

© 2016 Warut Boonphakdee and Peerayuth Charnsethikul. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

A Successive Admissible Cell Method for Solving Large Scale

Linear Assignment Problem with Dense Cost Matrix

Warut Boonphakdee and Peerayuth Charnsethikul

Industrial Engineering, Kasetsart University, Bangkok, Thailand

Article history

Received: 25-04-2016
Revised: 30-10-2016
Accepted: 16-11-2016

Corresponding Author:
Warut Boonphakdee
Industrial Engineering,
Kasetsart University, Bangkok,
Thailand
Email: warutboon@yahoo.com

Abstract: Normally, the Linear Assignment Problem (LAP) has been
solved by successful algorithms such as Lapjv and Munkres programmed as
MATLAB codes. This study presented an improved algorithm for solving
large scale LAP. A preprocessing (PP) algorithm was proposed to apply for
constructing the kth transferred reduced cost matrix then this matrix was
solved by Lapjvalgorithm. Performances of PP-Lapjvalgorithm were faster
than theoriginal Lapjv about 1.90-8.20% when problem sizes are
expanded from problem sizes 18000 to 34000 on integer number range
[1,10] and [1,1000]. On the other hand, PP-Lapjvalgorithm was
inefficient on integer number range [1, 1000000] due to more time-
consuming for executing Lapjv.m file in PP-Lapjvalgorithm. The
enlargement of number ranges is influenced to the average computation
time of Lapjvalgorithm raised about 53.63% and 32.05% when the range
is expanded from [1,1000] to [1,1000000] on problem sizes 18000 and
30000,respectively. The limitations of problem size were determined by
virtual memory of the tested computer that both algorithms enabled to
solve at the maximum problem size of 34000.

Keywords: Large Scale Linear Assignment Problem, Complementary
Slackness Conditions, Shortest Augmenting Path Method, Preprocessing
Algorithm, Lapjv Code

Introduction

LAP is one of the most famous problems in linear

programming and in combinatorial optimization. In the

present, the scale of problems are expanded to large

scale problems as the road network equilibrium traffic

(LeBlanc et al., 1985), a fleet scheduling (Hane et al.,

1995) and the computing utility (Zhu et al., 2004) etc.

The large scale problem appeared in the management

science has been growing rapidly up to now. However,

the large scale problem can be time-consuming in order

to solve for the optimal solution. Algorithms for solving

LAP can be divided into six groups; primal-dual,

simplex-based, primal (non-simplex), dual simplex-

based, dual (non-simplex) algorithms and parallel

algorithms (Burkard and Cela, 1999).

Sixty years ago, Harold H. Kuhn proposed a primal-

dual algorithm as the Hungarian method, the first

polynomial-time method for the assignment problem,

can solve the real world problem easily. After that the

new research area has been studying today known as the

combinatorial optimization. The Hungarian method is

improved by James R. Munkres who developed the

Hungarian’s algorithm for solving the rectangular cost

matrix. The Hungarian algorithm was written in the first

computer code by R. Silver in 1960 using ALGOL

language (Hung and Rom, 1980).
Another primal-dual approach, is called the shortest

augmenting path algorithm. Tomizawa’s shortest
augmenting path was the alternative algorithm involved
under the complementary slackness property and using
the shortest path technique from Dijkstra’s algorithm for
searching the optimal solution.

Jonker and Volgenant developed a code to solve the

LAP in PASCAL while G.Carpaneto, S.Martello and

P.Tothcode was in FORTRAN. The auction algorithm

was proposed by D.P. Bertsekas in1981. This algorithm

being modeled using admissible transformation of the

primal and dual solutions can be both updated

simultaneously. In the Hungarian method, the value of

dual objective function expands after all primal and

dual solutions update, whereas in the auction

algorithm it is certain that this objective function does

not diminish. Other primal-dual algorithms are formed

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

425

as a minimum cost flow problem called a pseudo-flow

algorithm. It is a flow which completes the capacity

constraints. However, it does not accomplish the flow

conversation constraints. This algorithm works with ε-

relaxations of the minimum cost flow problem that ε is

decreased and the procedure is iterated until ε

converges to 1/n. At this point, an optimal solution of

the ε-relaxed flow problem is also an optimal solution

for the minimum cost flow problem. The pseudo-flow

algorithm applies ε-complementary conditions

whereas the auction algorithm applies cost scaling.

