

© 2016 Daniel Strmečki, Ivan Magdalenić and Dragutin Kermek. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Review Articles

An Overview on the use of Ontologies in Software Engineering

Daniel Strmečki, Ivan Magdalenić and Dragutin Kermek

Faculty of Organization and Informatics, University of Zagreb, Varazdin, Croatia

Article history

Received: 20-07-2016
Revised: 30-07-2016
Accepted: 27-12-2016

Corresponding Author:
Daniel Strmečki
Faculty of organization and
informatics, University of
Zagreb, Varazdin, Croatia
Email: danstrmecki@gmail.com

Abstract: One of the main goals of the Software Engineering (SE)
discipline is to find higher abstraction levels and ways to reuse software
in order to increase its productivity and quality. Ontologies, which are
typically considered as a technique or an artifact used in one or more
software lifecycle phases, may be used to help achieve that goal. This
paper provides a literature review, discussion and analysis of the
existing solutions for implementing ontologies in SE. We selected
several software development paradigms (including Software Product
Lines, Component-Based Development, Generative Programming and
Model-Driven Engineering) for our classification and discussion of
different approaches proposed in the literature. It was established that
ontologies are suitable for providing a common vocabulary to avoid
misunderstanding between different parties in SE, requirements
specification, features specification, variability management,
components specification, components matching, model transformations
and code generation. Based on the conducted review, guidelines for
further research are given.

Keywords: Ontologies, Software Engineering, Software Product Lines,
Component-Based Development, Generative Programming, Model-
Driven Engineering

Introduction

Software Engineering (SE) is the application of a
systematic, disciplined and quantifiable approach to the
development, operation and maintenance of software
(Bartolo Espiritu et al., 2014). A basic goal of SE as a
discipline is to successfully manage and control software
complexity. The increase of complexity in software
products and high development and maintenance costs
have resulted in a large number of unsuccessful SE
projects. This phenomenon, referred to as software

crisis, implies the difficulty of writing useful and
efficient code within the required time. Although SE has
witnessed great progress since the appearance of
software crisis, examples of large failed projects can still
be found in the literature (Robal et al., 2015). The two
key software projects issues are: (1) Low-level design
and implementation techniques; (2) Exposure of more
details than intended, in order to make software product
design, construction and modification simple (Batory,
2006). Software reuse is an important area of the SE
discipline, which has a potential of increasing its
productivity and quality (Nianfang et al., 2010). On the

other hand, owing to its complexity, numerous factors
like deadlines, budget, technology, architecture and the
level of knowledge need to be taken into account.
Raising the abstraction level has been the most
commonly used SE approach to increasing software
reuse. SE researchers are thus constantly looking for
higher abstraction levels to enhance productivity and
quality of software products. By encapsulating
knowledge about lower level operations, developers can
think in terms of higher level concepts, thus saving the
effort and time of composing lower-level operations, in
other words, avoiding reinventing the wheel in every
project (Visser, 2008). However, in SE there are no
universal solutions, as it entails creative processes which
are always critically dependent on the unique abilities of
the creative people who perform them (Musen, 2000).
Even when the used technology is not very complicated
itself, the engineering and realization of an SE project
usually is. This is mainly caused by the number of parties
involved and many different interpretations of the system
(van Ruijven, 2013). Nowadays, high-level object-
oriented programming languages are employed in SE with
the aim of raising the abstraction level using various

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

598

modeling and metaprogramming techniques. In this study
we provide a literature review in order to investigate
possible approaches to making use of ontologies in SE for
dealing with the aforementioned problems.

Ontology is a philosophical term that refers to the
study of being, becoming, existence and reality. It was
introduced to computer science through the field of
Artificial Intelligence (AI). AI has contributed greatly to
the field of SE through conceptual modeling techniques,
methods for system analysis and frame-based
knowledge-representation systems (Musen, 2000). In AI
ontologies are used in knowledge management for
limiting complexity and organizing information. The
accepted definition of ontology in computer science is
that it is a formal and explicit specification of a shared
conceptualization (Wongthongtham et al., 2007).
Conceptualization can be understood as an abstract and
simplified version of the presented world, a knowledge
representation based on objects, concepts and entities.
Formal means that a machine can process it, while
explicit means that there are clear restrictions applied to
the representations (Calero et al., 2006). According to
another definition of ontology in computer science, it is
an effort to formulate an exhaustive and rigorous
conceptual schema within a given domain (a hierarchical
data structure containing all the relevant elements and
their relationships and rules) (Wongthongtham et al.,
2008). Dillon et al. argue that a true ontology should
contain not only a hierarchy of concepts, but also other
semantic relations that specify how one concept is
related to another. These authors also announced the
dawn of SE 2.0, that is, the use of semantics as a central
mechanism that would revolutionize the way software is
developed and consumed (Dillon et al., 2008). John
stated that ontologies form a pool of reusable, shared
knowledge resources. They constitute a special kind of
software artifacts which includes a certain view of the
world, designed with a purpose of explicitly expressing
the meaning of a set of existing objects (John 2010).
Over the past decade, with the emergence of the
Semantic Web, several ontology languages have been
presented, one of which became a standard in SE: The
Web Ontology Language (OWL). It is a World Wide

Web Consortium (W3C) standard ontology language that
provides a complete set of expressions for capturing
different concepts and relationships that occur within
ontologies (Wongthongtham et al., 2009). It was
developed to facilitate greater machine interpretability of
human knowledge by providing additional vocabulary
along with formal semantics (Bossche et al., 2007). OWL
is based on eXtensible Markup Language (XML),
Resource Description Framework (RDF) and Description

Logic (DL), a family of logic-based knowledge
representation formalisms (Duran-Limon et al., 2015).

Although ontologies are typically considered to be a
technique or an artifact used in SE, it is also possible to
use them for the representation of SE domain knowledge.
Whereas SE generic ontologies are aimed at modeling the
complete SE body of knowledge, SE specific ontologies
conceptualize one part of the discipline with a specific
goal (Hilera and Fernandez-Sanz, 2010). Ontologies were
initially used by software applications to store data and
their semantic meaning, while they are now used to aid
software development in every phase of its lifecycle.
Ontology-Driven Software Engineering (ODSE) is a
software development approach where ontologies are
used to perform a majority of operations in software
development. Those operations can range from system
modeling to software generation (Wiebe and Chan,
2012). This paper provides an overview on the usage of
ontologies in SE. Since it a relatively new approach in
software development, no time limit was set for this
literature review. The idea for making use of ontologies
in SE emerged at the beginning of the 21st century and is
currently still a very popular topic in the computer
science research community.

The remainder of this article is organized in five
sections. Section 2 describes the research areas, precisely
the four SE paradigms that this review will focus on.
These four SE paradigms were chosen because they (to
some extent) deal with software development
automation, a topic of the authors’ special interest.
Section 3 provides a literature review and analysis of
suggested approaches for implementing ontologies in
SE. The review section consists of four subsections that
present the existing solutions for the usage of ontologies
related to the four selected SE paradigms. Section 4
provides a critical analysis and discussion of the
solutions found in the literature. Section 5 summarizes
the whole article, while possible directions for our future
work on this topic are provided in section 6.

