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Abstract: The paper presents a feature extraction method, named as 

Normalized Gammachirp Cepstral Coefficients (NGCC) that incorporates 

the properties of the peripheral auditory system to improve robustness in 

noisy speech recognition. The proposed method is based on a second order 

low-pass filter and normalized gammachirp filterbank to emulate the 

mechanisms performed in the outer/middle ear and cochlea. The speech 

recognition performance of this method is conducted on the speech signals 

in real-world noisy environments. Experimental results demonstrate that 

method outperformed the classical feature extraction methods in terms of 

speech recognition rate. The used Hidden Markov Models based speech 

recognition system is employed on the HTK 3.4.1 platform (Hidden 

Markov Model Toolkit). 
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Introduction 

The Automatic Speech Recognition (ASR) system, at 

its most elementary level, encompasses different 

methods drawn from research in a wide variety of 

disciplines and areas such as signal processing, statistical 

pattern recognition, linguistics and communication 

theory. Each of these developed methods converts the 

speech signal waveform to some type of parametric 

representation which contains relevant information 

capable of distinguishing between different speech 

sounds (Rabiner and Juang, 1993). 

The conventional feature extraction methods are 

based on classical signal processing techniques as the 

linear prediction or the filter banks (Perdigao and Sá, 

1998). These methods such as Mel-Cepstre (or Mel 

frequency cepstral coefficients) (Davis and Mermelstein, 

1980) and Perceptual Linear Prediction (PLP) 

(Hermansky, 1990) are most used for speech recognition 

systems does not perform well in noisy environments, 

while the human auditory system is able to recognize 

speech in the presence of noise (Haton et al., 2006). 

A great deal of research has been interested in a 

noise-robust feature extraction, particularly the Gabor 

feature (Missaoui and Lachiri, 2014) or the auditory 

features based on a new auditory model in order to 

improve the performance of automatic speech 

recognition and the feature robustness in noisy 

conditions (Shao et al., 2009). 

Patterson et al. (1987) have modeled the frequency 

analysis accomplished by the human cochlea as 

gammatone filterbank which is popular used in 

Computational Auditory Scene Analysis (CASA) 

systems filtering (Wang and Brown, 2006). In addition, 

the gammachirp filter was proposed by Irino and 

Patterson (1997) as an extension of the gammatone filter. 

It was designed to generate an asymmetric gammatone-

like filter by modulating the carrier-tone term of the 

gammatone analytic impulse response in frequency 

(Meddis et al., 2010). This characteristic of gammachirp 

filter was inspired by the fact the basilar membrane 

impulse response is frequency modulated (Irino and 

Patterson, 1997; 2006; Unoki et al., 2006). 

Many developed features was incorporated the 

gammachirp filter in order to improve robustness of 

ASR under additive noise. Among them, the PLPGc 

feature which integrated the Gammachirp in 

conventional PLP framework, proposed in (Zouhir and 

Ouni, 2013). The RCGCC feature developed by 

Alam et al. (2014) was obtained by incorporating a 

bank of compressive gammachirp (Patterson et al., 

2003) and applying sigmoid power term for mapping. 
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The PLPaGc feature proposed in (Zouhir and Ouni, 

2014), includes the use of a Gammachirp Filterbank 

(GcFB) and outer and middle ear filtering. 

A feature extraction method named as Normalized 

Gammachirp Cepstral Coefficients (NGCC) for noise 

robust speech recognition is presented in this study. The 

proposed method incorporates an auditory periphery 

model to improve recognition performance in noisy 

environments. Specifically, it includes the use of a 

second-order low-pass filter which modeled the human 

outer/middle ear sound transmission (Van Immerseel and 

Martens, 1992) and a normalized gammachirp filterbank 

that represents human cochlear modeling. The used 

filterbank consisting of 34 normalized gammachirp 

filters (Zouhir and Ouni, 2014; 2015), where the filters’ 

centre frequencies are equally spaced in ERB-rate scale 

(Glasberg and Moore, 1990; Moore, 2012) from 50 to 

8000 Hz. The HTK speech recognizer based on the 

Hidden Markov Models (HMM) is used for the 

recognition task (Young et al., 2009). Each speech word is 

modeled by five states whole-word HMM models with a 

four component Gaussian mixtures for state emitting 

probability density. The experimental results of speech 

recognition in real-world noisy environments demonstrate 

that the proposed NGCC feature extractor provides better 

results compared to the Mel-Cepstre and PLP. 