The family of pseudo-flow algorithms were developed

by J.B.Orlin and R.K.Ahuja in 1987, A.V.Goldberg,

S.A.Plotkin and P.Vaidya in 1993, A.V.Goldberg and

R.Kennedy in 1995 (Burkard et al., 2009).
Normally, the traditional Hungarian, shortest

augmenting path methods are written as source codes for
solving LAP in FORTRAN and PASCAL. The
Hungarian method was written in FORTRAN by
E.L.Lawler in 1976, by G.Carpaneto and P.Toth in
1980, by G.Carpaneto, S.Martello and P.Toth in 1988
for both dense and sparse matrices. The shortest
augmenting path method was written in FORTRAN by
N.Tomizawa in 1971 found in the book by R.E.Burkard
and U.Derigs in 1980, in PASCAL by R.Jonker and
A.T.Volgenant in 1986 (Burkard and Cela, 1999).
However, the format of FORTRAN and PASCAL
language are inefficient for constructing a large scale
cost matrix. While the MATLAB software are designed
for supporting large scale matrix which can be applied to
write source code in almost large scale problems with
both fully dense and sparse matrices.
Nowadays, the large scale problems involve

widely in decision making such as crew assignment
problem in airline industry that need weekly large
scale flight scheduling. The problem size should
expand rapidly until the traditional algorithms are
unable to solve them.
This study intends to introduce the admissible cell

generation that uses the successive complementary
slackness condition for searching the admissible cells to
replace the fully dense cells for solving large scale LAP.
Comparative performances between the traditional
algorithm and the proposed algorithm consist of the
Hungarian, shortest augmenting path and the pre-
processing algorithms.

Material and Methods

Mathematical Model

Burkard et al. (2009) stated that consider a problem
of matching n persons to n tasks where for each person i
and for each task j. There is an associated cost cij of
assigning person i to task j. The LAP is the problem of
matching n persons to n tasks in order to minimize the

total cost. The standard integer programming of the LAP
is defined as follows:

 1 person , 0
ij ij

Let x if i is assigned to task j otherwise x= =

1 1

n n

ij ij

i j

Minimize c x

= =

∑∑ (1)

Subject to:

1

1 1,2,...,
n

ij

j

x i n

=

= ∀ =∑ (2)

1

1 1,2,...
n

ij

i

x j n
=

= ∀ =∑ (3)

{0,1} , 1,2,...,
ij
x i j n∈ ∀ = (4)

Complementary Slackness Condition

Burkard et al. (2009) stated that the dual problem is
associated with dual variables ui and vj with assignment
constraints (2) and (3) respectively as follows:

1 1

n n

i j

i j

Maximize u v

= =

+∑ ∑ (5)

Subject to:

 , 1,2,...,
i j ij

u v c i j n+ ≤ ∀ = (6)

Rearrange Equation 6:

 0 , 1,2,...,

ij i j
c u v i j n− − ≥ ∀ = (7)

() 0
ij i j
c u v− + ≥ (8)

0
ij ij
c w− ≥ (9)

From Equation 7:

ij ij i j
c c u v= − − (10)

where,
ij
c is called the reduced cost.

Theorem 1 (Complementary slackness theorem).
Let x = [xij] be a primal feasible solution and w =

[wij] be a dual feasible solution to a symmetric pair of
linear programs. Then x and w become an optimal
solution pair if and only if the following
complementary slackness conditions are satisfied
(Fang and Puthenpura, 1993)

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

426

Multiply Equation 9 by:

; () 0
ij ij ij ij
x x c w− ≥ (11)

Case a: if xij = 0 and cij-ui-vj ≠ 0 then there exists at
least a violation in inequality for some i and j;
therefore, this condition has an opportunity for
improving solution.

Case b: if xij = 1 and cij-ui-vj ≥ then they satisfy
Equation 4 and inequality (7) for all i and j;
therefore, xij and ui, vj can be an optimal
solution.

Both cases can be applied to the corresponding

linear programming model both in primal and dual
forms of the LAP.

Basic Preprocessing Algorithm

Burkard et al. (2009) introduced the algorithm for
solving LAP that adopt a Basic Preprocessing (BPP)
phase to find a feasible dual solution and a partial primal
solution (which it to be less than n rows) satisfying the
complementary slackness conditions. A BPP algorithm
for finding feasible dual solution and partial primal
solution can be written as this Pseudocode 1.