Research Areas

Software Product Lines (SPLs), sometimes also
referred to as software families, imply a set of software
products that consist of a common architecture and a set
of reusable assets used in systematical production
(Asikainen et al., 2007). The SPL discipline focuses on
systematic, planned and strategic reuse of core assets in
order to produce a number of products that satisfy a
particular market segment (Duran-Limon et al., 2015).
SPLs tend to make use of a system’s common features to
increase the productivity and quality, reduce the
development time, costs and complexity (Strmečki et al.,
2015). The main goal of SPLs is to avoid developing
software from scratch by reconfiguring and reusing
existing SPLs across different projects. SPLs
development consists of two processes: Domain

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

599

Engineering (DE) and Application Engineering (AE)
(Magdalenić et al., 2013). The goal of DE is to develop a
common architecture for a system family and to devise a
production plan for the family members (Strmečki et al.,
2015). In the DE process, the commonality and
variability of a product line is established, reusable
assets that accomplish the desired variability are
constructed and mechanisms for resolving variability are
defined. The AE process is concerned with derivation
and development of a particular product. The product’s
specific requirements are taken into account and the
defined variability mechanisms are used in order to
develop the product timely and with the lowest cost, but
at high quality (Nguyen et al., 2015).

Component-Based Development (CBD or CBE) is a
software development paradigm based on the provision
of reusable software components in a plug-and-play
development style. It is a reuse-based approach to
defining, implementing and composing loosely coupled
independent components. A dream for software
components integration is to be able to compose
complex systems from off-the-shelf components
(Ringert et al., 2014). SE by components composition is
suited for development in distributed systems such as the
Web. The main goal of distributed CBD is to increase
the reliability and maintainability of software systems
through components reuse (Pahl, 2007a). Components
also have an important role in currently popular Service-

Oriented Architectures (SOA) because components can
be converted into Web services and thus can provide
services to other components.

Model-Driven Engineering (MDE) is a paradigm that
emphasizes model-based abstraction and automated code
generation. In MDE, essential features of a system are
captured through appropriate models and code
generators are used to automatically produce the source
code for the various modeled entities (Magdalenić et al.,
2013; Lilis et al., 2014). A model represents a partial or
a simplified view of a system. It is an abstraction of a
system used to replace the system under study. In the
MDE paradigm, models are not considered merely as
a documentation artifact, but rather as reusable
artifacts used throughout the whole SE lifecycle
(Rodrigues da Silva, 2015). MDE combines layered
modeling techniques with automated transformations
and code generation, where the generated code may
contain special tags carrying model information. It is
based on three layers: (1) Computation Independent

Model (CIM) addresses the structural aspects of the
system from a computation-independent viewpoint; (2)
Platform Independent Model (PIM) defines a system as a
technology-neutral virtual machine or a computational
abstraction; 3) Platform Specific Model (PSM) consists
of a platform model that makes up the platform and an
implementation-specific model towards concrete

implementation. MDE is platform-neutral by definition, but
the archetypical MDE is based on Unified Modeling

Language (UML) (Pahl 2007b; Katasonov and Palviainen,
2010). MDE provides an approach to: (1) Specifying
systems independently of the platform; (2) Choosing a
particular platform; (3) Transforming the specification for
the chosen platform (Bartolo Espiritu et al., 2014). MDE
developers first model the whole system in UML and
then take iterating steps to refine the model. The final
model is concrete enough for executable code to be
generated from it. Since the developer operates at a high
level of abstraction, efficiency is also achieved.
However, it is hard to use MDE for general purpose
programming and a lot of complexity can be hidden in
the generators (Zimmer and Rauschmayer, 2004).

Generative Programming (GP) is a discipline within
Automatic Programming (AP) that uses generators to
facilitate the process of application development
(Magdalenić et al., 2013). A generator is defined as a
program that takes a higher-lever specification of a
piece of software and produces its implementation
(Czarnecki and Eisenecker, 2000). Generative
programming uses DE techniques and can be applied in
SPLs AE. In addition to UML modeling, GP uses feature
modeling proposed in the Feature-Oriented Domain

Analysis (FODA) method. Feature modeling can be
defined as a creative activity of modeling common and
variable properties of concepts and their
interdependencies. The term feature refers to a property
of a system relevant to a stakeholder. Feature is used to
capture the commonality and variability among products.
A generative domain model focuses on mapping
between problem space and solution space. Problem

space refers to a set of features of a product family,
while solution space denotes implementation-based
abstractions contained in the specification. A generator
maps the two spaces, using a specification to yield the
corresponding implementation (Magdalenić et al., 2013).
GP uses metaprogramming techniques, which refers to
the development of programs designed to read, generate,
analyze or transform other programs and even modify
themselves while running (Strmečki et al., 2015).

Literature Review

The review starts by presenting related work on
ontologies categorization, focusing on their usage in SE.
The solutions for the usage of ontologies in each of the
four selected SE paradigms that have been proposed in
the literature are further presented in separate
subsections. Happel and Seedorf put forth an idea for
integration of SE and Knowledge Engineering (KE)
approaches, with examples of ontology applications
throughout the SE lifecycle. They suggested concrete
approaches for using ontologies in all of the SE phases:

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

600

Analysis and design (requirements specification and
component reuse), implementation (software modeling,
domain object model, coding support and
documentation), deployment and runtime (semantic
middleware and Web services) and maintenance (project
support, updating and testing). Happel and Seedorf also
noted that integrating SE and KE approaches tends to be
academic, neglecting the applicability aspects and
providing little guidance for software engineers. They
categorized the use of ontologies in SE into four
approaches: (1) Ontology-driven development (the usage
of ontologies at development time to describe the
problem domain); (2) Ontology-enabled development
(the usage of ontologies at development time to support
developers in their tasks); (3) Ontology-based

architectures (the usage of ontologies as primary
runtime artifacts); (4) Ontology-enabled architectures
(the usage of ontologies as support to runtime software)
(Happel and Seedorf, 2006). Guarino and Fensel
established similar classifications of ontologies based on
their generality level: (1) Generic ontologies capture
general knowledge of the world and are applicable in a
variety of domains; (2) Representational ontologies
provide entities without expressing what they represent
and do not belong to any particular domain; (3) Domain

ontologies capture the knowledge applicable in a
particular domain; (4) Method and task ontologies
capture the knowledge specific to problem resolution
methods or specific tasks (Fensel, 2004). Calero et al.
provided a broader classification of ontologies based on
their subject of conceptualization: (1) Knowledge

representation ontologies are used to formalize
knowledge under a concrete paradigm; (2) Common or
generic ontologies represent reusable common-sense
knowledge; (3) High-level ontologies describe general
concepts and notions; (4) Domain ontologies offer
vocabulary for concepts in a particular domain; (5) Task

ontologies describe the vocabulary related to a generic
activity; (6) Domain task ontologies are reusable only in
a particular domain; (7) Method ontologies are
applicable to a reasoning process designed to perform a
particular task; (8) Application ontologies are dependent
on the application and often specialize the vocabulary of
a domain or task ontology. Calero et al. also emphasize
that, based on the moment when they are utilized,
ontologies can be used during the development or in
runtime. The former approach is termed Ontology-driven
development, in which, for example, ontology’s semantic
content can be converted into a system component.
When the system makes use of an ontology with a
specific purpose, it is referred to as an Ontology-aware

system. An Ontology-driven system is the one in which
the ontology is an additional cooperating component.
The final taxonomy of ontologies in software
engineering and technology proposed by Calero et al.
contains two generic categories: Ontologies of domain

and Ontologies as software artifacts. The SE Ontologies
of domain taxonomy can be categorized as generic of
specific (requirements, design, construction, testing,
maintenance, configuration management, quality,
engineering tools and methods, engineering process and
engineering management). Ontologies as software
artifacts can be categorized as development time
ontologies (development process, maintenance process,
customer-supplier process, support process and
management process) and runtime ontologies
(architectural artifacts and information resources). Based
on the mentioned taxonomy, authors provide a
comprehensive review and classification of proposals
found in the literature (Calero et al., 2006). Gašević et

al. investigated the use of ontologies in SE throughout
software lifecycle phases. In the analysis phase, an
ontology is commonly used for Requirement