This paper is structured as follows: The description 

of the classic feature extraction method (Mel-Cepstre) is 

briefly presented in section 2. Section 3 details the 

peripheral auditory model that simulates the mechanisms 

performed in auditory filter system. Section 4 proposes a 

new feature extraction method based on this peripheral 

auditory model. Section 5 presents the experimental 

results in noisy environments. Finally, Section 6 renders 

some conclusions. 

The Standard Mel-Cepstre 

The Mel-Cepstre (or Mel frequency cepstral 

coefficients) method is the most widely used for speech 

recognition systems.  

The block diagram of the major processing steps 

describing the computation the coefficients of Mel-

Cepstre, is illustrated in Fig. 1.  

This method begins with a simple short-time spectral 

analysis which consists to calculate the short-term 

amplitude spectrum for each windowed segment using 

Discrete Fourier Transform (DFT). It is passed through a 

Mel-scale filterbank consisting of triangular band-pass 

filters equally spaced in Mel frequency scale. The Mel-

filterbank outputs are log compressed and sent to a 

Discrete Cosine Transform (DCT) for decorrelating the 

resulting coefficients. The outputs DCT coefficients 

designated to as Mel-Cepstre coefficients (Davis and 

Mermelstein, 1980). 

 
 
Fig. 1. Block diagram of Mel-Cepstre method 

 

The Peripheral Auditory System Model 

The peripheral auditory model is the mathematical 

model used to simulate the auditory mechanisms and 

signal processing performed in the cochlea and the 

outer and middle ear. The function of the outer and 

middle ear is to perform the filtering of the captured 

sound waves in order to increase the pressure of this 

sound (Van Immerseel and Martens, 1992). This 

filtering is simulated using a second-order low-pass filter 

by means of the transfer function defined in Equation 1, 

a bilinear transformation and the selection of a resonance 

frequency of 4 kHz (Martens and Van Immerseel, 1990; 

Van Immerseel and Martens, 1992): 
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where, fr = 2π/ωr is the resonance frequency. 

The cochlea spectral behavior is simulated by a bank 

of gammachirp auditory filters. The latter has been 

largely used to obtain a good approximation of both 

psychophysical and physiological data pertaining to the 

basilar membrane frequency selectivity in a cochlea 

(Irino and Patterson, 2006; Patterson et al., 2003; 

Meddis et al., 2010). 

The gammachirp filterbank has an impulse response 

as (Irino and Patterson, 1997): 

 
2 ( ) 2 ln( )1( ) c cbERB f t j f t jc t jn

c
g t at e eπ π ϕ− + +−=  (2) 

 

where, time t > 0,fc,ϕ,a and c are the asymptotic 

frequency, the initial phase, the amplitude and the 

chirp rate (or a parameter for the frequency 

modulation) respectively. ‘ln’ represents the natural 

logarithm, n and b are the two parameters that define 

the gamma distribution envelope and the ERB(fc) 

which represents the equivalent rectangular bandwidth 
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of the gammachirp filter at fc, describes the critical 

bandwidth of human psychoacoustics. The ERB 
expression is defined by the following equation 

ERB(fc) = 24.7+0.108 fc in Hz.  

