of methods is materialized.

Agents often perform an iterative execution model,

traditionally the percept-reason-act cycle. Our

proposed model follows the same cycle and expands

the percept and act processes to adequately support

the reasoning process when exceptions occur,

respecting the agent autonomy concept.

We start by defining the structure of the message,

protocol, handler and knowledge of the agents and then

we describe the proposed execution model.

Protocol and Handler Models

Message Structure

We denote ACL message as follow (Equation 1):

(), , , , ,m id source destimation action content time= (1)

In Equation 1, m is a message, id manes its protocol,

source and destination identify the sender and recipient,

action is the performative, content describes the message

text and time is the acquisition time. The FIPA ACL

representation can be used, if necessary. If one of the m

parameters is ‘-’, it implies the parameter is not defined

and any value is acceptable.

Handlers and Protocols Structure

Handler and protocol can be expressed by sequence

diagrams or by graphs (Houhamdi and Athamena, 2015).

We prefer to represent them formally by graphs. They

are described as directed trees, where the root represents

the initial message and the rest of the tree is formed by

applying the relation R, specified as follows: If T is a

directed tree, L represents the leaves Kit (L⊂T) and M

the edges kit. The edges represent operations such as

send a message in handlers and protocols.

R is non-symmetric, non-reflexive and transitive

binary relationship. T verifies the following structural

properties:

• ∀m1∈M\L, ∃m2∈M, m1Rm2

• ∀m1∈M\L, sucT(m1) = {m2,m1Rm2}

• ∀m1∈M\{root},∃m2∈M, m2Rm1

The first definition declares that all sent messages

have a successor except leafs. sucT(m1) represents the

successors set for a given edge of T in definition two.

Definition three states that all sent messages have a

predecessor, except the root. In the case where protocol

comprehends a loop in its description, the tree

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

144

specification utilizes the cycles unrolling over the tree

branches. Such unrolling action is usual, e.g. Petri nets.

Protocol Representation

The protocol is described by the following algebra on

message sending:

:: * | ,P m end p p p p p∨ ∨ ∨ ∨ (2)

In Equation 2, m defines the operation of sending the

message, the special operation end defines the last

message that marks the termination of a protocol p, p*

means an iterative (0 to many times) sending a message

in the protocol, (p|p) indicates the protocol selection (or)

by the agent and (p,p) signifies the sequence of two

protocols execution.

Handler Representation

Handler differs from the protocol in that a handler

contains as operation a message sending or another kind

of operation private to the agent, for example, modify the

private data or actions on protocol (such as an interrupt,

resume, terminate). Local operations are treated as silent

transitions as τ in the π- calculus, consequently similar

notations are used. The set of these operations is M-{τ}

and noted as M for short. The formal representation of

handler H is defined in Equation 3:

()? , * |h pH end end mg H H H H Hτ= ∨ ∨ ∨ ∨ ∨ ∨ (3)

The Handler representation uses the same semantic

of the protocol representation concerning the operators.

But, the handler representation deals with operations that

are the endh message to abort handler, the endp message

to abort a protocol, an internal operation τ(?), the

message sending m, a sequence, or the selection on

handlers. The formula τ(?) is an adequate notation where

the symbol “?” will be replaced by a local operation

related to the application, or insert/delete/update data

from the agent knowledge base.
Handler paths don’t necessarily terminate with the

endp message, indicating the abort of the suspended

protocol to execute the handler. However, the message

will be transmitted when the handler needs this

operation. All tree leaves terminate with the endh

message to abort the handler.

Protocol and Handler Semantics

The analogous syntax of protocol and handler permits

to develop a general execution model. We start by

describing two sets: M is messages Set, H is histories Set

where φ∈H (Empty execution). The execution continues

based on the acquired message kind and the handler (h)

and protocol (p) state which the agent executes.

‘perform’ defines the progress of the agent running the

protocol and the handler.