Engineering (RE). In the design phase, ontologies are
used as software models, business vocabularies and
reasoning or transformation models. In the
implementation phase three possible approaches can be
distinguished: (1) Software system implementation can
be generated from an ontology created in the analysis
phase and refined in the design phase; (2) Ontologies can
be used in runtime, e.g., Jena API can be used for
handling OWL ontologies in Java; (3) Ontologies can be
used as part of the implementation logic in systems
implemented using rule-based languages. In the
maintenance phase, ontologies may be used as support
for managing knowledge. Gašević et al. even propose
the use of ontologies in the retirement phase, as a
repository of retired software’s knowledge and state that
this issue has not been addressed so far. They also
identify the need for developing standard ontologies of
documentation structure and types. With regards to using
ontologies for testing, they highlight the importance of
further exploration of topics such as semantic annotation
of logs for intelligent monitoring, semantic annotations
of unit and integration tests, ontology-based reverse
engineering and ontology-based software metrics. They
also recommend that further research be undertaken on
topics concerning the use of ontologies as software
artifacts, including annotation mechanisms of software
models and implementation code, integration of
ontologies and meta-modeling architectures as well a
comprehensive tractability model of software artifacts.
They find ontologies to be suitable for describing SE
processes and methodologies, for example, by
connecting tasks and activities to artifacts they have
produced or used, as well as to responsible participants
and their interactions (Gašević et al., 2009).

Software Product Lines (SPLs)

Gašević et al. state that software is a knowledge
repository largely related to an application domain,
rather than to software as an entity. They argue that an

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

601

ontology should be a product of the analysis phase,
meaning that all parties involved in the process should
agree on the ontology development. The main
advantages of their approach are avoiding the risk of
misunderstanding the user’s needs, availability of
semantically annotated documentation and the ability to
use the ontology in the design phase (Gašević et al.,
2009). Bossche et al. used an ontology as a ‘contract’
between Business and IT in their Ontology Driven

Architecture for Software Engineering (ODASE). In
their approach, a Business representative works with a
domain modeling expert to build a formal model (an
OWL conceptual model). In that way, the Business is
forced to provide explicit requirements, which enables
the IT to give a reasonable time and cost estimate for
the project. The ontology is used to achieve a common
agreement between Business and IT. Moreover,
business knowledge is reusable and not lost in the code,
a single language is used by domain experts and
software engineers and IT can rely on formal semantics
(Bossche et al., 2007).

According to Happel and Seedorf, an ontology may
be used both to describe the requirements specification
documents and to formally represent requirements
knowledge. In contrast to traditional approaches,
ontologies are suited for evolutionary approach to the
specification of requirements and domain knowledge
(Happel and Seedorf, 2006). Shunxin and Leijun argue
that ontologies can achieve a higher degree of
knowledge than traditional requirements analysis
methods by sharing and reusing requirements. An
ontological model can ensure that requirements are
traceable, consistent, complete and correct. It also
provides a platform for the user, requirements analyst
and developer to communicate. Basic concepts and
relations of a domain ontology can be formed into a
hierarchical structure to form an application ontology.
Although the development of each software product
starts with requirements analysis, it must be conducted
repeatedly throughout the project, in parallel with the
management and development of the software. They also
predict that reusing and sharing of existing ontologies
will become the focus of future research (Shunxin and
Leijun, 2010). Karatas et al. indicated that RE is a
process that in SPLs usually takes longer than planned
and is more costly than originally budgeted for. They
also noted that requirements reuse is not getting as much
research attention as design and implementation.
Addressing systematic requirements reuse necessitates a
model for reusable requirements elements. Karatas et al.
propose an ontology-based domain knowledge
formalization for SPLs. They favor ontology modeling
over feature modeling due to its descriptive power. They
devised a graphical automation tool for requirements
reuse and documentation called OntSRDT that leads

users to valid SPL configurations and documentation
specification for that configuration. Authors
acknowledge some drawbacks in their solution that will
be the focus of their future work. They concede that the
coverage of the ontology model is not complete, that the
conformity of requirements specifications to quality
standards should be checked and that more work is
required on the tool support, which should be open for
public use as a product configurator (Karatas et al.,
2014). Siegemund et al. also recommend the usage of
ontologies in RE. They argue that OWL is ideal for this
purpose as it allows reasoning over incomplete
knowledge. By applying requirements reasoning based
on formal semantics, many of the shortcomings of other
approaches can be avoided, such as insufficient
coverage of requirements knowledge, inadequate
capture of requirements relationships, late detection of
requirement-related problems, completeness and
consistency verification and low abstraction levels.
They suggest further work on the guidance of the RE
process and traceability through other SE stages
(Siegemund et al. 2011). Sim and Brouse presented the
OntoPersonaURM model to support and enhance the RE
activities. Personas are specific and concrete
representations of target users. In their model, authors
use ontologies to represent knowledge about users. A
concept of a persona is integrated into a unified
environment to help engineers and developers gain
better understanding of user’s needs and identify
missing requirements in the shortest possible time.
Their further work will be directed at improving the
model and constraints checking as well as to checking
for requirements correctness, completeness and
consistency (Sim and Brouse, 2015). Robal et al.
established a domain ontology for describing probable
SE concepts to a ‘smart customer’ who has a basic
understanding of ICT and can have ontology concepts
presented to him from the management perspective. The
ontology describes the domain knowledge for common
vocabulary and can also be used to derive different
customer and developer profiles, so it can be applied in
areas such as education, training, customer and team
profiling (Robal et al., 2015).

Ceh et al. discuss the ontology-based domain
analysis and how it can be incorporated into the Domain

Specific Language (DSL) design phase. They argue for
the use of ontologies in DE instead of using demanding
formal methodologies. Their Ontology2DSL framework
enables automated DSL grammar construction from a
target ontology. It accepts an OWL document as input
and produces the corresponding DSL grammar and
programs. Its architecture is comprised of an OWL
parser, rule reader, rule executor and transaction logger.
Further work is required to fully develop the framework
and enable the addition of custom rules and

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

602

transformation patterns (Ceh et al., 2011). Mezhuyev
proposed a DSL definition based on domain ontology.
The model of ontology, which serves as a base for the
definition of the meta-model for different DSLs, is
expanded in the definition of the meta-model by
grammar ruler and mathematical methods. The
suggested approach takes into account the domain’s
specifics, manages users in accordance with the
developed process model, enables application of
mathematical methods to solve arising domain tasks and
enables formalization of different properties and
technologies. The author acknowledges the lack of tool
support by mentioning that future work will be focused
on finalizing the software tools to implement the
proposed approach (Mezhuyev, 2014).