Pseudocode 1% BPP algorithm
% dual variables
for i = 1:n;
ui = min {cij: j = 1,2,…,n};
end for;
for j = 1: n;
vj = min {cij: ui: i = 1,2,…,n}
end for;
% partial feasible solution
for j = 1 to n;
 row(j) = 0;
 for i = 1 to n;

 if row(j) = 0 and 0
ij i j
c u v− − = then

xij = 1 and row(j)=i;

 break;
 end if;
 end for;
end for;

The partial primal solution from a BPP algorithm can

be allocated in ϕ as:

 if row() is assigned to column ()
() , 1,2,...,

0 otherwise

j i j
i i j nϕ


= ∀ =


 (12)

The ui and vj values are determined by the left hand

side statements of Equation 7. The xij values achieve
satisfying the complementary slackness conditions in
Equation 11.

The Proposed Preprocessing Algorithm

The preprocessing (PP) algorithm is applied from the

BPP algorithm that it makes many admissible cells on
each row or column allocated in the kth reduced cost

matrix. This matrix is transferred all admissible cells to
be their unit costs in the kth transferred reduced cost

matrix without assigning partial primal solution as the
BPP algorithm. The kth transferred reduced cost matrix

is solved by some traditional algorithms to provide the
assignment solution and total cost. Then repeating the

new u-v dual variables from the kth reduced cost matrix,
the new kth transferred reduced cost matrix to be

constructed and solved by traditional algorithms again.
Until the new total cost is certainly unchangeable and

the computation goes to terminate; therefore, the last
total cost and the last assignment solution are the

optimal solution. The difference between the BPP
algorithm and the PP algorithm includes that the BPP

provides the partial assignment solution, whereas the
PP algorithm arranges the admissible cells for

searching the optimal solution later.
PP algorithm uses conditions on both cases “a” and

“b” to provide the admissible cells as: if cij-vj≤ 0 then xij
has an opportunity for improving solution. The procedure
of the PP algorithm can be explained as follows:

Pseudocode2 % PP algorithm
z_1 = 0;
for k = 1:n;
 % dual variables
for i = 1:n;

min{ : 1,2,..., }
i ij
u c j n= =

;
end for;
for j = 1:n;

min{ : 1,2,..., };
j ij i

v c u i n= − =

end for;
 % admissible cells
for j = 1 to n;
 for i = 1 to n;

 if 0
ij i j
c u v− − ≤ then

 ij ij
c c= ; % admissible cell

 else

'NaN

ij
c = ;

 end if;
 end for;
end for;
 % assignment solution (a) and total cost (z)

 [a,z] = Lapjv(
ij
c) or Munkres(

ij
c);

 % convert the reduced cost to the equivalent unit cost
cij = ij

c ;

% loop controller (z)
 if z-z_1 = 0 then

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

427

 break;
 else
z_1 = z;
 end if;
end for k; %

Applied the Preprocessing Algorithm

Determine the admissible cells from the PP
algorithm; consequently, applying the PP algorithm
creates the reduced cost matrix and executes it by some
traditional algorithms.
The PP algorithm is operated to search the

admissible cells that is transformed them to construct
a transferred reduced cost matrix. This matrix consists
of a unit cost value of each admissible cell and NaN
symbol in place of zero values each non-admissible
cell. It is solved by some traditional algorithms for
searching the current total cost and current assignment
solution and is turned to iterate searching the new the
admissible cells and the new total cost and assignment
solution. If total cost to be unchangeable then this
total cost is optimal and terminates the iteration,
otherwise turn to find the new admissible cells. This
approach is called the k-preprocessing (k-PP)
algorithm that can be illustrated by its procedure as
below:

• Generate a random unit cost matrix

• Find the u-v dual variables

• Construct the kth reduced cost matrix computing

ij ij i j
c c u v= − − for all

ij
c .