Perform: M × H × H × H × H:

()
()
{ }()
,

, ,
,

p

p

if m end
m H

H m if m end

φ φ
φ

φ

 =
→ 

∪ ≠
 (4)

()
{ }() { }

()
{ }()

, ,

, , ,

,

p h p h

p p h

h p

H H m if m end end

m H H if m end

H m if m end

φ φ

φ

 ∪ ∉


→ =


∪ =

 (5)

(m, Hp, φ) in Equation 4 describes the protocol p

execution. The execution history evolves during

messages processing (sent and received) and the

processing terminates when end is obtained, in this case,

the protocol history is cleaned out. But (m, Hp, Hh) in

Equation 5 represents a handler execution.

Consequently, the handler treatment succeeds the

protocol execution. When m is endp, the handler starts

after the protocol interruption. Finally, when m is endh,

the handler processing is completed with success and the

protocol execution is restarted.

Knowledge Structure

Agent maintains some data structures to treat its

inputs and identify unusual situations from usual ones.

These data structures are described in first order

predicate logic and all identifiers are unique.

The essential knowledge used by the agents in

detection and management of exceptions is beliefs

(Sun, 2005). Expectation is described according to

protocol and handler orders: At the end of each step of

a sequence execution, the agent expectations are the

following probable step in the sequence. This

expectation model and pertinent comparison techniques

grant the detection of uncommon events and execute

the corresponding handler.

For clarity reasons, we present the agent knowledge

structures like tables. Every agent possesses four tables.

The Pertinence Table, shown in Table 1, assembles

filters for the input. Filters are templates of consistent

messages. Messages that aren’t conforming to the filters

are rejected. Thus, filters decline the messages aren’t

pertinent to the agent. Discarding these messages before

any processing is required in open and dynamic context

because of the computational cost (Wooldridge, 2009).

Table 1. Pertinence Table

ID Source Destination Action Content Time

C1 - - - - -

C2 - - - - -

- Ag1 - - - -

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

145

The Beliefs Table, shown in Table 2, contains the
agent expectations. Expectations are templates of
messages that the agent is awaiting according to the
messages order in the protocol. The agent uses its
expectations to separate normal states from unusual
situations, i.e., unpredicted state.

Table 2 illustrates an agent that expects an offer

from Ag1 about the protocol C1 before the time Toffer

(first row in Table 2). The non-reception of this

message on time is considered as an exception. For

the last row in Table 2, the agent expects to receive

any message about C2 before Toffer.

The State Table, shown in Table 3, contains all running

and interrupted protocols and handlers implicating the agent

and they are represented as a 3-tuple.

Table 3 shows an example of a status table. The

protocol C1 is interrupted in the fifth step of its execution

and waiting for the termination of the handler H1 and the

protocol C2 and the handler H1 are in running state.
Finally, agent maintains a Handler (Table 4) to

associate exception with the corresponding handler. The
handler is associated with one or more messages that
specify the type of applicability condition of the handler.
Also, a message leads to multiple handlers and the agent
will select the appropriate one at runtime.

For example, according to the Table 4, the agent
identifies a Delay Notification at any time the received
message matches the message template, i.e., an Inform
with a predicate that declares a delay. If this message is
detected and considered as an exception, the relative
Delay Notification handler is executed.

Execution Model

The Fig. 2 presents the general execution model of

an agent, containing three layers which we will

describe in depth.

First Layer

This layer encompasses three processes which are

receiving the message, filtering messages and comparing

with beliefs: These processes are the elementary steps of

the execution model. The received messages are gathered

by the agent from its inbox. They are sent to filter out

message process which discards the messages that aren’t

important for the agent by Pertinence Table, relying on its

autonomy. The pertinent messages are then matched with

the agent beliefs in its beliefs table. Figure 3 shows the

flowchart of this process.

The message is searched in the Beliefs Table until a

match is located, or the table is completely scanned. If an

equal entry is located then the output is expected

message expm ← and unexpm ← null. Else, when no

equal entry is located, then the output is an unexpected

message and the opposite assignment is executed. In the

first case, we activate the Take- Decision Process, but we

activate the Select Handler Process in the second case.

