

© 2016 Mohd Zanes Sahid, Abu Bakar Md Sultan, Abdul Azim Abdul Ghani and Salmi Baharom. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Literature Reviews

Combinatorial Interaction Testing of Software Product Lines:

A Mapping Study

1
Mohd Zanes Sahid,

2
Abu Bakar Md Sultan,

2
Abdul Azim Abdul Ghani and

2
Salmi Baharom

1Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia
2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), Malaysia

Article history

Received: 22-03-2016
Revised: 17-10-2016
Accepted: 19-10-2016

Corresponding Author:
Mohd Zanes Sahid
Faculty of Computer Science
and Information Technology,
Universiti Tun Hussein Onn
Malaysia (UTHM), Malaysia
Email: zanes@uthm.edu.my

Abstract: Software Product Line (SPL) is a software engineering paradigm
that is inspired by the concept of reusability of common features,
formulated for different software product. Complete testing on entire SPL
is known to be unfeasible, due to the very large number of possible products
to be produced, configured using a subset or all possible features in the SPL.
This paper reports a Systematic Mapping Study (SMS) of relevant primary
studies as the evidence on the application of Combinatorial Interaction
Testing (CIT) for SPL. In CIT, one has to construct a covering array, which is
a set of configurations having valid feature combinations and every
combination of t features appears at least once in the array. This is also
known as t-wise testing. By following the systematic mapping study
guidelines, we have selected and filtered 44 primary studies for review. The
most prominent CIT techniques in aiding SPL testing are those based on
greedy algorithms followed by meta-heuristics algorithms. The motivation of
SPL testing is to anticipate the feature interaction problem, in which the
majority of the works were reported to leverage test configuration selection
approach, while some employed test configuration prioritization approach.
Numerous works have been reported, but only few works managed to
demonstrate their scalability, as most primary studies only deal with low
strength (t is less than 4) of t-wise testing.

Keywords: Systematic Mapping Study, Secondary Study, Combinatorial
Interaction Testing, Software Product Line

Introduction

In real world, many software products developed for
various domains carry some similar functionalities. These
software share similar functionalities due to the fact that
they have been developed based on the same kind of input
and output types. The similarity in the internal program
structure due to identical user requirements also contribute
to the commonalities among these software. Because of
this scenario and based on the benefit of reuse principles,
Software Product Line (SPL) has been developed as a
software development paradigm to produce software
inspired by product line approach. Clements and Northrop
(2002) defined SPL as follows:

“A software product line is a set of software
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular
market segment or mission and that are developed from
a common set of core assets in a prescribed manner”
(Clements and Northrop, 2002).

In other words, SPL is a software engineering
paradigm for creating a collection of similar software
systems from a shared set of software assets using a
well-defined production process. The main processes for
SPL software development has been developed and
refined over time by various researchers (Weiss and Lai,
1999; Czarnecki and Eisenecker, 2000; Thiel and
Peruzzi, 2000). Two main processes in SPL are Domain
Engineering and Application Engineering. In the
Domain Engineering phase, few crucial activities are
performed which includes, but not limited to, identifying
systems domain and specifying commonalities and
variabilities. In the Application Engineering phase, the
products are configured and generated by utilizing
software assets developed from previous phase. The
most important principle that spans throughout the
software engineering process is reusability based on the
concept of function similarities.

Apart from similarities of functional properties
among software, the differences of functionalities are

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

380

also of main concern, because only with these different
functionalities, each software product is distinguishable
from the other products and based on this
commonalities and variabilities, each logical
functionality is referred as feature (Lee et al., 2002) in
SPL. Features can be defined as an abstraction of
function, module or aspect of a system that represent a
unit of program construction. Features can be generally
classified into two types; core or compulsory features
and product specific or optional features.

The process of identifying, defining and documenting
these features based on the principles of commonalities
and variabilities are known as variability modeling
(Czarnecki et al., 2012). The most common variability
model developed for SPL is Feature Modeling (FM)
(Lee et al., 2002). It is a notation that represents features
and its dependencies. Feature Models are normally
visually presented using Feature Diagram in a form of
tree structure, where nodes are the SPL features and
edges are the relationship between features. Apart from
Feature Modeling, features can also be modeled using
Decision Modeling (DM) (Atkinson and Muthig, 2002)
approach. Another more recent approach to variability
model is Orthogonal Variability Model (OVM)
(Lauenroth and Pohl, 2005) which focused on orthogonal
features of an SPL.

SPL is also known as software product family, in
which each individual software product can be generated
from SPL using feature configuration process, where a
number of relevant and suitable features are selected
from the collection of all features based on the product
requirements.

In correlation to that, an important characteristic in
SPL that attracted significant attention among
researchers is feature interaction (Calder et al., 2003).
Feature interaction is a situation in which more than one
features are combined and utilized together in a single
configuration. This could result in an unspecified
functionality and might lead to incorrect execution.
Hence, it is crucial to test all possible feature
configurations in order to reduce the potential
misbehavior of interacting features. But, to test all
possible feature configurations is unfeasible. In most
trivial case, small number of features in a FM will results
in small number of possible feature configurations.
However, the number of feature configurations increase
dramatically as the size of FM increased (Kim et al.,
2011). Therefore, exhaustively testing all feature
configurations for large-scale FM is not practical.