Musen states that ontologies provide language that is
understandable by both developers and computers and
that they can be used to build knowledge bases
containing detailed domain descriptions. Domain
ontologies provide both a framework for conceptual
analysis and design and the actual code that can be
reused for new applications. Musen also argues that in
modern technologies problem solving methods are not
procedures operating on a predefined data structure, but
rather procedures operating on ontologies (Musen,
2000). Asikainen et al. constructed a domain ontology
for modeling the variability in SPLs named Kumbang.
Their ontology synthesizes existing variability methods
based on feature and architecture modeling. Its main
purpose is to support the task of managing variability in
SPLs and to configure them to meet specific
requirements. However, the authors acknowledge the
lack of tools support which still needs to be developed.
In order to fully demonstrate the practical applicability
of the approach it is also necessary to test it on real
software product families in real software development
contexts (Asikainen et al., 2007). Czarnecki et al.
explored the relation between feature modeling and
ontology modeling. They concluded that a set of
features may be mapped to a set of ontology elements
and that a many-to-many association exists between
those elements. A feature model represents a set of
restrictions that can be applied to ontologies. It is
suggested that the combination of feature models and
ontologies can be transferred to tool support
development utilizing query and constraint mechanisms
(Czarnecki et al., 2006). The OntoAD framework,
introduced by Limon at al., transforms both the feature
model and the SPL architecture into an ontology. The
ontology allows reasoning about the relationship
between architectural elements and features. The Rule

Generator Engine is used to produce the transformation
rules for mapping the variability to architecture
components. The Ontology Generator Engine is then
used for carrying out a model-to-text transformation in
which both features and architecture are transformed to

an instance of the ontology. OntoAD supports different
architecture languages and reduces the manual derivation
tasks. Authors suggest that relationships between
features and architectural elements should be further
explored and the issue of supporting the design of
composite components in an SPL architecture should
be addressed (Duran-Limon et al., 2015).
Lepuschitz et al. establish that modern manufacturing
systems face dynamic conditions and need to be
capable to quickly react to sudden changes of
demands. They employ ontologies as a formal
expression of legitimate states of the system and
representation of details about its physical
components. They used a combination of ontological
knowledge and agent approach for dynamic creation
and online configuration of component’s control
applications. The agents rely on an appropriate
resource ontology that provides sufficient details
about the physical components they control
(Lepuschitz et al., 2011).

Component-Based Development (CBD)

Happel and Seedorf claim that ontologies can be
helpful in describing the functionality of components,
thus enabling powerful semantic queries. They argue
that the use of ontologies in analysis, design and
implementation is highly suitable for rapid application
development (Happel and Seedorf, 2006). Pahl
demonstrated the usage of two types of ontologies in
the component-based development context: An
application domain ontology, which describes the
software being developed and the software development
ontology, which describes the development entities and
processes (Pahl, 2007a). According to Hesse, although
in ODSE an ontology was initially viewed as a special
component in the software development process, it is
likely that later it will represent knowledge used in many
other components. An incremental approach is
appropriate for developing an ontology, which gets
extended in accordance with the project’s progress and
development. Ontologies also use a component-based
structure, as in time the ontology gets decomposed to
sub-ontologies which are then developed independently
(Hesse, 2005). Nianfang et al. argue that an efficient
method is needed for describing software components in
order to efficiently reuse them. They defined a component
as a useful software unit with semantic integrity and
correct grammar. They introduce a components
descriptive model (based on a 3C model) which uses
ontologies to describe components. It contains the
description of components’ base information, interface,
function, environment and quality (Nianfang et al. 2010).

Wiebe and Chan argue that describing the software
by using ontology can lead to a high level realization of
component-based development. A complex software

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

603

problem could be given to semantic agents to piece
together a project from specification ontologies and their
components (Wiebe and Chan, 2012). XCM is an
ontology proposed by Tansalarak and Claypool to provide a
standard for defining components crosscut different
component models (COM, JavaBeans, COBRA) and unify
the variances between them. A component is classified as
either primitive (stand-alone component) or composite
(constructed via connection-oriented or aggregation-
based compositions). The feature XCM element defines
how a component interacts with other components; it is a
set of properties, methods and events. A property is the
named attribute of a component that can be get/set by
other components. A method encapsulates the behavior
of a component that can be triggered by other
components. An event is the message used by a
component to communicate with other components. The
design XCM element encapsulates the compositions of
a set of pre-existing components (Tansalarak and
Claypool, 2004). Arafa et al. also claim that
information about components and the services they
provide can be formulated in dedicated ontologies.
They see ontologies as a well-founded mechanism for
representation and exchange of structured information.
OWL-S is the ontology of services that supplies a core
set of ontological concepts for describing the properties
and compatibilities of Web services. OWL-S is
designed to support automated service discovery,
execution, interoperation composition and monitoring
(Arafa et al., 2012). Andreou and Papatheocharous
recommend the usage of Extended Backus-Naur Form
(EBNF) based components proofing and an automatic
search and retrieval mechanism that delivers the most
suitable components. The latter is carried out in three
steps: (1) Parsing the ontology profiles for requested
and available components; (2) Executing the matching
algorithm; (3) Recommending the closest match. The
proposed framework consists of five layers: (1) The
description layer is responsible for creating a profile
that describes the component; (2) The location layer
offers the means to search, locate and retrieve
components; (3) The analysis layer provides the tools
to evaluate the level of suitability; (4) The
recommendation layer produces suggestions on the
candidate components; (5) The build layer
compromises a set of integration and customization
tools for combining components. Component profiles
are stored as instances of an ontology and matching
between components takes place at the level of
ontology items. The authors acknowledge the need for
further research on their novel approach and highlight
the need for a dedicated software tool that would
support the whole framework as well as a graphical
representation and visual comparison of ontology tree
instances (Andreou and Papatheocharous, 2015).

Model-Driven Engineering (MDE)

According to Pahl, ontologies support a number of
modeling tasks including domain modeling, architectural
configuration, service and process interoperability. The
author claims that logic-based ontology languages are
suitable to enhance traditional modeling languages, thus
enabling model-driven services. Based on that notion,
the use of ontology-based semantic modeling to support
model-driven architecting of service-based software
systems is proposed (Pahl, 2007b). Hesse sees ontologies
as reusable model components from which particular
implementations can be derived for specific platforms,
according to the specific specification and constraints of
the project (Hesse, 2005). Similarly, Hou states that
models are central development artefacts from which
code and other artefacts can be generated through model
transformations. Transformability between models
means that they can be translated into equivalent
executable code. Author presents a model mapping
approach using ontologies based on semantic
consistency which can be used to build mapping
relations between source and target models (Hou, 2010).

Evermann and Wand created a mapping between
ontological concepts and object-oriented constructs in
order to assign business meaning to object-oriented
languages. Accordingly, they argue that object-oriented
modeling languages (especially UML) can be used for
conceptual modeling, thus bridging the gap between
system analysis and design (Evermann and Wand, 2005).
Ontology Definition Metamodel (ODM) is the Object

Management Group (OMG) standard for integrating
ontology languages into the software development
process based on model-driven architectural principles.
The ODM specifies model transformations using the
Query/View/Transformations (QVT) language. By
combining the QVT, ODM and RDF schemas, meta-
models can be transformed to languages like UML, topic
maps and entity-relationship (Gašević et al., 2009).
Katasonov and Palviainen interpret ODSE as an
extension for MDE. They see ontologies as a resolution
for loose connection between CIM and PIM encountered
in MDE. A domain ontology in the place of CIM can be
used to generate certain parts of PIM, resulting in
automation even before the executable code generation
(PSM). Their Smart Modeler enables ontology-based
creation of model elements, discovery and reuse of
software components and generation of executable
programming code for models. Their future work will
be directed to adding an opportunistic way of software
composition and code generation for other
programming languages (Katasonov and Palviainen,
2010). Bartolo Espiritu et al. advocate software
development through software architecture while using
ontologies and MDE for specification and
implementation. Since ontology enables specification of