The gammachirp filter response defined in the 

frequency domain is given by (Irino and Patterson, 

1997; 2006): 
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where, ( )n jcΓ +  represents the complex gamma 

distribution and arctg
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The centre frequencies of gammachirp filters are 

distributed according to the Equivalent Rectangular 

Bandwidth (ERB) rate scale. The latter is an 

approximately logarithmic and relates to the ERBs 

number, ERBrate(f), such as (Glasberg and Moore, 1990; 

Moore, 2012; Wang and Brown, 2006): 
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The Proposed Feature Extraction Method 

The computational process of the proposed 

Normalized Gammachirp Cepstral Coefficients 

(NGCC) is analogous to the Mel-Cepstre extraction 

method (Fig. 2). 

The speech signal is first windowed into short 

frames, using a Hamming window of 25 ms with a frame 

shift of 10 ms. This signal can be assumed to be 

stationary over short intervals, thus facilitating the 

spectro-temporal analysis of signal and increasing the 

efficiency of the process of the feature extraction. The 

DFT is then applied for each short frame to obtain the 

short-term power spectrum. Subsequently, the result is 

processed by applying a second order low-pass filter 

and a normalized gammachirp auditory filterbank 

consisting of the frequency responses of the 34 

gammachirp filters (Zouhir and Ouni, 2014). The 

centre frequencies of the filter are equally spaced on 

the ERB-rate scale from 50 to 8 kHz (sampling 

frequency = 16 kHz) (Glasberg and Moore, 1990; 

Moore, 2012). The low-pass filter is used to simulate 

the outer/middle ear filtering, while the gammachirp 

filterbank aims at simulating the cochlea spectral 

behavior. The logarithmic-compressed filterbank 

outputs are then obtained by applying the logarithmic 

function ‘Log’ in order to model loudness perception 

in the human auditory (Davis and Mermelstein, 1980). 

Finally, the Discrete Cosine Transform (DCT) is used 

to decorrelate the obtained outputs, yielding the 

Normalized Gammachirp Cepstral Coefficients (NGCC). 
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where, N is the number of auditory filterbank 

channels, M is the number of NGCC coefficients and 

Log(Xk) represents the logarithmic energy output of 

the kth filter (k = 1, 2,...., N). N and M are chosen as 

the following: N = 34 and M = 12 for the NGCC 

computations. 

Experiments 

This section presents the experimental results 

conducted to compare the performances of the proposed 

feature extraction method with those of classical 

techniques on an Automatic Speech Recognition (ASR) 

task in the presence of the ambient background noises. 

 

 

  
 
Fig. 2. The structure of the NGCC feature extraction method 
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Experimental Setup 

The Hidden Markov model toolkit (HTK 3.4.1) 

(Young et al., 2009) is employed for building HMM 

based isolated word recognizers. One hidden Markov 

model with Gaussian Mixture density (HMM-GM), five 

states (a simple left-to-right model) and four diagonal 

mixtures per state was trained for each isolated word. 

The proposed NGCC method was tested on a 

computer with 2.30 GHz Intel Core i3 processor, 4Go 

RAM and Windows 7. 

The default parameter values of the gammachirp 

auditory filter are used in all experimental and are defined 

as follows: a = 1; b = 1.019; c = 2; n = 4 and ϕ = 0. 

The used Databases  

The TIMIT database (Garofolo et al., 1990) is taken as 

basis for evaluates the robustness of our method on an 

ASR task. It is composed of speech signals down sampled 

to 16000 Hz of 630 speakers (females and males) from 

eight major dialect regions of the United States. Each one 

of the speakers saying ten sentences. 

In the experimental study, we used 13227 isolated-

words manually extracted from the TIMIT database; 

9702 isolated-words used in the training phase, while 

3525 isolated-words used for the evaluation phase of 

ASR system. The noisy speech used in the testing 

phase was created by adding to the extracted isolated-

words different noise types (Babble noise, Restaurant 

noise, Train station noise and Air-port noise) at 

different Signal-to-Noise Ratios (SNRs) values ranging 

from 0 to 15 dB. The used noises were taken from the 

AURORA database (Hirsch and Pearce, 2000). Figure 

3 shows the temporal representations and their 

spectrograms of all used noises. 