Applying existing testing techniques to each product
separately is difficult and requires enormous resources
(Reis et al., 2007). On most cases, with the presence of a
moderate numbers of features, it will results in
exponential number of feature interactions. Moreover, it
might end up with redundant test effort. Based on that
phenomenon, there have been quite a number of attempts

to reduce the space of feature configuration testing
through feature-based test configuration selection.
Towards that, a generally accepted idea is to select a
small subset of products where the maximum possible
features interactions are most likely to occur. This is the
main principle of Combinatorial Interaction Testing
(CIT) such that not all input or configuration options
contribute to every fault in a system. It is often the case
that a fault is caused by interactions among a few inputs
or small combination of configuration options.

Using CIT, one has to construct a Covering Array
(CA). A CA is a two-dimensional array, where each
column represents a software input/parameter (or feature

in SPL context) and each row represent a test case (or
test configuration in SPL context). The strategy is to
construct the CA based on t-wise strength, where t

indicates the coverage strength (1,2,3,..,n) and it will
determine the number of feature combination that should
appear at least once in the CA. For more details on CA,
readers can refer to numerous literatures such as (Sloane,
1993; Kuhn et al., 2009; 2010).

CIT has successfully been applied in test input
generation and parameter combinations of single product
software development (Nie and Leung, 2011). One of the
main strengths of CIT is that it enables a significant
reduction of the number of test cases without
compromising functional coverage. Similarly, in SPL,
several works have been reported that apply and evaluate
the effectiveness of CIT to reduce the testing effort by
selecting a set of representative products (Johansen et al.,
2012a; 2012d; Galindo et al., 2014).

This paper is structured as follows; in section 2, the
details on the systematic mapping process are presented,
which includes definition of the research questions,
conducting the search process, filtering the evidences
based on selection criteria and extracting particulars
from selected primary studies into different
categorizations. In section 3, results based on the
extracted information are presented, followed by a
discussion on the results in section 4. In section 5, threats
to the validity of this review are presented, followed by
remarks on related works in section 6. Finally,
conclusion is presented in section 7 to wrap up this
review study and suggest ideas for future endeavor.

Research Method

Overview

This study is conducted based on Systematic
Mapping Study (SMS), a systematic process of planning,
identifying, selecting, categorizing, analyzing and
interpreting all available research evidence for a
particular area of interest. SMS is originally established
in medical research and has been adapted into software
engineering field with some adjustments and extensions

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

381

(Kitchenham and Charters, 2007; Petersen et al., 2008).
A systematic mapping study is applicable as a research
method to investigate the current achievement in the
respective area and useful in identifying regions that
demand more studies to be conducted (Kitchenham and
Charters, 2007). This technique is chosen because it
can guide one to perform review by means of
systematic process, repeatable steps and unbiased
analysis. In the planning phase of this review,
requirement of study and research questions are
constructed and it is important as the driving factor of
this whole review process. While the requirement of
this study is to categorize all existing information
about the adaptation of Combinatorial Interaction
Testing (CIT) in Software Product Lines testing, the
formulation of research questions are further
described in the following sections.

Research Questions

Specialized approaches and techniques for testing
SPL systems are deemed necessary because the
development process is different from single product
development. Some identified testing techniques are
derived from Combinatorial Interaction Testing and
Search-Based Testing (Harman et al., 2014), Specification
Based Testing (Scheidemann, 2006), Logic Based and
various hybrid testing techniques (Perrouin et al., 2010;
Hervieu et al., 2011a; Henard et al., 2013; Al-Hajjaji et al.,
2014; Sánchez et al., 2014a). Due to the availability of
various approaches, it is the motivation of this mapping
study to collect and review those works, which leads to
the first research question:

RQ1: How CIT techniques have been adapted and

applied in SPL Testing?

To further examine the first research question, the
following sub-questions have been defined:

RQ1.1: What types of approaches are used to generate

Covering Array (CA) for CIT?
RQ1.2: What is the mostly reported category of t-wise

strength?
RQ1.3: Does constraint in feature model being handled

explicitly?

Details on experiments conducted to the tool and
their data sets are gathered in order to get a better
understanding on the evaluation aspect of Combinatorial
Interaction Testing techniques in SPL. Selection of data
sets is crucial as it is used as subject for validation of the
proposed technique. Techniques that have been
implemented as a tool were identified and the
performance of the proposed techniques is analyzed

based on the measurement attributes employed by each
study. To understand these, the following questions were
raised in this review and will be answered in section 4:

RQ2: How was the proposed testing technique being

evaluated?

It is deemed necessary to further elaborate the
discussion on evaluation aspect by finding information
with respect to:

RQ2.1: The size and type of data sets utilized

(Industrial, Open-Source or Synthetic data sets)
RQ2.2: Name of other compared technique
RQ2.3: The evaluation metrics used to measure the

performance

The final and more general evidence that this review
is seeking to discover is in terms of the contribution
made by the selected primary studies with respect to
software testing effort reduction. Thus, it leads to the
third main research question, as follows:

RQ3: What is the main contribution of the proposed

technique with respect to test effort reduction?

In the next section, this paper reports the process that
has been carried out during evidence searching, as this
could assist readers to re-produce the review process
whenever necessary.