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

604

software, it is used at the CIM stage to document,
specify and communicate the architecture, as well as to
analyze and evaluate it, providing the first internal
architectural elements. Ontologies can then be mapped to
PIM models, for example a UML class diagram. The
advantages to be realized by such an approach include
better architecture specification, improved definition
of stages of design and implementation, better
architecture documentation and automation of the
architecture development process. The authors intend
to develop an automatic intermediate step to map
ontologies to UML class diagrams and create
templates that would allow mapping from PIM to
PSM models (Bartolo Espiritu et al., 2014). Zimmer
and Rauschmayer demonstrated how better integration
between modeling concepts and the source code can be
achieved employing the tool named Tuna. The authors
created a generic source code ontology and presented its
instances as topic maps. Topic maps are an ISO standard
for graph-based knowledge representation with three
basic constructs: Topics, associations and occurrences. A
code topic is a node containing the source code or an
URL pointing to its resource. A code association links
two code topics. There are two kinds of code
associations, child and parameter. According to Zimmer
and Rauschmayer, topic maps provided them with a
foundation for flexible storage, representation and
retrieval of source code, along with the seamless
integration of non-code artifacts. They acknowledge the
need to extend the tool so that it becomes a full-fledged
environment for the ontology-based programming
language (Zimmer and Rauschmayer, 2004). Shahzad et al.
argue for model-based User Interface (UI) development
using an ontological framework. The ontology called
User Interface Ontology (UIO) defines the basic UI
classes, properties and relationships. UIO and targeted
domain mapping together constitute the base UI model
used to generate a Graphical User Interface (GUI). The
mapping is performed in two steps. In the first step, UIO
data modeling classes are associated with the domain
ontology properties to provide a structure for
visualization and architecture. In the second step, UIO
user interaction and graphical properties are added to the
mapping. The UIO engineering and mapping can be
applied to any domain ontology. Authors note that a
functional ontology for domain ontology and UIO (user
actions and events) needs to be further discussed
(Shahzad et al. 2011).

Generative Programming (GP)

Bures et al. introduced an extension to generative
programming application and solution space. They
refined the application space into the problem
specification domain and the background theory domain.
The former domain contains concepts used to formulate

the high-level specification, while the latter contains
concepts not expressible in problem specification but
required to formulate constraints. The solution space was
refined to five domains: Intermediate language domain,
target language domain, algorithm domain, search
control domain and meta-programming kernel. The
elements of the first three domains are clear from the
respective domain names. The search control domain
contains concepts used to control the search for
applicable schemas, while the meta-programming kernel
is comprised of concepts expressing operation on objects
defined in other domains and used to implement
schemas. Ontologies are used to classify schemas and
enrich the engine. Among the advantages of using
ontologies mentioned by the authors are their ability to
act as documentation for programmers, make writing
schemas easier, control the schema interaction, facilitate
extensions and validate the output (Bures et al., 2004). In
their ODASE platform, Bossche et al. present a process
for transferring knowledge from the ontology to the
programming language by automatic source code
generation. In their case study they used Mercury (a
strongly typed programming language) and Hedwig (a
set of tools and libraries used to integrate an OWL
ontology into an application) (Bossche et al., 2007).

Damaševičius et al. established that, due to the
growing complexity caused by technology capabilities,
market demands and user requirements, it is no longer
sufficient to rely on content-based and feature-centric
analysis and development of SPLs. They introduce
enriched feature diagrams that use lightweight domain
ontologies and extend feature diagrams notations. The
proposed model can be transformed into generative
component specifications using meta-programming
techniques. They define two transformation levels. At
level one, the enriched feature diagrams are transformed
to a meta-program model. At level two, the meta-
program model is transformed into a meta-program. The
approach results in the creation of generative
components for specifying families of domain systems
(Damaševičius et al., 2008). Goldman demonstrated a
technique to support implementation of ontology-
specific application by automating the generation of
ontology-specific class libraries. According to Goldman,
a well written ontology already contains a declarative
representation of knowledge needed to construct such a
library. He suggests that the generated library should
comprise both a class and an interface for each ontology
class, thus mirroring between the subclass ontology
relationship and inherits object-oriented relationship
between interfaces. Interfaces are required since they
provide multiple inheritance that is not supported by
classes in most object-oriented languages (Goldman,
2003). Wiebe and Chan developed Specification

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

605

Ontology to Software (SOS) as a solution to common SE
problems (complexity, high development and
maintenance costs). SOS implies the usage of ODSE that
integrates the transition from design to implementation.
Authors argue that the design ontology which describes
the real world should be differentiated from the
specification ontology that describes the software to be
implemented. The main goal of the proposed approach is
development process automation. By mapping the
software specification in an ontology, a semantic agent
could be used to find a component that fulfills the
requirements. According to the Wiebe and Chan, it is
possible to extend the SOS system in many ways and
create other types of software based on different
ontologies (Wiebe and Chan, 2012). Djuric and
Devedzic showed how metaprogramming can be used to
incorporate ontology modeling into a Java based
programming environment as an embedded DSL for
modeling business domains. Their approach relies on
Clojure, a language for Java Virtual Machine (JVM)
with advanced metaprogramming support. It blends
ontologies with functional and object-oriented paradigms
for the development of business domain models. Authors
state that a programming language should natively support
ontologies as a natural means for business domain
modeling and domain-driven programming. The DSL
which they utilized to incorporate ontologies with the
Clojure programming language is called Magic Potion. It
enables developers to use DL abstractions like concepts,
properties, roles and restrictions as if they were parts of
the programming language. It provides a way to create
both a semantically rich domain model and executable
code at the same time. The DSL also supports the
definition of standard feature relationships (mandatory,
optional, alternative, additional) and additional constraints
(Djuric and Devedzic 2012).

Discussion

Ontologies are commonly recognized as a convenient
way to describe and organize domain knowledge. As
demonstrated in (Musen, 2000; Robal et al., 2015;
Sim and Brouse, 2015; Shunxin and Leijun, 2010;
Bossche et al., 2007; Gašević et al., 2009), using an
ontology in DE can undoubtedly help to avoid
misunderstanding between different parties (e.g., users
and developers). In addition, we are in favor of the
ODASE’s initiative, proposed in (Bossche et al., 2007),
concerning the involvement of Business representatives
in modeling and development of domain ontologies. We
believe that such an approach can be helpful in bridging
the gap between Business and IT, enabling a more
realistic estimate of the required time and cost to finish
the project and reusing the developed domain ontology
repeatedly across the software’s lifecycle. We agree that

ontologies are suitable for specification of requirements
in an evolutionary approach, as stated in (Happel and
Seedorf, 2006; Shunxin and Leijun, 2010; Karatas et al.,
2014; Siegemund et al., 2011). Requirements that are
specified using ontologies are suited for inheritance,
extensibility, share and reuse. They can also be used as a
communication tool between different stakeholders.
Ontologically defined requirements can be checked for
completeness and consistency and, owing to collaboration
between IT and Business, possible problems can be
detected earlier during requirements analysis.

Similar to (Karatas et al., 2014; Asikainen et al.,
2007), we favor ontology modeling over feature
modeling and believe that ontologies expressivity can be
efficiently used for specifying features. We argue that
ontologies may be used for feature specification, without
the need of mapping them to feature diagrams. If
features are specified in an ontology, then a feature
diagram can be easily generated from it. In addition, a
feature specification ontology can be mapped to
component specification ontology, thus providing glue
for the system’s components and a specification for a
partial or full software generation. Ontologies can also
be successfully applied in components definition and
variability management. We support the approaches
presented in (Asikainen et al., 2007; Duran-Limon et al.,
2015; Lepuschitz et al., 2011), while being aware that
more research and development is required in that
respect. The possibility of generating a DSL grammar
from a target ontology, as proposed in (Ceh et al.,
2011; Mezhuyev, 2014), is also a very interesting topic.
In our opinion, the success of such an approach largely
depends on tool support. We believe that the viability
of the development of such a tool is questionable but
worth researching. The tool support is of the utmost
importance for the transition from academic proposals
to practical usage. Testing in real software development
contexts is required in order to fully demonstrate the
applicability of the proposed solutions.