Fig. 2. Agent execution model

Fig. 3. Beliefs matching flowchart

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

146

Fig. 4. Take-decision process flowchart

Table 2. Beliefs Table

ID Source Destination Action Content Time

C1 Ag1 Self Inform offer(S1,-) T<Toffer

C2 - - - - T<Toffer

Table 3. State Table

ID State Dependency

C1 Interrupted5 H1

C2 Running Null

H1 Running Null

Table 4. Handler Table

Message Handler

(‒,‒,‒,Inform, Delay(‒,‒),‒) Delay notification

Take-Decision Process

This process is the rational component of the agent.

The message is treated to deduce the following operation

of the agent, as described in Fig. 4. Besides this

treatment, the Take-Decision Process performs

continually and it doesn’t need an input message to

generate an output. This task isn’t illustrated in the

process because it doesn’t contribute to the exception

management mechanism. Nevertheless, it is essential

since it represents the dynamic component of the agent,

indispensable for the agent to start operations.

Based on the actual progress of the protocol related to

the received message, the agent decides and produces

pertinence and beliefs commands in Generate-

Command, they are dependent on the application domain

of the agent that utilize the agent knowledge. However,

the Generate-Command is supplied with the

mechanism, which is independent of the application

domain, to generate beliefs and pertinence filters

related to the messages expected by the agent in

accordance with the operating protocols and handlers.

Figure 5 shows the flowchart of Generate-Command. It

isn’t dealing with initiating a protocol or with further

modifications that can be done afterward in a domain-

dependent manner. Figure 5 processes only data that is

independent of the application domain, which are the

knowledge tables for controlling the agent execution

and the type of the message.

The output message m of Take-Decision Process is

forwarded to the Generate-Command to create commands

used in the following process Update-State. The external

loop analyzes every tree of the Agent Execution Table. If

m is the root of the tree, it implies that the agent has

dynamically established protocol (m is empty). Two

commands are created to modify the Pertinence and

Beliefs tables with data related to the new tree. If m closes

up a tree with either end or endh, the algorithm removes

the pertinence and beliefs tuples for the related tree from

the corresponding tables. We consider the case m closes

up a tree with endp as special because it happens when the

handler end h end p end execution terminates the assigned

protocol. The Execution Table includes a dependency

attribute that uses to find the entry of the protocol to abort,

consequently that two commands are generated to delete

the corresponding data in the tables. All remaining cases

need the replacement of old beliefs rules by next beliefs

expectations. The Pertinence Table doesn’t require to be

modified because the related protocol is in running state

and important to the agent.
The commands are used in the following step

Update-State to update the pertinence and beliefs filters
for the forthcoming cycles and to perform Send-
Message which is an optional action in the context.

Update-State

Figure 6 illustrates the different steps to update the agent
tables. The update sequence is not important in the
procedure. This procedure is independent of the application
domain since it simply commits the commands on the
tabular knowledge, as described in Fig. 6.

Second Layer

This level is related to exception handling mechanism
and deals with Identified Exceptions, i.e., the agent
possesses a handler in Handler Table that is appropriate
to the revealed exception. The unforeseen message is
sent to the Select Handler process to find out a handler.
The agent identifies unforeseen message whenever an
expectation isn’t satisfied at the beliefs matching step.
The execution flows routed to intermediate level of the
agent execution model.

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

147

Fig. 5. Generate-Command flowchart

Fig. 6. Update-State flowchart

Select Handler, described in Fig. 7, explores the

Handler Table to find out a convenient Handler by

comparing the message of each entry of the table with

the received message. If they match then a Handler is

located and returned by the function. If multiple handlers

are located, then the favored function determines which

handler is preferable to the agent, based on its structure

and environment. Accordingly, the favored function is

dependent on the application domain. The favorite

functions use metrics to appraise handlers such as the

Handler complexity.

Fig. 7. Select handler flowchart

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

148

Fig. 8. Prepare Handler Flowchart

Prepare Handling

In case a Handler is located, prepare handling

procedure is executed (Fig. 8) which suspends the

protocol affected by the unexpected message, starts the

execution of Handler and specifies that the interrupted

protocol will be evaluated at the end of the Handler

execution by inserting a dependency between the

protocol and the Handler in the status table. Thus the

agent decides to continue the interrupted protocol or to

abort it. In the end, the procedure sends the message to

the Take-Decision process, able to deal with the

exception, due to the ready handler.