Search Process

We obtained the main sources of primary studies
for this mapping study from online databases. Five
major online databases have been searched using
specific search terms related to the criteria extracted
from research questions. The search process was done
separately on each database. The keywords used in the
search string were constructed based on multiple
keywords that are relevant to Combinatorial
Interaction Testing. Table 1 defines the keyword used
in the search process.

A series of filtering work have been performed to
exclude papers that are not related to this mapping
study. Two phases of initial filtering were applied in
this search process. The first filter excludes papers
based on its title, in which we excluded papers of type
front matters, survey, overview, report and duplicate
title. The second filter excludes papers based on its
abstract, introduction and conclusion. We omitted
those papers not within the scope of this mapping
study, which is mainly focusing on CIT testing
technique within the domain of software product line.
Table 2 shows the details of the online database
searched, with the distinct search string.

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

382

Table 1. Keyword types and values
Keyword type Value Alternative keywords
First Term “software product line”
Second Term “combinatorial testing” “combinatorial interaction testing”
 “CIT”
 “pairwise testing”
 “t-wise”
 “interaction testing”

Table 2. List of online databases searched with specialized search string
Online database Search string
ACM Digital Library Search Type: Advanced Search
http://dl.acm.org Search Field and Values:
 ALL: “software product line”
 ANY: “combinatorial testing” “combinatorial interaction testing” “CIT” “pairwise testing”
 “t-wise” “interaction testing”
IEEE Explore Search Type: Command Search
http://ieeexplore.ieee.org/ Search String: (“software product line”) AND
 ((combinatorial ONEAR/2 testing) OR (pairwise ONEAR/1 testing) OR (“twise”) OR
 (interaction ONEAR/1 testing))
Science-Direct Search Type: Expert Search
http://www.sciencedirect.com/ Search String: (“software product line”) AND ((combinatorial PRE/2
 testing) OR (pairwise PRE/1 testing) OR (“t-wise”) OR (interaction PRE/1 testing))
Springer Link Search Type: Basic Search
http://link.springer.com Search String: (“software product line”) AND ((combinatorial
 ONEAR/2 testing) OR (pairwise ONEAR/1 testing) OR (“twise”) OR (interaction ONEAR/1 testing))

Fig. 1. Primary studies selection and filtering process

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

383

Selection of Primary Studies

After the relevant primary studies have been selected
based on preliminary searching, we performed a more
strict selection. This selection process is guided by two
criteria called as inclusion and exclusion criteria
(Kitchenham and Charters, 2007). Inclusion and
exclusion criteria were defined based on the research
question. The importance of inclusion and exclusion
criteria is to ensure that the evidence can be reliably
extracted and that they classify studies correctly.

Inclusion Criteria

All primary studies that focused on specific and clear
contribution types in the form of method, model or
strategies that adopted, adapted or improved CIT for
SPL are included.

Exclusion Criteria

• All primary studies that focused on review on
general SPL testing topics, mapping studies and
open issues are excluded

• Exclusion is also made to primary studies on non-
testing techniques or testing technique but does not
employ CIT approach.

• Primary studies on CIT approach but does not meant
for software product line domain are also excluded.

Selection Process

We performed two phases of search and selection
work to filter only those relevant primary studies. The
total number of results returned by online databases is

226 publications. Titles are identified and a number of
publications are omitted due to either irrelevant or
redundant. This first filtering process eliminates 85
papers, leaving 141 papers for next filtering phase. In
the second filtering, we applied exclusion criteria and
the process excluded papers based on its abstract,
introduction and conclusion. About 98 publications
that are not within the scope of this mapping study are
excluded, hence shrank down the relevant publication
to 43 papers. Finally, snowballing selection has been
carried out, which results in inclusion of another one
paper, making the total pertinent numbers of primary
studies to 44 papers. The complete listing of selected
primary studies is presented in Table 3. The selection
process and results are depicted in Fig. 1.

The extraction and classification are based on seven
categories of data attributes, which we defined as
follows:

• General. The title, the authors, summary of the

problem, gist of the contribution and publication
venue

• Test selection. CA generation techniques, category
of t-wise strength and constraint handling technique

• Test prioritization. Prioritization technique,
prioritization criteria and prioritization goal

• Parallelization. Technique and infrastructure
• Implementation. Tool name
• Data sets. Name of data sets, nature and size
• Evaluation. Name of other technique compared,