The authors of (Andreou and Papatheocharous, 2015;
Arafa et al., 2012; Nianfang et al., 2010; Happel and
Seedorf. 2006) have noted that ontologies are well suited
for the definition and decryption of system’s
components. We agree with that notion and believe that
formalized ontological knowledge can be very useful in
component searching, matching and building systems
based on components. Ontologies provide an efficient
method for describing components, which is required in
order to efficiently reuse them and achieve a high level
realization of CBD. Ontologies describing components
are also suited for rapid application development and
incremental approach in development. Among successful
ontology-based approaches that have successfully
penetrated into SOA is OWL-S, which uses ontologies to
describe components and services they provide. Since

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

606

using semantic markup for Web services has already
been extensively explored, we argue that ontologies can
also be utilized to describe components of GUI-based
desktop, Web or mobile applications (which are not
necessarily service-oriented). The ontological knowledge
of the available components can be used to automate the
development of component-based applications.
Knowledge about existing components and their
relationships can be applied to facilitate documentation
management and software maintenance. Automation can
be achieved by combining a set of existing components
based on a feature specification. As already mentioned, a
feature specification knowledge can also be represented
in an ontology and additional ontologies can be
employed to capture other domain-specific knowledge.
We argue that several ontologies can be used to enrich
the process of automated component-based application
development and enable higher abstraction levels for
developers. However, a high level dedicated tool support
is required to enable such automation. Thus, we
recommend that more effort is invested into research and
development of tools for component-based composition
of ontologically described components.

Owing to the establishment of MDE as the OMG’s
standard and its growing popularity over the last decade,
a significant amount of research has been dedicated to
the usage of ontologies for model transformation.
Although we concede that there are plausible arguments
for integrating ontologies into MDE processes, we do
not share the view that ODSE is an extension of MDE,
as ODSE can also be successfully integrated with other
SE paradigms. We support the approach presented in
(Katasonov and Palviainen, 2010; Bartolo Espiritu et al.,
2014) for using ontologies in the CIM stage.
Ontologies can help automate the transformation from
CIM to PIM, leading to an even higher abstraction
level in MDE. Ontologies can also be used to assign
business meaning to object-oriented models or
languages. We find the association of UI models with
domain ontologies for GUI generation proposed in
(Shahzad et al., 2011) to be interesting. Since UI
elements can also be considered system components,
we believe that ontologies describing them can be
efficiently used in the GUI generation process. We
advocate for research on automated systems development,
where both the internal system components and GUI
components are ontologically defined.

We highly support the ideas put forth in (Bossche et al.,
2007; Damaševičius et al., 2008; Goldman, 2003;
Wiebe and Chan, 2012) regarding transferring
knowledge from the ontology to the programming
language by using generative and metaprogramming
techniques. We also agree with the notion expressed in
(Goldman, 2003) that a well written ontology can be
used to generate the source code, without the need for an

additional representation layer between them. However,
more research should be conducted to test the usability
of the additional layer approach for complex projects, as
proposed in (Damaševičius et al., 2008). Native support
for ontologies in programming languages, presented in
(Djuric and Devedzic, 2012), is another idea we are very
much in favor of. Unfortunately, presently we must rely
on external libraries for reading and creating ontologies
in popular object-oriented languages like C# and Java.
The approach introduced in (Wiebe and Chan, 2012),
which includes the use of agents to find and retrieve the
component that fulfills the requirements based on its
ontological description, also deserves interest. We
believe that the proposed approaches show that GP
techniques and ontologies can be successfully coupled to
provide higher level knowledge-based software
automation. We therefore contend that further research
on a possible synthesis of ontologies, DE, RE, CBD and
GP approaches should be undertaken to enable higher
level knowledge-based automation for SPLs.

We fully support the authors’ perspective in
(Happel and Seedorf 2006) that the currently mostly
academic integration of ontologies into SE should be
implemented in practice and tested on large scale SE
projects. Software engineers need specific
methodologies, guides and tool support on how they can
apply (and make use of) ontologies in their process. As
pointed out in (Hesse, 2005), ontologies are a promising
instrument for transferring knowledge from one project
to another and from one development cycle to the next.
ODSE might indeed become a paradigm enabling more
compatible models, more reusable components and
lower costs in software development. We agree with
another important notion from (Hesse, 2005), which
states that ontologies can facilitate software development
processes, but only in the long term. It is not realistic to
expect results to be yielded from ODSE without
significant investment in ontologies development and
their integration with current SE development paradigms
and their processes. As the use of ontologies requires
additional modeling efforts, authors of (Happel and
Seedorf, 2006) warn that savings must be made in other
places. A significant level of ontological knowledge
reusability is thus required across the whole SE lifecycle
to achieve cost effectiveness in ODSE.

Conclusion

In the conducted literature review we discussed
several approaches to using ontologies to increase the
reuse of software or its artifacts. While the specific
aim of reusing software is to enhance its productivity
and quality, the ultimate goal of software engineers is
to successfully manage and control complexity and to
reduce the development and maintenance costs.
Similarly to models in MDE, in ODSE ontologies are

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

607

reusable artifacts used throughout the software
lifecycle. Our literature review summarizes the
proposed solutions for using ontologies in SE with
reference to four SE paradigms they belong to: SPLs,
CBD, GP and MDE, with their respective processes or
sub-paradigms like DE, AE and RE. As ontologies are
commonly utilized to describe domain knowledge, we
found that most of the research on using ontologies in
SPLs focuses on DE and RE. In the DE domain, several
approaches were found that use ontologies to provide a
common vocabulary and avoid misunderstanding
between different parties. In the RE domain, we also
encountered several examples of using ontologies in
specifying system’s requirements to make them
extensible, sharable and reusable. Reasoning over
requirements specification and early problem detection
were also presented. Although in our review we
established that ontologies are highly suitable for
feature specification, tools enabling ontology-based
feature specification still need to be developed. As with
most newly proposed solutions, SE engineers need the
adequate tool support in order to start implementing
them in practice. Most of the research on using
ontologies in CBD has focused on Web services, as
SOA is presently a highly popular SE paradigm and
many large systems are currently in the process of
shifting their architecture to it. In that respect,
ontologies are used to describe components and
services they provide in order to enable their searching,
matching and building service-based systems.
However, ontologies may also be applied to not
necessarily service-oriented, GUI-based Web, desktop
and mobile applications to describe their components
and enable automatic construction of new systems
based on existing components. Our research review
also indicated that ontologies are very useful in model
transformations, which has led to their successful
integration into MDE processes. Most of the proposed
solutions regarding MDE use ontologies in the CIM
stage and are aimed at automating the models
transformation from CIM to PIM. In the GP paradigm,
ontologies are used as specifications for generators that
produce the source code. A well written ontology can
be directly used in the generation process or an
additional layer can be introduced between the
ontology and source code. More research is
recommended in this field since the integration of
ontologies describing domains and system’s
components by employing GP techniques can bring
higher abstraction levels and knowledge-based
software automation suitable for the development of
SPLs. With adequate investments in their
development and integration, ontologies can enrich
software development processes in the long term.
However, a high level of ontological knowledge
reusability is required for this investment to pay off. It

is our opinion that ontologies will strongly penetrate
the SE discipline in the next few years. This
prediction is based on the fact that ontologies are a
means of successfully describing knowledge, which,
along with investments into technology, is one of the
critical factors for achieving growth.