Transfer the reduced cost matrix in these criteria:

• If the reduced cost value of any cells is equal to zero
or being less than zero, allocate its unit cost on a cell

• Otherwise, allocate a ‘NaN’ symbol on its cell

Solve the kth transferred reduced cost matrix by

Lapjv/Murkres source codes.
Check the following conditions:

• If total cost value is unchangeable then the current
total cost and assignment solution are optimal and
terminates the iteration

• Otherwise, turn to step 2

Procedure depicts that if the current total cost has

been unchangeable then it is certainly optimal.
Moreover, the k-time of iterations are involved with
particular of each number range whenthe optimal
solution already achieves.
This k-PP algorithm must execute Lapjv or

Munkres source code with time of iterations together;

consequently, it operates inefficiently on the running
time. To solve this disadvantage, the k-PP algorithm
can be improved by firstly providing the kth
transferred reduced cost matrix and secondly, this
matrix can be solved by Lapjv or Munkres source
code once only. When executing Lapjv or Murkres
with one iteration, it can diminish obviously the
overall running time. While the kth iteration of
providing the kth transferred reduced cost matrix can
find from testing the k-PP algorithm with the same
number range. The improved algorithm referred as the
preprocessing (PP) algorithm that can be explained as
the following procedure.

Steps 1-4 follow the procedure previously described

in the k-PP algorithm:

• Perform steps 2-4 k iterations

• Solve the kth transferred reduced cost matrix by
Lapjv or Murkres source code

• The obtained total cost and assignment solution
from step 6 are optimal and terminate the iteration

PP algorithm must operate using k time of iterations

from k-PP algorithm with the same number range. If
number range expands sharply, it can be also influenced
to increase the value of k.
This successive admissible cell method can be

applied in the primal simplex-based algorithm such as
the column generation method (Boonphakdee and
Charnsethikul, 2014). This method uses some heuristics
to search the initial basic solution then constructing
the Restricted Master Problem (RMP). This RMP is
merely allocated with 2n-1 basic variables which
utilizes less memory space used to appropriately
solving large scale LAP. Primal simplex algorithm is
conducted to solve RMP in order to search its dual
variables for computing all reduced costs. The
minimal negative reduced cost is selected to generate
an admissible cell which to be attached to the sparse
RMP matrix. Return to solve iteratively on this sparse
matrix using the primal simplex method until all
reduced costs are nonnegative then terminates
iteration. Therefore, the solution of the last iteration is
an optimal solution. Advantage of this method can solve
larger problem size due to less memory space used;
however, it must use more time-consuming for searching
a required admissible cells one at a time.

Computational Experiments

This study intends to concentrate the performance

of the proposed algorithm comparing with the

successfully algorithms such as Hungarian

(Munkres.m) and shortest augmenting (Lapjv.m)

algorithms. The proposed algorithms consist of the

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

428

applied preprocessing algorithm for searching the

initial basic feasible solution matrix and solved by the

faster algorithm. MATLAB 2011a is implemented to

write source codes for all algorithms because it can

construct large scale matrix efficiently.

PP-Lapjvalgorithm applies the PP algorithm to

create the kth reduced cost matrix then using the

Shortest augmenting path or Hungarian algorithm

searches an optimal assignment solution. Hungarian

[Munkres.m version 2.3] and shortest augmenting

path [Lapjv.m version 3.0] algorithms have been

applied for MATLAB source code written by Yi Cao

at Cranfield University (Cao, 2011; 2013). The Lapjv

(Jonker-Volgenant) algorithm is faster than the

famous Hungarian algorithm. Cao’s source code

modified from the original C++ code which was made

by Roy Jonker, one of the inventors of this algorithm.

Both algorithms were compared the performance and

tested the exact solution with a simple test problem

from OR- library (Beasley, 1990) in 100×100 and

300×300 problem sizes. The faster algorithm was

interesting to improve the performance for solving

large scale LAP later. The effect of integer uniformly

randomly generated in the range parameter K (with K

= 10, 103, 106) are tested within 10 substances of both

the improved algorithm and the original algorithm.

 This study was interested in the computation time

and the maximum problem size solving by the

proposed algorithm and the effect of related input

integer number data on the computation time. The

proposed algorithm used the integer uniformly

randomly generated numbers for a fully dense cost

matrix. All developed programs were performed using

a HP “Pavilion” personal computer with processor:

Intel ® core ™i3-530 CPU@2.93GHz 12 GB usable

RAM and the operating system was Windows 7 64 bit.

Results and Discussion

Verified Test

To verify all source codes, both the successful

algorithms were tested using data from Beasley (1990)

such as A100.txt and A300.txt. The result of testing can

be illustrated in Table 1.