type of performance measurement

Table 3. List of the selected primary studies
Id Title Event/Publisher Year Reference
S1 A comparison of test case prioritization
 criteria for software product lines ICST (IEEE) 2014 (Sánchez et al., 2014a)
S2 A parallel evolutionary algorithm for prioritized (Lopez-Herrejon et al.,
 pairwise testing of software product lines GECCO (ACM) 2014 2014b)
S3 A systematic test case selection methodology for product lines:
 Results and insights from an industrial case study ESE (Springer) 2014 (Wang et al., 2014)
S4 A technique for agile and automatic
 interaction testing for product lines ICTSS (Springer) 2012 (Johansen et al., 2012c)
S5 An algorithm for generating t-wise covering
 arrays from large feature models SPLC (ACM) 2012 (Johansen et al., 2012a)
S6 An improved meta-heuristic search for constrained interaction testing SSBSE (IEEE) 2009 (Garvin et al., 2009)
S7 Automated and scalable t-wise test case generation
 strategies for software product lines ICST (IEEE) 2010 (Perrouin et al., 2010)
S8 Automated incremental pairwise testing of software product lines SPLC (Springer) 2010 (Oster et al., 2010)
S9 Bow tie testing: a testing pattern for product lines EuroPLoP (ACM) 2012 (Johansen et al., 2012b)
S10 Bypassing the combinatorial explosion:
 Using similarity to generate and prioritize T-Wise Test
 Configurations for Software Product Lines TSE (IEEE) 2014 (Henard et al., 2014)
S11 Combinatorial approach for automated platform diversity testing ICSEA (IEEE) 2009 (Sisodia and
 Channakeshava, 2009)
S12 Combinatorial test generation for software
 product lines using minimum invalid tuples HASE (IEEE) 2014 (Yu et al., 2014)
S13 Combinatorial testing for feature models using CitLab ICSTW (IEEE) 2013 (Calvagna et al., 2013)
S14 Comparative analysis of classical
 multi-objective evolutionary algorithms and seeding (Lopez-Herrejon et al.,
 strategies for pairwise testing of software product lines CEC (IEEE) 2014 2014a)

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

384

Table 3. Continue
S15 Constructing interaction test suites for highly-configurable
 systems in the presence of constraints-a greedy approach TSE (IEEE) 2008 (Cohen et al., 2008)
S16 Constructing test cases for n-wise testing from tree-based test models SoICT (ACM) 2013 (Do et al., 2013)
S17 Cost-effective test suite minimization in product lines using search techniques JSS (ScienceDirect) 2015 (Wang et al., 2015)
S18 Covering SPL behaviour with sampled configurations: An initial assessment VaMoS (ACM) 2015 (Devroey et al., 2015)
S19 Evaluating improvements to a
 meta-heuristic search for constrained interaction testing ESE (Springer) 2011 (Garvin et al., 2011)
S20 Feature interaction testing of variability intensive systems PLEASE (IEEE) 2013 (Patel et al., 2013)
S21 Generating better partial covering arrays by
 modeling weights on sub-product lines MODELS (Springer) 2012 (Johansen et al., 2012d)
S22 Industrial evaluation of pairwise SPL testing with MoSo-PoLiTe VaMoS (ACM) 2012 (Steffens et al., 2012)
S23 Interaction testing of highly-configurable systems in the presence of constraints ISSTA (ACM) 2007 (Cohen et al., 2007)
S24 Minimizing test suites in software
 product lines using weight-based genetic algorithms GECCO (ACM) 2013 (Wang et al., 2013)
S25 Model-based pairwise testing for feature interaction
 coverage in software product line engineering SQJ (Springer) 2012 (Lochau et al., 2012)
S26 MoSo-PoLiTe: Tool support for pairwise and
 model-based software product line testing VaMoS (ACM) 2011 (Oster et al., 2011b)
S27 Multi-objective optimal test suite computation for
 software product line pairwise testing ICSM (IEEE) 2013 (Lopez-Herrejon et al., 2013)
S28 Multi-objective test generation for software product lines SPLC (ACM) 2013 (Henard et al., 2013)
S29 PACOGEN: Automatic generation of
 pairwise test configurations from feature models ISSRE (IEEE) 2011 (Hervieu et al., 2011b)
S30 Pairwise feature-interaction testing for SPLs: Potentials and limitations SPLC (ACM) 2011 (Oster et al., 2011a)
S31 Pairwise testing for software product lines: Comparison of two approaches SQJ (Springer) 2012 (Perrouin et al., 2012)
S32 Practical pairwise testing for software product lines SPLC (ACM) 2013 (Marijan et al., 2013)
S33 Properties of realistic feature models make
 combinatorial testing of product lines feasible MODELS (Springer) 2011 (Johansen et al., 2011b)
S34 PROW: A pairwise algorithm with const raints, order and weight JSS (ScienceDirect) 2015 (Lamancha et al., 2015)
S35 Reusable Model-Based Testing CAiSE (Springer) 2009 (Olimpiew and Gomaa, 2009)
S36 Similarity-based prioritization in software product-line testing SPLC (ACM) 2014 (Al-Hajjaji et al., 2014)
S37 Strategies for product-line verification: Case studies and experiments ICSE (IEEE) 2013 (Apel et al., 2013)
S38 Testing a data-intensive system with generated data interactions CAiSE (Springer) 2013 (Sen and Gotlieb, 2013)
S39 testing product generation in software (Lamancha and
 product lines using pairwise for features coverage ICTSS (Springer) 2010 Usaola, 2010)
S40 Testing variability-intensive systems using automated analysis:
 An application to Android SQJ (Springer) 2014 (Galindo et al., 2014)
S41 The Drupal framework: a case study to evaluate variability testing techniques VaMoS (ACM) 2014 (Sánchez et al., 2014b)
S42 Towards efficient SPL testing by variant reduction VariComp (ACM) 2013 (Kowal et al., 2013)
S43 Using feature model knowledge to speed up the generation of covering arrays VaMoS (ACM) 2013 (Haslinger et al., 2013)
S44 Variability testing in the wild: the Drupal case study SoSyM (Springer) 2015 (Sánchez et al., 2015)
Event/Publisher Description:
CAiSE - International Conference on Advanced Information Systems Engineering
CEC - Congress on Evolutionary Computation
ESE - Journal of Empirical Software Engineering
EuroPLoP - European Conference on Pattern Languages of Programs
GECCO - The Genetic and Evolutionary Computation Conference
HASE - International Symposium on High-Assurance Systems Engineering
ICSE - International Conference on Software Engineering
ICSEA - International Conference on Software Engineering Advances
ICSM - International Conference on Software Maintenance
ICST - International Conference on Software Testing, Verification and Validation
ICSTW - International Conference on Software Testing, Verification and Validation Workshops
ICTSS - International Conference on Testing Software and Systems
ISSRE - International Symposium on Software Reliability Engineering
ISSTA - International Symposium on Software Testing and Analysis
JSS - The Journal of Systems and Software
MODELS - International Conference on Model Driven Engineering Languages and Systems
PLEASE - International Workshop on Product Line Approaches in Software Engineering
SPLC - International Software Product Line Conference
SQJ - Software Quality Journal
SSBSE - International Symposium on Search Based Software Engineering
SoICT - International Symposium on Information and Communication Technology
SoSyM - Software & Systems Modeling
TSE - Transactions On Software Engineering
VaMoS - International Workshop on Variability Modeling of Software-Intensive Systems
VariComp - International Workshop on Variability and Composition