Third Layer

If Select Handler procedure fails to find a Handler,

the agent confronts an Undefined Exception, i.e., the

agent doesn’t possess a Handler for this kind of

situation. In this case, the agent will collaborate with

other agents in the system or a handler warehouse to

find a Handler. A request is broadcasted to a

cooperative agent or such warehouse to try detecting a

handler. A successful search returns a Handler that

will be routed to Evaluate Handler function to review

the handler efficiency to the current situation, to

maintain the autonomy of the agent regarding this outer

handler and to update the handling table with the

exception type and the Handler. Usually, the evaluation

function is complex and we consider a simple method:

We consider a Handler as adequate if it allows the

suspended protocol to resume its execution.

 Formally, H is adequate if and only if Hn = Pit

 with H is a Handler: H = (Hi), i ≤ n

 and P is a protocol: P = (Pi), i ≤ n Interrupted at

statement Pit

 and endp = end

Explicitly, the agent relies on outer handler if it

directs the execution flow to the earlier state before

detection of the exception. However, this easy test

doesn’t ensure that the handler is adequate for the agent

at any stage. Such global technique is application

domain depend.

Generate Handler

If the handler search fails or the evaluation is

inadequate then the agent tries de create a handler. In

the proposed model, this creation unavoidably

generates a default handler in case of non-availability

of possible. This step is important for the continuation

of the execution, to guarantee the nonstop of the

model in such situation. The default handler consists

in ignoring the received message for certain times

after that it admits the failure of the corresponding

protocol. The default handler and the expected

message are placed in the handler table in the prepare

Handler step.

Results and Discussion

The Agent Execution Model (AEM) was described as

an architecture that involves particular data structures

and procedures. This section aims to examine the model

characteristics at the high level of abstraction: Analyze

the execution flow of the procedures to test systematic

characteristics of the model such as the liveness of

processes. Specifically, the model is an iteration of

message treatment and creation.

The AEM is modeled as a Colored Petri Net (CPN)

and analyzed using automated CPN Tool (Jensen et al.,

2007). This tool allows simulating and revising the AEM

and utilizing a CPN analyzer to test abstract properties of

the AEM, Especially fairness, liveness and deadlocks

problems during the execution. Figure 9 illustrates the

entire AEM modeled as CPN.

Analysis of the Model

The model analysis is conducted by simulations and

model analysis (Fig. 10). The simulation generates

logfiles as records; also the tool provides animation of

the CPN to perceive the marking evolution. Divers

executions of the CPN will never terminate even with

deadlock or liveness problems. Nevertheless, the

executions can’t decide if the model is starvation-free

and safe. Model analysis permits an exhaustive

investigation of the state space.

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

149

Fig. 9. CPN Formalization of AEM

A deadlock in the AEM signifies that the processing
will abort in a not final state, i.e., there is no executable
transition. Since the AEM is conceived to run eternally,
it doesn’t contain a deadlock. However, we have to avoid
the deadlocks to prove that the processing always
evolves and remains in states determined by the AEM.

On the other hand, liveness problem occurs when a
subset of transitions can’t be fired at all or from certain
execution point. Liveness signifies that portions of the
CPN can’t be executed anymore. We have to avoid the
liveness problems to ensure that the agent preserves its
complete services.

Fairness corresponds to a reasonable selection of the

agent services, which signifies that any service is

ultimately performed if the agent executes eternally.

Fairness problem occurs when some transitions are

executed remarkably more usually than others.

Fig. 10. CPN analysis model

The outcomes of the model checker, illustrated in

Table 5, show that the AEM is free from deadlock and

liveness problems. This outcome affirms that agent will

work eternally without facing difficulties caused by the

execution model and it can use all its services during any

execution. The second outcome shows that almost

transitions are fair. The observation and acquisition

transitions are partial. The simulations of the CPN show

that the two transitions are executed more usually than

the remainder. The message is defined as Token by the

Start and Output places, so unavoidably executing the

two transitions. The set observation-Acquisition is

accordingly executed significantly. On average, they are

trigged twice as frequently as others.