In Table 1, the performances of Lapjv code can

execute to be faster than those of Munkres code about

64.71 and 56.00% for A100.txt and A300.txt sample,

respectively. Amico and Toth indicated that the time

complexity of Lapjvalgorithm was O(n3) whereas

Burkard et al. (2009) stated that the time complexity

of Munkres algorithms was O(n4). Therefore, this

study intended to improve Lapjvalgorithm for solving

large-scale LAP. The PP algorithm was applied for

constructing the initial basic solution sparse matrix

then it was solved by Lapjv code. PP-Lapjvalgorithm

was tested and compared with Lapjvalgorithm from

A100.txt and A300.txt problems shown in Table 2.

In Table 2, the average computation time of PP-

Lapjv is faster than the original Lapjvalgorithm for

operating A300.txt about 10.30%. On the other hand,

PP-Lapjv is slower for running A100.txt about

50.00%. This result shows that if the number of tasks

is expanded to a large scale size, Table 2 depicts that

trend of computation time curve of PP-Lapjv can be

the faster one. The total cost solution of A100.txt to

be displayed “305” on workspace window of

MATLAB shown as Fig. 1a and 1b.

Computing k Times of PP Algorithm

PP algorithm need k-times for computing the

transferred reduced cost matrix on the kth iteration.

The k-PP algorithm determines k-time on different

number ranges shown in Table 3. These k can be

appropriately difference values depend upon problem

structure of cij.

The Average Computation Time for Solving Large-

Scale AP

When the large-scale LAP was started from problem

size 2000 to problem size 26000 and range of unit cost

[1,25], the computation time enlarged rapidly. The

comparative performance between Lapjv and PP-Lapjv

can be illustrated in Fig. 2.

Table 1. Total cost (Z) and the average computation time (s.)

of Lapjv and Munkres codes

Data Lapjv Munkres

A100.txt.(Z) 305.000 305.000
A300.txt.(Z) 626.000 626.000

A100.txt.(s.) 0.018 0.051
A300.txt.(s.) 0.165 0.375

No. of samples 10.000 10.000

Table 2. Total cost (Z) and the average computation time (s.)

of Lapjv and PP-Lapjv code

Data Lapjv PP-Lapjv

A100.txt (Z) 305.000 305.000
A300.txt (Z) 626.000 626.000

A100.txt (s.) 0.018 0.027
A300.txt(s.) 0.165 0.148
No. of samples 10.000 10.000

Table 3. k-Time for constructing the transferred reduced cost

matrix

Number range [1,10] [1,25] [1,1000] [1,1700000]

k-time 2 2 2 7

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

429

(a)

(b)

Fig. 1. (a) Window of MATLAB workspace when Lapjvalgorithm operates with A100.txt (b) Window of MATLAB workspace

when PP-Lapjvalgorithm operates with A100.txt

Fig. 2. The average running time of Lapjv.m file in Lapjvand PP-Lapjv algorithms on integer range [1,25]

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

430

Fig. 3. The average total computation time of Lapjv and PP-Lapjv algorithms on integer range [1,25]

In the above figure, at n>18000, the trend of the

average computation time in Lapjv.m file of PP-
Lapjvalgorithm begins to improve at n = 20000, 22000,
24000 and 26000 about 22.17, 7.79, 9.39 and 18.01%,
respectively. On the other hand, at n <4000, the average
time solved by Lapjv.m file of PP-Lapjvalgorithm are
slower than the direct Lapjvalgorithm. This result can
be supported from the fact that PP-algorithm provided
the kth reduced cost matrix using the Lapjv.m file to
find the optimal solution from the admissible cells in
the sparse kth transferred reduced cost only whereas
Lapjv.m file of Lapjvalgorithm must start to operate
with a fully dense cost matrix.
The running time of PP-Lapjv in Fig. 2 combines

with time for constructing the kth transferred reduced
cost matrix and time for generating random unit cost
matrix, the result in Fig. 3 depicts the average total
computation time of PP-Lapjvalgorithm on number
range [1,25] to be faster than Lapjvalgorithm about 5.73,
2.65 and 8.34% at problem sizes 20000, 24000 and
26000, respectively.
Shortest augmenting path algorithm usually consists

of two part: Firstly, compute a primal partial solution
and a dual feasible solution which satisfy the
complementary slackness conditions and for the second
part, the primal solution is added one row-column
assignment at a time till the current primal-dual
solution is iterated in order to hold the complementary
slackness conditions and become feasible solution. PP
algorithm also provides the first part for searching the
admissible cells which are allocated in the transferred
reduced cost matrix (step 2-4 of PP-Lapjvalgorithm) to
replace a fully dense cost matrix.