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

385

Results

Various approaches have been reported and
evaluated towards feature configuration testing of SPL
systems. Most solutions were mainly built using the
Combinatorial Interaction Testing approach, followed
by its integration with other optimization approach
such as Search-Based and Logic-Based. This section
presents what have been achieved so far and how it
was done in terms of effective utilization of CIT
approach in SPL domain.

Adaptation and Application of Combinatorial

Interaction Testing to SPL Testing

Combinatorial Interaction Testing (CIT) is one of
the most common and promising test configuration
selection approach employed to reduce the number of
selected products hence the test configuration in SPL
testing (Lamancha et al., 2013). The goal of test
configuration selection is to reduce the set of feature
combinations to a reasonable but representative set of
products achieving a high coverage of feature
interactions. Test configuration are selected in a way
that guarantees that all combinations of t features are
tested, this is called as t-wise testing (Perrouin et al.,
2010). One of the well-known variants of
Combinatorial Interaction Testing is the 2-wise (or
pairwise) testing approach (Lamancha and Usaola,
2010). In pairwise testing, one generates all possible
combinations of pairs (two) of features based on the
observation that most faults originate from
interaction of two features.

Following the CIT strategy, one has to construct
a Covering Array (CA) that consists of complete or
partial t-wise sub-array where t is defined as the
strength of feature combination. The strength is
simply the number of features considered or chose
to be the subject of testing. For pairwise/2-wise, the
strength is 2, 3-wise having strength of 3 and so on.
Generating such CA is known as NP-hard problem
(Johansen et al., 2011a), because the number of
possible features to be combined grows
exponentially with the number of features designed
for a particular SPL. For this reason, there is a need
for an efficient and practical strategy for t-wise
generation in order to get the most optimum set of
combinations within an affordable testing cost.
Thus, there is a trade-off between the completeness
of t-wise test generation and minimization of testing
effort. One might settle with partial t-wise test
generation in order to achieve acceptable and
affordable cost of testing, especially for large SPLs.
This obstacle has driven many to search for viable
approach to construct covering array.

Types of Approaches Employed to Generate

Covering Array (CA) Generation Techniques and

T-Wise Strength

There are five groups of CA generation techniques
as presented in Table 4. The most prominent approach,
which is based on greedy algorithm, are proposed in 25
primary studies. It is followed by meta-heuristics
algorithms, employed in 11 primary studies. Three
works are categorized in constraint programming
approach, whereas two and one primary studies are
reported in divide and compose and integer
programming technique, respectively. Refer to Table 3
for the primary studies title and citation.

As previously mentioned, an important attribute in
CIT is the strength of t-wise. The strength should be
carefully selected during the construction of covering
array in CIT as it will determine the extensiveness of
combination or interaction of different features; that
eventually will be evaluated in the testing process. The
most investigated strength reported in the selected
primary studies is pairwise (2-wise) strength, which
accounted for 55% (24) from all reviewed work. 13
publications (30%) have empirically evaluated their
solutions for up to 3-wise covering array. Three
publications (7%) reported the evaluation for up to 4-
wise covering array and only two works managed to
scale their work for up to 6-wise strength.

Most works claimed that they able to scale for higher
strength (t>=4), however only five works are proven
to be viable. Although it is proven that lower strength
of covering array (t<4) reveals most faults, bear in
mind that higher strength of covering array (t>=4)
could reveal residual faults especially for large SPL
systems with high number of features. Here we define
the notion of residual faults as the remaining faults
that are not detected or revealed by CIT exercising t-
wise of strength less than 4.

In terms of overall trend, it seems that greedy-based
algorithms dominated the CA generation for up to 3-
wise. For higher strength, based on the evidence, it
seems difficult, if not impossible, to generate CA,
since only single work is reported for each meta-
heuristics and greedy algorithms.

Techniques to Handle Constraints in Feature Model

An important attribute in a Feature Model, apart
from features and its relationship (mandatory, optional,
or, exclusive or), is feature constraints (requires,
excludes). Constraints are used to define relationships
between features that are difficult, if not impossible, to
be sketched in the Feature Diagram. The presence of
constraint is unavoidable as it determines the usability
and practicability of an SPL. Relationships and
constraints can normally be specified using
Conjunctive Normal Form (CNF) defined using

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

386

Boolean Logic using AND, NOT and OR. Table 5
shows the mapping table used to transform the Feature
Model into CNF.