Performance Analysis

The experiments were conducted on three versions

of systems: No-exception, basic and AEM, to evaluate

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

150

the distinct approaches quantitatively. Multiple

executions are performed as agent-based simulation,

one for each a particular approach. Exactly, the

executions offer similar functionalities and they vary

in the exception handling mechanisms. Set of two

different types of experiments were performed to

assess the implementation characteristics and the

quantitative cost of the AEM. The first experiment

type is applied to No-exception (without exception

handling) and basic (exception handled using ad hoc

mechanisms) versions of the system. The second

experiment type is applied to systems with different

exception handling mechanisms. Table 6 presents a

qualitative comparison of the three systems used in

the simulation.

Quantitative Analysis

The experimental results are shown in Table 7 as

numerical values.

The maximum indicates the difference between the

two experiments. The performance rate of 56% for AEM

against the No-exception system means the AEM divides

the performance by a factor 1.68. The minimum value is

almost unchanged in both experiments. The overhead of

the EMS is therefore bounded since the corresponding

agents are run at least once in each period.

Table 5. State Space Report for AEM.cpn

Fairness Properties Liveness Properties

Commands Fair Live Transition Instances All

Generation Evaluation Fair Dead Transition Instances None

Beliefs Fair Dead Markings None

Generation Case Fair

Generate Other Fair

Handler Search Fair

Handler Evaluation Fair

Handler Selection Fair

Handler Preparation Fair

Identified Case Fair

Expected Case Fair

Unidentified Case Fair

Determine Fair

Ignore Fair

Pertinence Fair

Observation Impartial

Acquisition Impartial

Table 6. Systems Comparison

 No-Exception Plain AEM

Concerns separation unavailable unavailable available

Autonomy behavior robustness unavailable low Medium to high

Exception handling activities unavailable Ad-hoc Handlers

Exception handling maintenance unavailable Low High

Table 7. Comparison of the Performance Characteristics

 Stable Period

 Max Min Max. ∆ Max Min

No-exception 3.56 1.00 0.08 1.08 1.00

AEM 2.11 1.00 0.04 1.04 1.00

Ratio 0.56 1.00 2.00 1.05 1.00

Factor 1.68 1.00 0.50 0.96 1.00

Table 8. Complexity Evaluation

 Theoretical complexity Order (ms)

No-Exception free NDP 103(2345)

AEM Nbase = Max(O(npro)NDP Max(O(1),103)

Identified exception N = Max(O(npro), O(nk) O(1)

Total estimation Nbase + N 103

Measured value 103(5081)

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

151

Similarly, for the stable period, the mentioned values

are collected after half-time when the system attains a

stationary state. The two systems have closer maximal

values (4% difference). However, the results show a

difference between the minimal and maximal values in

the plateau (∆). Regardless, the clear decrease in the gap

between the two systems after a long execution (agents

perform a same number of times on average); the AEM

possesses a high cost because its ∆ value differs by 55%.

In the No-exception system, the average execution time

is approximately 2345 ms and its deviation is about 530

ms. In the EMS system, the average execution time is

around to 5081 ms and the average deviation is closer to

1535 ms which means that the AEM cost is 2.17 more

expensive. Since, the standard deviations are similar in

the two systems ([22%, 30%] of the mean values), 2.17

is treated as significant. However, it seems that the

reduction of this rate is possible by improving the data

structures utilized for the agent's knowledge. In our

experiments, the data structures used for the agent

knowledge are tables and the majority of tasks in the

AEM needs costly search through the table. Finally, the

results are used for comparing the theoretical

complexity and quantitative analysis. Table 8 shows the

complexity analysis, where NDP represents the

complexity of the No-exception system, O(npro) for

Handler Preparation and O(nk) the complexity for

Handler Selection. The complexity is related to

execution-time/cycle; consequently, the evaluation

depends on the order of execution time.