Effect of Integer Number Ranges

Integer number of a dense cost matrix is interesting in
this experiment. Performance of Lapjvalgorithm is
measured and divided into three parts as time for

generating random unit cost matrix, time for running
Lapjv.m file and total running time whereas the
performance of PP-Lapjvalgorithm to be divided into
four parts which include three parts as the same time for
running Lapjvalgorithm and one part as time for
constructing the kth transferred reduced cost matrix.
However, this study is interested in time for running
Lapjv.m file and its total running time which are
illustrated as Table 4 and 5.
Table 5 depicts that the average total time of both

algorithms trend to expand continuously when
extending the upper bound of range cost; therefore,
number range impacts significantly for running time
performances. This behavior of PP-Lapjvalgorithm
can be explained in Fig. 4.
In Fig. 4,theaverage total time of Lapjvalgorithm at

problem sizes 18,000 and 30,000 using range [1, 106] are
greater than range [1, 103] about 53.51 and 36.27%,
respectively and the average total time of PP-
Lapjvalgorithm at problem sizes 18,000 and 30,000
using range [1, 106] are also greater than range [1, 103]
about 63.51 and 51.33%, respectively. The enlargement
of the average total time corresponds with time of
iteration. The unit cost of PP-Lapjvalgorithm on range
[1, 106] must be executed with 7 iterations for
constructing the 7th reduced cost matrix whereas the unit
cost of Lapjvalgorithm on number range [1, 103] to be
merely operated in two iterations.

Comparative Study

Performances of both algorithms can be compared
in order to identify better algorithm for solving large
scale problem sizes. From results of the last section, it
indicates that the unit cost affects to the running time;
hence, analyzing on various number range is
significant certainly. Figures 5-10 depict comparison
of both algorithms at number ranges [1,10], [1, 103],
[1, 106] as follows.

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

431

Fig. 4. The average total running time of Lapjv and PP-Lapjvalgorithms at problem sizes 18,000 and 30,000

Fig. 5. The average running time of Lapjv.m file in Lapjv and PP-Lapjv algorithms on integer range [1,10]

Fig. 6. The average total computation time of Lapjv and PP-Lapjv algorithms on range [1,10]

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

432

Fig. 7. The average running time of Lapjv.m file in Lapjv and PP-Lapjv algorithms on integer range [1, 103]

Fig. 8. The average total computation time of Lapjvand PP-Lapjv algorithms on range [1, 103]

Fig. 9. The average running time of Lapjv.m file in Lapjv and PP-Lapjv algorithms on range [1, 103]

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

433

Fig. 10. The average total computation time of Lapjv and PP-Lapjv algorithms on range [1, 103]

Table 4. The average computation time of Lapjv.m file in Lapjv and PP-Lapjvalgorithms on range [1,10], [1, 103], [1, 106]

 Lapjv PP-Lapjv

Algorithm --- ---
Number range [1,10] [1, 103] [1, 106] [1,10] [1, 103] [1, 106]

n = 10,000 185.45 83.14 188.77 198.3 95.27 190.32

 14,000 374.77 206.84 593.58 399.08 231.45 635.60

 18,000 660.31 420.99 1195.43 698.19 468.73 1188.45

 22,000 2649.05 2187.22 3321.56 2301.26 1915.21 3235.54

 26,000 4642.76 3876.73 5481.35 4182.47 3643.63 5654.72

 30,000 8363.56 6955.18 10867.45 7590.69 6587.80 10249.88

 34,000 13071.24 13492.97 16153.61 11560.35 11380.75 16169.52

No. of samples 10.00 10.00 10.00 10.00 10.00 10.00

Table 5. The average total computation time of Lapjv and PP- Lapjvalgorithms on range [1,10], [1, 103], [1, 106]