The Feature Diagram in Fig. 2 depicted how
constraints can be included in the definition of a Feature
Model. One can use either Propositional Logic, or
Boolean Logic, or both to define the feature constraints.

On most cases, one can reduce the number of
feature combinations if constraints are introduced in
the Feature Model. Constraints impose significant
influences to a Feature Model. It can make a number of
feature configurations invalid with respect to some
strict requirements of an SPL.

Since constraint handling is crucial towards
selection of valid feature configuration, it is therefore

beneficial to extract and report all available techniques
to handle constraint in this review work. The result in
Table 6 shows that only 26 primary studies (59%)
mentioned or dealt with constraint handling in guiding
them to generate valid feature configurations. The most
frequently employed technique is using Boolean
satisfiability (SAT) solver. A total of 17 primary
studies employed this technique; where mostly (nine)
works apply this with Greedy covering array
generation technique. One paper reported for each
Model Checker and Invalid Tuple approach. There is
also one paper suggesting to manually specify the rule,
given by the domain expert. The remaining six papers
mentioned about including constraint handling
treatment but did not explicitly specify the details.

Fig. 2. An example of a constrained feature diagram for ECommerce SPL

Table 4. Distribution of primary studies based on covering array generation techniques and t-wise strength
 CA generation techniques
 ———
 Integer Divide and Constraint Meta-
t-wise Strength programming compose programming heuristics Greedy
Pairwise/2-wise S27 S7, S38 S29, S32, S40 S1, S2, S3, S6, S4, S8, S13,
 S14, S17, S24, S28 S20, S22, S25,
 S26, S34, S39, S42
3-wise S23 S5, S9, S11,
 S12, S15, S18,
 S21, S30, S36,
 S37, S41, S43
4-wise S19 S33, S44
6-wise S10 S16

Table 5. Propositional and Boolean logic mapping table for relationship and constraints
Relationship Propositional logic Boolean logic
Optional fi⇒fj ¬fi∨fj
Mandatory fi⇔fj (¬fi∨fj)∧(fi∨¬fj)
Or fi OR fj fi∨fj
Exclusive Or fi XOR fj (¬fi∧fj)∨(fi∧¬fj)

Constraint
Requires fi⇔fj ¬fi∨fj
Excludes fi XOR fj ¬(fi∧fj)

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

387

Table 6. Employment of constraint handling and covering array generation techniques
 Covering array generation techniques
 —————————————————————————————————
Constraint handling techniques Meta-heuristics Greedy Integer programming
SAT ●●●●●●● ●●●●●●●●● ●
Model checker ●
Invalid tuple ●
Given rule ●
Unnamed ● ●●●●●

Evaluation of the Proposed Techniques

Since most of current works are focusing on lower
strength (less than 4) of t-wise combinations of features
(Henard et al., 2014), it is interesting to ask whether this
phenomenon has any co-relation with the size of the data
sets that were utilized in the experiments.
Type and Size of Data sets Utilized (Industrial or

Open-Source Data Sets)

Currently, a wide sets of data or case studies have
been developed and published publicly by the
community. In this review, those data sets that are
published publicly are considered as open source data
sets. Else, it is considered as industrial data sets. The
open source data sets were either pulled out from
academic publications or other repositories. A number of
open source repositories that contain various types and
sizes of feature models are identified. The main purpose
of the repository is to encourage knowledge sharing
among research community members and ultimately
improve research quality. The five main repositories are
SPLOT, Reverse Engineering Feature Models, SPL
CONQUEROR, Feature House and SPL2GO. Those
anonymous repositories are categorized as Others.

Based on the selected primary studies, there are a total
of 111 different data sets utilized. About 89% (99) of all
data sets are coming from open source feature models.
About 12 data sets are identified as industrial data sets.
For open source data sets, majority of the primary studies
validated their works on lower strength (2 and 3-wise)
CIT, which accounted for 80% (79 data sets). Only four
data sets (Cellphone, Linux, FreeBSD and eCos) have
been utilized against 6-wise and the remaining 17 data sets
with 4-wise. This shows that current techniques that were
evaluated against open source data sets are somehow
limited to lower strength t-wise. It is to our surprise that
only single technique (S10) managed to generate 6-wise
for the biggest open source data set i.e., Linux (having
6888 number of features). The trend for industrial data
sets corroborated this phenomenon, where only single (out
of 12) data set, named as OSEK-OS, is reported to be
utilized in measuring 6-wise CIT for SPL. Nearly 60% of
all industrial data sets were reported to be utilized in
measuring only 2-wise CIT.

Looking at the size of data sets, only four data sets
(Linux, GCC_2, FreeBSD and eCos) are considered as

large in this review, which is having number of features
greater than 1000. The majority of the data sets which is
68% (76 data sets) is coming from small data sets having
number of features less than or equal to 50.

Comparison and Evaluation Metrics

A number of tools implementing their respective
techniques for CIT-based SPL testing are available.
Some of the earliest published tools are mAETG (S23),
CASA (S6) and MoSo-PoLiTe (S8). It is one the
objective of this review to find all evidence of the
empirical works that perform comparison between the
proposed solution in each primary studies with some
other tool (s). This is important as it provides proof on
the performance of the proposed technique with respect
to other earlier techniques.