The measured and theoretical values have equal

order. The initial analysis expected that the AEM

integration increases the complexity by one order, which

isn’t that expensive in practice because the experiments

depend on the software structure rather than the

execution model and also the agent activity was limited

to perform a subset of protocols concurrently. The

agent’s performance analysis shows the AEM impact on

the agent execution cycle.

Conclusion

This paper aims to examine the exception management

in MAS and to propose an appropriate framework fitting

with the heterogeneity and openness proprieties and

particularly the autonomy. Our model guarantees the

agent autonomy by proposing a new execution model that

ensures the agent keeps its control during its execution

even in the case of exceptions. The agent decides alone if

a situation is an exception or not, so reinforces more its

autonomy. The new approach is explicitly defined and the

corresponding algorithms are implemented.

Since the agent exception depends on the concept of

the unexpected situation; the proposed model defines

this concept as a violation of the agent beliefs by

interaction protocol. Agent executes the interaction

protocols in their actions and it expects the results as

stated in the protocols specifications by producing a list

of beliefs. Then messages that don’t satisfy these beliefs

are assumed as an exceptional situation, hence call the

exception handling mechanisms.

The model analysis demonstrates it is alive and

free of deadlocks for each transition; consequently,

the agent reacts to every well-formed input and

maintains the availability of its services all the time.

The fairness matter proves that the input function

cleans up most of the events and may stop the agent

execution. This situation isn’t a problem in our model

and it is considered as the model feature because the

introduction of the filtering function allows to the

agent to treat only significant events. The filtering

function is really important when MAS is used in

foreign contexts in which pertinent messages must be

determined at the beginning to avoid losing

processing time on inutile information. Thus, the

agents focus on essential messages and execution

iterations are protected from the partial feature of the

Observation and Acquisition transitions.

As a perspective of this work, the nested exceptions

need more investigation and explicit definition. Nested

exceptions arise during the management of another

exception, consequently necessitating the interruption of

the current handler and the execution of a new handler.

The proposed execution model supports this function

informally. The execution of the handler generates some

outputs that must be validated otherwise producing other

exception. Thus, the handler will be interrupted and

resumed similarly to protocols in the nested exception

management. However, the proposed model doesn’t

investigate the nested exception concepts in depth,

because of the resemblance of their handling.

Acknowledgment

We thank the anonymous reviewers for their valuable

comments and useful suggestions.

Author’s Contributions

Belkacem Athamena: Contributed in all stages of

the paper, in the compilation of the suitable scientific

materials, in the writing of the manuscript, editing and

reviewing.

Zina Houhamdi: Contributed in all stages of the paper,

in the compilation of the suitable scientific materials, in the

writing of the manuscript, editing and reviewing.

Ethics

The authors confirm that this manuscript has not been

published elsewhere and that no ethical issues are

involved.

Belkacem Athamena and Zina Houhamdi / Journal of Computer Sciences 2017, 13 (5): 140.152

DOI: 10.3844/jcssp.2017.140.152

152

References

Athamena, B. and Z. Houhamdi, 2012. A Petri net based

multi-agent system behavioral testing. Modern

Applied Sci., 6: 46-46. DOI: 10.5539/mas.v6n3p46

Goodenough, J.B., 1975. Exception handling design

issues. SIGPLAN Not., 10: 41-45.

 DOI: 10.1145/987305.987313

Guessoum, Z., N. Faci and J.P. Briot, 2006. Adaptive

Replication of Large-Scale Multi-Agent Systems -

Towards a fault-Tolerant Multi-Agent Platform. In:

Software Engineering for Multi-Agent Systems IV,

Garcia, A., R. Choren, C. Lucena, P. Giorgini and T.

Holvoet (Eds.), pp: 238-253.

Guessoum, Z., M. Ziane and N. Faci, 2004. Monitoring

and organizational-level adaptation of multi-agent

systems. Proceedings of the 3rd International Joint

Conference on Autonomous Agents and Multiagent

Systems, Jul. 23-23, IEEE Xplore Press, New York,

pp: 514-521.