 Lapjv PP-Lapjv

Algorithm --- ---
Number range [1,10] [1, 103] [1, 106] [1,10] [1, 103] [1, 106]

n = 10,000 526.39 415.69 495.91 559.36 451.38 619.63

 14,000 1044.64 877.33 1230.80 1136.55 935.86 1527.961

 18,000 1720.80 1472.03 2259.78 1876.23 1651.81 2700.84

 22,000 4295.05 3769.95 4987.56 4054.63 3644.80 5572.51

 26,000 6891.90 6107.80 7688.41 6696.75 6174.10 9035.58

 30,000 11434.72 10000.25 13627.48 10936.37 9809.41 14844.92

 34,000 16822.72 16923.69 19886.97 15397.73 15535.24 21981.33

No. of samples 10 10 10 10 10 10

The kth reduced cost - - - 2 2 7

Figure 5 depicts that the running time of Lapjv.m file
in PP-Lapjvalgorithm to be faster than the direct
Lapjvalgorithm about 13.13, 9.91, 9.24 and 11.56% at
problem sizes 22000, 26000, 30000 and 34000,
respectively. When n>18000, the running time of Lapjv.m
file in PP-Lapjvalgorithm can be improved efficiently.
The running time of PP-Lapjv in Fig. 5 combines

with time for constructing the kth transferred reduced
cost matrix and time for generating random unit cost
matrix, whereas Fig. 6 depicts the average total

computation time of PP-Lapjvalgorithm on number
range [1,10] to be faster than Lapjvalgorithm about 5.60,
2.83, 4.36 and 8.47% at problem sizes 22000, 26000,
30000 and 34000, respectively.
In Fig. 7, the running time of Lapjv.m file in PP-

Lapjvalgorithm to be faster than Lapjvalgorithm about
12.44, 6.01, 5.28 and 15.65% at problem sizes 22000,
26000, 30000 and 34000, respectively. Therefore, the
running time of Lapjv.m file in PP-Lapjv can be
improved efficiently.

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

434

In Fig. 8, the average total computation time of
PP-Lapjvalgorithm on number range [1, 103] to be
faster than Lapjvalgorithm about 3.32, 1.91 and
8.20% at problems sizes 22000, 30000 and 34000,
respectively.
Figure 9 depicts that the running time of Lapjv.m file

in PP-Lapjvalgorithm to be faster than Lapjvalgorithm
about 0.58, 2.59 and 5.68% at problem sizes 18000,
22000 and 30000, respectively. However, the running
time of Lapjv.m file in PP-Lapjvalgorithm cannot be
improved significantly.
In Fig. 10, PP-Lapjvalgorithm cannot solve efficiently

at all problem sizes with range [1,106] since the running
time of Lapjv.m file of PP-Lapjvalgorithm (Fig. 9)
overcomes Lapjvalgorithm slightly. So, the average total
running time of PP-Lapjvalgorithm is still slower.
From Fig. 5-10, PP-Lapjvalgorithm can enhance

better performances for solving large scale LAP when
the problem size is expanded over 18000 and its unit cost
matrix to be in range [1,1000].

Maximum Problem Size Solving

Large scale LAP can be solved with problem size
expanded until MATLAB command window shows
“out of memory”. Memory spaced used by MATLAB
can be displayed on command window by ‘memory’
command. For running Lapjv and PP-
Lapjvalgorithms, actual memory space used by
MATLAB to be illustrated in Fig. 11.

In Fig. 11, memory used for running Lapjv and PP-

Lapjvalgorithms differ slightly. When the problem size n

is expanded over the value of 34000, its memory space

used by MATLAB closes to the maximum problem size.

Expanding n experimentally, until MATLAB command

window displays ‘out of memory’ as shown in Fig. 12.

When the problem size is expanded to 35000,

Lapjvalgorithm fails to operate due to out of memory

space used. Therefore, the maximum problem size was

possible on 34,000. Figure 12 depicts that actual memory

space used by MATLAB should be less than 9,824 MB.