Based on the information presented in Table 7, the
most frequently chosen techniques that were used as
comparison are variant of CASA (in 5 primary studies),
variant of ICPL in 4 primary studies and variant of
AETG in 3 primary studies. Most of the papers (6
studies) performed the comparison with random
technique, whereas three studies employ human
knowledge in defining the selection of test cases, to be
compared with their proposed techniques. Apart from
that, it is also to our surprise that some of the works had
been using a number of non-SPL based testing tools
(ACTS in 4 primary studies, PICT in 3 primary studies,
TestCover in two studies, Chvatal and Jenny each in
single primary study) in their empirical works.

To gauge the achievement of current techniques, we
also collect information on the evaluation metrics that
were used to measure the performance. Table 7 and
Table 8 shows 12 different evaluation metrics extracted
from the selected primary studies. The most frequently
employed evaluation metrics are Covering Array Size
(CAS) and Overall Execution Time (OET), in which
each accounted for almost 30% of all evaluation
metrics. The Feature Pairwise Coverage (FPC) metrics
appeared in 7 papers and as the name implies, it is only
used in pairwise CIT testing. Apart from FPC, other
evaluation metrics that measure the performance in
terms of covering array size are Test Minimization
Percentage (TMP) (in 3 papers) and t-wise Coverage
(TWC) (in 4 papers).

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

388

Table 7. List of tool names, compared techniques and evaluation metrics
 Evaluation metrics
Primary Tool name/ Compared ——————————————————————————————————
Studies Algorithm With AEF APFD CAS Cost FDC FPC GD HV OET TCS TMP TWC Other
S1 Enhanced-
 SPLAR Random √
S2 PPGS pICPL √ √
S3 IPT (Import
 Plugin and
 Transformation) Manual √ √ √ √ √
S4 CVL-based
 Eclipse Plugin none √
S5 ICPL Alg.1, CASA,
 ACTS,
 MoSo-PoLiTe √ √
S6 CASA mAETG
 (modified AETG) √ √
S7 Perrouin none √
S8 MoSo-PoLiTe none √ √
S9 Johansen none √
S10 Enhanced- ACTS, CASA,
 SPLCAT SPLCAT, CASA-n √ √
S11 Sisodia Jenny √
S12 LOOKUP PICT, SPLCA √ √
S13 CitLab ACTS √ √
S14 Lopez-Herrejon none √ √ √ √ √
S15 Cohen AETG √ √
S16 FOT-nw FOT √
S17 TEMSA Random √ √ √ √ √
S18 VIBeS none √
S19 Enhanced mAETG
 CASA (modifiedAETG) √ √
S20 MPFM none √ √
S21 pICPL none √
S22 MoSo-PoLiTe none √ √
S23 mAETG and PICT,
 SA_SAT TestCover √ √
S24 Wang Random √ √ √ √ √
S25 Lochau none √ √
S26 MoSo-PoLiTe none √
S27 Lopez-Herrejon none √ √
S28 Henard Random √ √ √
S29 PACOGEN MoSo-PoLiTe √
S30 MoSo-PoLiTe none √
S31 Perrouin none √ √ √ √
S32 Enhanced Manual
 PACOGEN Technique √
S33 Johansen none √ √
S34 PROW PICT, TestCover
 ACTS, CASA √ √
S36 Enhanced- ICPL, CASA,
 FeatureIDE CHVATAL,
 Random √
S37 SPLVERIFI ER none √ √
S38 FAKTUM Manual √ √
S39 Customizable
 AETG none √
S40 TESALIA Random √
S41and S44 Sánchez none √
S42 and S43 Enhanced ICPL ICPL √ √
Note: Italicised tool/algorithm names are unavailable, hence name of the first author is used.
Acronyms:

 AEF: Average Execution Frequency APFD: Average Percentage of Faults Detected CAS: Covering Array Size
 FDC: Fault Detection Capability FPC: Feature Pairwise Coverage GD: Generational Distance
 HV: Hypervolume OET: Overall Execution Time TCS: Test Config Similarity
 TMP: Test Minimization Percentage TWC: t-wise Coverage

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

389

Table 8. Evaluation metrics
Evaluation metrics Count of usage %
AEF 3 3.53
APFD 4 4.71
CAS 24 28.24
Cost 1 1.18
FDC 6 7.06
FPC 7 8.24
GD 1 1.18
HV 1 1.18
OET 24 28.24
TCS 1 1.18
TMP 3 3.53
TWC 4 4.71
Unknown 6 7.06

Fig. 3. Distribution of studies based on test selection or test

prioritization

Two evaluation metrics that measure the number of
faults are Average Percentage of Faults Detected
(APFD) and Fault Detection Capability (FDC). APFD
appeared in 4 papers, whereas FDC appeared in 6 papers.

Two measurement metrics, unique to multi-objective
problems, that were employed to measure the quality of
Pareto fronts are Hypervolume (HV) and Generational
Distance (GD) and they appeared only in one paper. The
remaining two evaluation metrics are Test Config Similarity
(TCS) and Average Execution Frequency (AEF) which
appeared in one and three primary studies, respectively.