Results and Discussion 

In all of our experiments, the speech signals samples 

are windowed with a Hamming analysis window into 25 

ms long frames with an overlap of 10 ms. For each 

frame, a static feature vector consisted of 12 coefficients 

is computed. This vector is combined with energy (E), 

along with differential coefficients; the 1st order (∆) and 

the 2nd order (A), to yield a feature vector of 39 

coefficients for each feature extraction method (NGCC, 

Mel-Cepstre and PLP). 

Table 1 to 4 summarize the recognition rate results 

obtained using the proposed NGCC feature and baselines 

feature (Mel-Cepstre and PLP) for the four noises 

(Babble noise, Restaurant noise, Train station noise and 

Air-port noise) at four SNR values (0, 5, 10 and 15 dB).  

The results reported in these tables, showed that the 
proposed NGCC feature is more robust than the Mel-
Cepstre and PLP feature in all noise conditions. The 
NGCC feature gives the better recognition results at all 
SNR levels, particularly for low SNR values. In the case 
of Babble-noise (Crowd of people) at 0 dB SNR, as an 
example, the recognition rate of the NGCC is 
respectively higher than that of the MFCC and PLP by 
12.88 and 11.20.  

 
Table 1. Comparison of recognition rates of the NGCC, Mel-Cepstre, PLP feature with babble-noise (Crowd of people) at various 

SNR’s using HMM with 4 Gaussian Mixture densities 

 SNR Levels 

 ------------------------------------------------------------------------------------------------------------------- 

 0 dB 5 dB 10 dB 15 dB 

NGCC feature 49.02 76.20 90.13 95.32 

Mel-Cepstre feature 36.14 64.71 84.77 92.03 

PLP feature 37.82 66.33 84.20 91.40 

 
Table 2. Comparison of recognition rates of the NGCC, Mel-Cepstre, PLP feature with restaurant-noise at various SNR’s using 

HMM with 4 Gaussian Mixture densities 

 SNR Levels 

 ------------------------------------------------------------------------------------------------------------------- 

 0 dB 5 dB 10 dB 15 dB 

NGCC feature 42.70 75.89 90.64 95.12 

Mel-Cepstre feature 34.18 64.82 84.99 93.82 

PLP feature 35.60 65.25 85.05 92.82 

 
Table 3. Comparison of recognition rates of the NGCC, Mel-Cepstre, PLP feature with train station-noise at various SNR’s using 

HMM with 4 Gaussian Mixture densities 

 SNR Levels 

 ------------------------------------------------------------------------------------------------------------------- 

 0 dB 5 dB 10 dB 15 dB 

NGCC feature 60.48 84.43 94.52 96.54 

Mel-Cepstre feature 47.74 76.11 90.84 95.32 

PLP feature 47.18 77.13 89.76 94.67 
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Table 4. Comparison of recognition rates of the NGCC, Mel-Cepstre, PLP feature with air-port-noise at various SNR’s using HMM 

with 4 Gaussian Mixture densities 

 SNR Levels 

 ------------------------------------------------------------------------------------------------------------------- 

 0 dB 5 dB 10 dB 15 dB 

NGCC feature 43.94 71.94 90.35 95.46 

Mel-Cepstre feature 36.96 64.71 86.92 93.99 

PLP feature 37.33 64.99 87.04 93.73 

 

 
 

Fig. 3. The temporal representation and their spectrograms of all used noises 

 

Conclusion 

A noise robust feature extraction method was 

presented in this study. The proposed method is based on 

an auditory filter model which includes both a second 

order low-pass filter and a normalized auditory 

gammachirp filterbank to simulate the mechanisms 

performed in the outer/middle ear and cochlea. The 

bandwidth and the centers frequencies of gammachirp 

filterbank were determined by the critical band 

Equivalent Rectangular Bandwidth (ERB) and ERB-rate 

scale expressions respectively. Our method was tested on 

speech signals corrupted by real-world noises in terms of 

speech recognition rate. It was shown that the proposed 

method outperforms the other conventional method like 

Mel-Cepstre and PLP. 
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