Haegg, S., 1996. A sentinel approach to fault handling in

multi-agent systems. Proceedings of the 2nd

Australian Workshop on Distributed Artificial

Intelligence: Multi-Agent Systems: Methodologies

and Applications, Cairns, Australia: Springer-

Verlag, pp: 181-195. DOI: 10.1007/BFb0030090

Houhamdi, Z. and B. Athamena, 2011a. Structured

integration test suite generation process for multi-

agent system. J. Comput. Sci., 7: 690-697.

 DOI: 10.3844/jcssp.2011.690.697

Houhamdi, Z. and B. Athamena, 2011b. Structured

system test suite generation process for multi-agent

system. Int. J. Comput. Sci. Eng., 3: 1681-1688.

Houhamdi, Z. and B. Athamena, 2012. A Petri net based

agent behavioral testing. Am. J. Applied Sci., 9:

1876-1883. DOI: 10.3844/ajassp.2012.1876.1883

Houhamdi, Z. and B. Athamena, 2015. Ontology-based

knowledge management. Int. J. Eng. Technol., 7:

51-62.

Issarny, V., 2001. Concurrent Exception Handling. In:

Advances in Exception Handling Techniques,

Romanovsky, A., C. Dony, J.L. Knudsen and A.

Tripathi (Eds.), Springer, pp: 111-127.

Jensen, K., L.M. Kristensen and L. Wells, 2007.

Coloured Petri Nets and CPN Tools for modelling

and validation of concurrent systems. Int. J.

Software Tools Technol. Transfer, 9: 213-254.

 DOI: 10.1007/s10009-007-0038-x

Klein, M., J.A. Rodriguez-Aguilar and C. Dellarocas,

2003. Using domain-independent exception

handling services to enable robust open multi-agent

systems: The case of agent death. Autonomous

Agents Multi-Agent Syst., 7: 179-189.

 DOI: 10.1023/A:1024145408578

Mallya, A.U. and M.P. Singh, 2005. Modeling

exceptions via commitment protocols. Proceedings

of the 4th International Joint Conference on

Autonomous Agents and Multi-agent Systems, Jul.

25-29, ACM, Netherlands, pp: 122-129.

 DOI: 10.1145/1082473.1082492

Platon, E., S. Honiden and N. Sabouret, 2006.

Challenges in exception handling in multi-agent

systems. Proceedings of the International Workshop

on Software Engineering for Large-Scale Multi-

Agent Systems, May 22-23, ACM, Shanghai, China,

pp: 45-50. DOI: 10.1145/1138063.1138072

Sichman, J.S., R. Conte, C. Castelfranchi and

Y. Demazeau, 1994. A social reasoning mechanism

based on dependence networks. Proceedings of the

11th European Conference on Artificial Intelligence,

(CAI’ 94), pp: 188-192.

Souchon, F., C. Dony, C. Urtado and S. Vauttier, 2004.

Improving Exception Handling in Multi-agent

Systems. Proceedings of the International Workshop

on Software Engineering for Large-Scale Multi-

Agent Systems, (MAS’ 04), Springer Berlin

Heidelberg, pp: 167-188.

 DOI: 10.1007/978-3-540-24625-1_10

Sun, R., 2005. Cognition and Multi-Agent Interaction:

From Cognitive Modeling to Social Simulation. 1st

Edn., Cambridge University Press,

 ISBN-10: 0521839645, pp: 450.

Weiss, G., 2013. Multiagent Systems. 2nd Edn., MIT Press,

Cambridge, MA, ISBN-10: 0262313561, pp: 920.

Weyns, D., K. Schelfthout, T. Holvoet and T. Lefever,

2005. Decentralized control of E’GV transportation

systems. Proceedings of the 4th International

Joint Conference on Autonomous Agents and

Multiagent Systems, Jul. 25-29, ACM Press, New

York, pp: 67-74. DOI: 10.1145/1082473.1082806

Wooldridge, M., 2009. An Introduction to MultiAgent

Systems. 2nd Edn., John Wiley and Sons,

Chichester, ISBN-10: 0470519460, pp: 461.