Future work

In our future work we will focus on investigating
the areas that were identified as interesting and
insufficiently researched in our literature review. We
intend to develop ontologies for feature and
components specification. Those two ontologies will be
combined together to enable automatic code generation.
The introduction of domain-specific ontologies into the
generation process will also be explored. We also plan
to implement GP techniques to ontological knowledge
in generating both the GUI and the backend code for
Web, desktop or mobile applications. Finally, several
case studies need to be conducted to determine the
effectiveness of the proposed concept in different types
of applications and domains.

Funding Information

This work has been supported in part by the Croatian
Science Foundation under the project number 8537.

Author’s Contributions

Daniel Strmečki: The main responsible author for
conducting the literature review. Contributed in
preparation, reading and writing.

Ivan Magdalenić: The author responsible for review
preparation and improvements. Contributed in
preparation, reading and writing.

Dragutin Kermek: The author responsible for
coordination and identifying contribution. Contributed in
preparation, organization and supervision.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and no ethical issues involved.

References

Andreou, A.S. and E. Papatheocharous, 2015.
Automatic matching of software component
requirements using semi-formal specifications
and a CBSE ontology. Proceedings of the
International Conference on Evaluation of Novel
Approaches to Software Engineering, Apr. 29-30,
IEEE Xplore Press, pp: 118-128.

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

608

Arafa, Y., C. Boldyreff, A.H. Tawil and H. Liu, 2012. A
high level service-based approach to software
component integration. Proceedings of the 6th
International Conference on Complex, Intelligent and
Software Intensive Systems, Jul. 4-6, IEEE Xplore
Press, pp: 1050-1057. DOI: 10.1109/CISIS.2012.156

Asikainen, T., T. Männistö and T. Soininen, 2007.
Kumbang: A domain ontology for modelling
variability in software product families. Adv. Eng.
Inform., 21: 23-40. DOI: 10.1016/j.aei.2006.11.007

Bartolo Espiritu, F., A. Sanchez Lopez and L.J. Calva
Rosales, 2014. Towards an improvement of software
development process based on software architecture,
model driven architecture and ontologies.
Proceedings of the International Conference on
Electronics, Communications and Computers, Feb.
26-28, IEEE Xplore Press, pp: 118-126.

 DOI: 10.1109/CONIELECOMP.2014.6808578
Batory, D., 2006. A tutorial on feature oriented

programming and the AHEAD tool suite.
Proceedings of the International Summer School,
Generative and Transformational Techniques in
Software Engineering, Jul. 4-8, Springer, Braga,
Portugal, pp: 3-35. DOI: 10.1007/11877028_1

Bossche, M.V., P. Ross, I. MacLarty, B.V. Nuffelen and

N. Pelov, 2007. Ontology driven software
engineering for real life applications. Proceedings of
the 3rd International Workshop Semantic Web
Enabled Software Eng, (ESE’ 07), pp: 1-5.

Bures, T., E. Denney, B. Fischer and E.C. Nistor, 2004. The
role of ontologies in schema-based program synthesis.
Proceedings of the Workshop on Ontologies as
Software Engeineering Artifacts, (SEA’ 04), pp: 1-6.

Calero, C., F. Ruiz and M. Piattini, 2006. Ontologies for
Software Engineering and Software Technology. 1st
Edn., Springer, ISBN-10: 3540345175, pp: 340.

Ceh, I., C. Matej, K. Tomaž and M. Marjan, 2011.
Ontology driven development of domain-specific
languages. Comput. Sci. Inform. Syst., 8: 317-342.
DOI: 10.2298/CSIS101231019C

Czarnecki, K., C. Hwan, P. Kim and K.T. Kalleberg, 2006.
Feature models are views on ontologies. Proceedings
of the 10th International Software Product Line
Conference, Aug. 21-24, IEEE Xplore Press,
pp: 41-51. DOI: 10.1109/SPLINE.2006.1691576

Czarnecki, K. and U.W. Eisenecker, 2000. Generative
Programming: Methods, Tools and Applications. 1st
Edn., Addison-Wesley Publishing Co.,

 ISBN-10: 0201309777, pp: 832.
Damaševičius, R., V. Štuikys and J. Toldinas, 2008.

Domain ontology-based generative component
design using feature diagrams and meta-
programming techniques. Proceedings of the 2nd
European Conference Software Architecture, Sept.
29-Oct. 1, Springer, Paphos, Cyprus, pp: 338-341.
DOI: 10.1007/978-3-540-88030-1_32

Dillon, T.S., E. Chang and P. Wongthongthain, 2008.
Ontology-based software engineering-software
engineering 2.0. Proceedings of the19th Australian
Software Engineering Conference, Mar. 26-28,
IEEE Xplore Press, pp: 13-23.

 DOI: 10.1109/ASWEC.2008.4483185
Djuric, D. and V. Devedzic, 2012. Incorporating the

ontology paradigm into software engineering:
Enhancing domain-driven programming in
Clojure/Java. IEEE Trans. Syst. Man Cybernet., 42:
3-14. DOI: 10.1109/TSMCC.2011.2140316

Duran-Limon, H.A., C.A. Garcia-Rios, F.E. Castillo-
Barrera and R. Capilla, 2015. An ontology-based
product architecture derivation approach. IEEE
Trans. Software Eng., 41: 1153-1168.

 DOI: 10.1109/TSE.2015.2449854
Evermann, J. and Y. Wand, 2005. Ontology based

object-oriented domain modelling: Fundamental
concepts. Requir. Eng., 10: 146-160.

 DOI: 10.1007/s00766-004-0208-2
Fensel, D., 2004. Ontologies: A Silver Bullet for

Knowledge Management and Electronic Commerce.
1st Edn., Springer Berlin Heidelberg, Berlin,
Heidelberg, ISBN-10: 3540003029, pp: 162.

Gašević, D., N. Kaviani and M. Milanović, 2009.
Ontologies and Software Engineering. In: Handbook
on Ontologies, Staab, S. and R. Studer (Eds.),
Springer Berlin Heidelberg, Berlin, Heidelberg, pp:
593-615.

Goldman, N.M., 2003. Ontology-oriented
programming: Static typing for the inconsistent
programmer. Proceedings of the 2nd International
Semantic Web Conference on the Semantic Web,
Oct. 20-23, Springer, Sanibel Island, FL, USA,
pp: 850-865.

 DOI: 10.1007/978-3-540-39718-2_54
Happel, H. and S. Seedorf, 2006. Applications of

ontologies in software engineering. Proceedings
of the 2nd International Workshop on Semantic
Web Enabled Software Engineering, (ESE’ 06),
pp: 1-14.

Hesse, W., 2005. Ontologies in the Software
Engineering process. Eai.

Hilera, J.R. and L. Fernandez-Sanz, 2010. Developing
domain-ontologies to improve sofware engineering
knowledge. Proceedings of the 5th International
Conference on Software Engineering Advances,
Aug. 22-27, IEEE Xplore Press, pp: 380-383.