Fig. 11. Actual memory space used by MATLAB of Lapjv and PP-Lapjv algorithms

Fig. 12. Memory space used by MATLAB at problem size 35,000

Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435

DOI: 10.3844/jcssp.2016.424.435

435

Limitation of Lapjv code in this experiment cannot
solve large scale LAP on a dense cost matrix with
problem size over 34,000. This limitation can be
improved by using the preprocessing algorithm for
constructing an admissible sparse matrix. This sparse
matrix will be solved efficiently by a sparse Lapjv code
which can solve with less memory space used.
Therefore, this sparse code could be solve large scale
LAP with more problem size. However, a sparse Lapjv
code was just written in FORTRAN and PASCAL
language (Jonker and Volgenan, 1987).
Normally, Lapjvalgorithm was designed to solve

efficiently with a fully dense matrix. PP-Lapjvalgorithm
can generate the admissible cells matrix which is
transferred to a sparse cost matrix. If Lapjv code is also
improved to solve a sparse matrix, this code will execute
with both less time-consuming and the higher maximum
problem size.
Authors are interested in applying the PP algorithm to

improve the performance of both primal-dual and
simplex-based algorithms for solving transportation and
shortest path problems.

Conclusion

Nearly thirty years ago, LAP has been efficiently
solved by the successful shortest augmenting path
algorithm; nevertheless, this study proposes the PP
algorithm to improve the performance of the successful
algorithm. The problem size was extended, the PP
algorithm generated the successive admissible cells to
allocate in a sparse cost matrix replacing a fully dense
cost matrix in order to solve with both less time-
consuming and less memory space used. On the other
hand, Lapjvalgorithm executed on a fully dense cost
matrix with more time-consuming. However, if the
integer number range is expanded, the PP algorithm
will be executed a more k iterations leading to an
increase on running time. In this case, performances of
PP-Lapjvalgorithm is inefficient for solving LAP on a
large related number range. The problem size and
memory space used are related reversely. The proposed
algorithm can utilize with much less memory space
used and it can solve the problem with larger sizes as
compared to the direct approach.

Acknowledgement

The authors would like to thank the staffs of

department of industrial engineering in Kasetsart

University for supporting this work.

Author’s Contributions

Warut Boonphakdee: Designed, collected and

checked the analyzed data and wrote the manuscript.

Peerayuth Charnsethikul: Designed the research plan
and organized the study and reviewed this manuscript.

Ethics

The authors announce that this is an original research
and confirm that no ethical issues are involved.

References

Beasley, J.E., 1990. OR-Library: Distributing test
problems by webpage.

Boonphakdee, W. and P. Charnsethikul, 2014. Solving the
linear programming model of large-scale transportation
and assignment problems using the column generation
technique. J. Operat. Res., 2: 10-21.

Burkard, R.E. and E. Cela, 1999. Linear Assignment
Problem and Extensions. In: Handbook of
Combinational, Du, D.Z. and P.M. Pardalos (Eds.),
Kluwer Acadamic Publishers, Dordrecht, ISBN-10:
978-1-4419-4813-7, pp: 75-149.

Burkard, R.E., M.D. Amico and S. Martello, 2009. Linear
sum assignment problem in Assignment Problem. 1st
Edn., Society for Industrial and Applied Mathematices,
Philadelphia, ISBN-13: 978-0898716634.

Cao, Y., 2011. Distributing code by webpage.
Cao, Y., 2013. Distributing codes by webpage.
Fang, S. and S. Puthenpura, 1993. Linear Optimization

and Extension: Thoery and Algorithm. 1st Edn.,
Prentice Hall College Div, New Jersey, ISBN-10:
0139152652, pp: 62.

Hane, C., C. Barnhart, E.L. Johnson, R. Marsten and
G.L. Nemhauser et al., 1995. The fleet assignment
problem: Solving a large-scale integer program.
Math. Programm., 70: 211-232.

 DOI: 10.1007/BF01585938
Hung, M.S. and W.O. Rom, 1980. Solving the

assignment problem by relaxation. Operat. Res., 28:
969-982. DOI: 10.1287/opre.28.4.969

Jonker, R. and A. Volgenant, 1987. Distributing codes
by webpage.

LeBlanc, L.J., R.V. Helgason and D.E. Boyce, 1985.
Improved efficiency of the frank-wolfe algorithm
for convex network programs. Transport. Sci., 19:
445-462. DOI: 10.1287/trsc.19.4.445

Zhu, X., C. Santos, J. Ward, D. Beyer and S. Singhal, 2004.
Resource assignment for large-scale computing utilities
using mathematical programming. Internet systems
and storage laboratory and HP laboratory and HP
laboratories Palo Alto.