 DOI: 10.1109/ICSEA.2010.64
Hou, J., 2010. Using ontology semantics to support

model mapping in model-driven software
development. Proceedings of the 2nd International
Workshop on Education Technology and Computer
Science, Mar. 6-7, IEEE Xplore Press, pp: 248-251.
DOI: 10.1109/ETCS.2010.287

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

609

John, S., 2010. Leveraging traditional software
engineering tools to ontology engineering under a
new methodology. Proceedings of the 5th
International Conference on Future Information
Technology, May 21-23, IEEE Xplore Press, pp: 1-
5. DOI: 10.1109/FUTURETECH.2010.5482657

Karatas, E.K., B. Iyidir and A. Birturk, 2014. Ontology-
based software requirements reuse: Case study in
fire control software product line domain.
Proceedings of the IEEE International Conference
on Data Mining Workshop, Dec. 14-14, IEEE
Xplore Press, pp: 832-839.

 DOI: 10.1109/ICDMW.2014.57
Katasonov, A. and M. Palviainen, 2010. Towards

ontology-driven development of applications for
smart environments. Proceedings of the 8th IEEE
International Conference on Pervasive Computing
and Communications Workshops, Mar. 29-Apr. 2,
IEEE Xplore Press, pp: 696-701.

 DOI: 10.1109/PERCOMW.2010.5470523
Lepuschitz, W., A. Zoitl and M. Merdan, 2011.

Ontology-driven automated software configuration
for manufacturing system components. Proceedings
of the IEEE International Conference on Systems,
Man and Cybernetics, Oct. 9-12, IEEE Xplore Press,
pp: 427-433. DOI: 10.1109/ICSMC.2011.6083703

Lilis, Y., A. Savidis and Y. Valsamakis, 2014. Staged
model-driven generators: Shifting responsibility
for code emission to embedded metaprograms.
Proceedings of the 2nd International Conference
on Model-Driven Engineering and Software
Development, Jan. 7-9, IEEE Xplore Press, pp:
509-521.

Magdalenić, I., D. Radošević and T. Orehovački, 2013.
Autogenerator: Generation and execution of
programming code on demand. Expert Syst. Applic.,
40: 2845-2857. DOI: 10.1016/j.eswa.2012.12.003

Mezhuyev, V., 2014. Ontology based development of
Domain Specific Languages for Systems
Engineering. Proceedings of the International
Conference on Computer and Information Sciences,
Jun. 3-5, IEEE Xplore Press, pp: 1-6.

 DOI: 10.1109/ICCOINS.2014.6868825
Musen, M.A., 2000. Ontology-oriented design and

programming. Knowledge Engineering and Agent
Technology.

Nguyen, T., A. Colman and J. Han, 2015. A feature-
based framework for developing and provisioning
customizable web services. IEEE Trans. Services
Comput., 1374: 1-1.

Nianfang, X., Y. Xiaohui and L. Xinke, 2010. Software
components description based on ontology.
Proceedings of the 2nd International Conference on
Computer Modeling and Simulation, Jan. 22-24,
IEEE XPlore Press, pp: 423-426.

 DOI: 10.1109/ICCMS.2010.130

Pahl, C., 2007a. An ontology for software component
matching. Int. J. Software Tools Technol. Transfer,
9: 169-178. DOI: 10.1007/s10009-006-0015-9

Pahl, C., 2007b. Semantic model-driven architecting of
service-based software systems. Inform. Software
Technol., 49: 838-850.

 DOI: 10.1016/j.infsof.2006.09.007
Ringert, J.O., B. Rumpe and A. Wortmann, 2014. Multi-

platform generative development of component and
connector systems using model and code libraries.
Proceedings of the 1st International Workshop on
Model-Driven Engineering for Component-Based
Systems, (CBS’ 14), Valencia, Spain, pp: 26-35.

Robal, T., D. Ojastu, Ahto Kalja and H. Jaakkola,
2015. Managing software engineering
competences with domain ontology for customer
and team profiling and training. Proceedings of
the Portland International Conference on
Management of Engineering and Technology,
Aug. 2-6, IEEE Xplore Press, pp: 1369-1376.
DOI: 10.1109/PICMET.2015.7273171

Rodrigues da Silva, A., 2015. Model-driven engineering:
A survey supported by the unified conceptual
model. Comput. Lang. Syst. Struct., 43: 139-155.
DOI: 10.1016/j.cl.2015.06.001

van Ruijven, L.C., 2013. Ontology for systems
engineering. Proc. Comput. Sci., 16: 383-392.

 DOI: 10.1016/j.procs.2013.01.040
Shahzad, S.K., M. Granitzer and D. Helic, 2011.

Ontological model driven GUI development: User
interface ontology approach. Proceedings of the 6th
International Conference on Computer Sciences and
Convergence Information Technology, Nov. 29-
Dec. 1, IEEE Xplore Press, pp: 214-218.

Shunxin, L. and S. Leijun, 2010. Requirements
engineering based on domain ontology. Proceedings
of the International Conference of Information
Science and Management Engineering, Aug. 7-8,
IEEE Xplore Press, pp: 120-122.

 DOI: 10.1109/ISME.2010.110
Siegemund, K., U. Assmann, J. Pan and Y. Zhao, 2011.

Towards ontology-driven requirements engineering.
Proceedings of the Workshop Semantic Web
Enabled Software Engineering at 10th International
Semantic Web Conference, (SWC’ 11).

Sim, W.W. and P. Brouse, 2015. Developing ontologies
and persona to support and enhance requirements
engineering activities-a case study. Proc. Comput.
Sci., 44: 275-284.

 DOI: 10.1016/j.procs.2015.03.060
Strmečki, D., D. Radošević and I. Magdalenić, 2015.

Web form generators design model.
Tansalarak, N. and K.T. Claypool, 2004. QoM:

Qualitative and quantitative component matching
measure. Technical Report, University of
Massachusetts.

Daniel Strmečki et al. / Journal of Computer Science 2016, 12 (12): 597.610
DOI: 10.3844/jcssp.2016.597.610

610

Visser, E., 2008. WebDSL: A case study in domain-
specific language engineering. Proceedings of the
International Summer School, Generative and
Transformational Techniques in Software
Engineering, Jul. 2-7, Springer, Braga, Portugal, pp:
291-373. DOI: 10.1007/978-3-540-88643-3_7

Wiebe, A.J. and C.W. Chan, 2012. Ontology driven
software engineering. Proceedings of the 25th IEEE
Canadian Conference on Electrical and Computer
Engineering, Apr. 29-May 2, IEEE Xplore Press,
pp: 1-4. DOI: 10.1109/CCECE.2012.6334938

Wongthongtham, P., N. Kasisopha, E. Chang and T.
Dillon, 2008. A software engineering ontology as
software engineering knowledge representation.
Proceedings of the 3rd International Conference on
Convergence and Hybrid Information Technology,
Nov. 11-13, IEEE Xplore Press, pp: 668-675.

 DOI: 10.1109/ICCIT.2008.301

Wongthongtham, P., E. Chang, T. Dillon and I.
Sommerville, 2009. Development of a software
engineering ontology for multisite software
development. IEEE Trans. Knowl. Data Eng., 21:
1205-1217. DOI: 10.1109/TKDE.2008.209

Wongthongtham, P., E. Chang and T. Dillon, 2007.
Ontology modelling notations for software
engineering knowledge representation. Proceedings
of the Inaugural IEEE-IES Digital EcoSystems and
Technologies Conference, Feb. 21-23, IEEE Xplore
Press, pp: 339-345.

 DOI: 10.1109/DEST.2007.371995
Zimmer, C. and A. Rauschmayer, 2004. Tuna: Ontology-

based source code navigation and annotation.
Proceedings of the Workshop on Ontologies as
Software Engineering Artifacts, (SEA’ 04), pp: 1-9.