In terms of the number of evaluation metric techniques
employed, 20 primary studies use two evaluation metrics,

18 studies use one evaluation metrics, four primary studies
use five evaluation metrics and one primary studies
employed one evaluation metrics each.

Contribution of the Proposed Techniques

Many have proposed combinatorial interaction
testing techniques that employ systematic selection,
guided prioritization, or combination of both and this
review managed to capture those papers, as per
summarized in Fig. 3. Test selection has long been the
driving motivation for SPL combinatorial testing, as
early as the year 2007 with one primary study reported.
The quantity starts to increase to five studies in 2011 and
keeps increasing to 11 studies in 2013. On the other
hand, test prioritization only appears under
combinatorial testing for SPL in year 2012 with single
publication. The study doubles in 2013 and in year 2014
the reported published studies peaked to five. The
number gets reduced to three studies in 2015.

Test Configuration Selection

As previously mentioned, the obstacle faced in
selecting test configuration in SPL is due to the huge
number of possible test configuration that can be
constructed even for medium size SPL systems. The
problem was compounded by the difficulty in handling
constraints, exhibit in the feature model, as the
presence of constraints are un-avoidable. Constraint
handling in test configuration selection first appeared in
year 2007 by S23 (tool named mAETG). A lengthy
discussion on constraint handling techniques was
presented and they introduced the concept of forbidden
tuples. mAETG was extended in S15 in 2008 and they
exploited the current covering array generation with an
open constraint handling technique called as Constraint
Covering Array (CCA). The building block of mAETG
was based on Simulated Annealing (SA). Similarly, in
primary study S6, CASA has been fabricated using SA,
a year later, whereby two improvements have been
proposed in CASA, as (i) modified strategy for
selecting sample size and (ii) changing the
neighborhood of current solution. CASA has been
extended in S19 with more thorough evaluation.

In 2010, primary study S39 proposed an adaptation of
non-SPL CIT technique to tackle test configuration in
SPL, coined as Customizable AETG. During the same
year, primary study S7 proposed a systematic way to
sample small sets of test cases, using “divide-
andcompose” strategy. It splits t-wise combinations into
solvable subsets. Then each subset is solved using
constraint solver. S8 and S26 proposed a tool named as
MoSo-PoLiTe, implementing technique that combines
graph transformation, CIT and forward checking. It was
based on the notion of applying transformation of feature
models allows a simpler processing of SPL model

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

390

especially in a more complex SPL. MoSo-PoLiTe was
further extended in S30, implemented Combinatorial
Design (CD) approach that combines pairwise with
model-based testing by transforming feature models into
state charts. An industrial evaluation of combinatorial
SPL testing using MoSo-PoLiTe was performed at
Danfoss Power Electronics A/S and reported in S22.

In 2011, PACOGEN introduced in S29 and proposed
a definition of global constraint and filtering algorithm to
select only valid test configurations. It was further
enhanced in S32 and validated on industrial setting of
Video Conferencing SPL (VCSPL). Apart from that,
Johansen et al. have published S33, in which a technique
based on Chvátal and SPLAR has been proposed. It was
empirically tested with numerous data sets and managed
to generate covering array of t-wise with strength up to
4, of which many state-of-the-art techniques failed to
achieve. Later in 2012, primary study S25 had proposed
the mapping of feature models to state charts and the
mapping was used as test model to generate test
configuration. Meanwhile, S4 proposed a CVL-based
Eclipse plugin that integrates SPL and Agile based
system. They proposed a solution able to deal with
compatibility issues among features in continuous
integration phase.

Driven by the promising achievement in S33, Johansen
et al. extended their work in S5. They published the tool
named ICPL, capable of processing large feature models,
better execution time and most importantly produced
small covering array. They used the fact that a (t-1)-wise
is always a subset of the t-wise, thereby creates lower
strength recursively to build up a higher strength
covering array. Extending the framework of ICPL, S43
introduced two reduction rules to eliminate some
features from the FM to enhance CA generation process.
Similarly, by extending ICPL, S42 proposed a filter to
reduce set of features and suggested extension of feature
models with three attributes, which is shared resources,
communication channels utilized and feature priorities.

A year later, apart from MoSo-PoLite, another work
reported in S20 (tool named MPFM), also dealt with
industrial-based SPL, called as Site X. Their approach
is quite similar to the notion of regression testing,
where their main concern was to improve the process
of testing an entire product during software evolution.
Their main contribution was the introduction of
separation of concerns (modularization) of feature
models into multiple perspectives. Features from FM
are grouped into multiple perspectives. Instead of
using feature as parameter and true/false as values,
MPFM use perspective as parameter and features of
perspective as values. MPFM stands for Multi-
Perspective Feature Models.

CitLab has been reported in S13 as a
Combinatorial Interaction Model (CIM) that

implements simplification of constraints thru
elimination, which reduce the time required by the
constraint checking process. Another transformation-
based technique proposed in S16, which transform
feature model into extended logic tree.

Having many testing goals in test configuration
selection is sometimes unmanageable. The goals might
go against each other. To overcome this issue, study S28
utilized a genetic algorithm to handle multiple
conflicting objectives in test configuration selection for
SPLs. They formulate the pairwise coverage, number of
products and testing cost as three objective functions.
Generally, they dealt with SPL testing by exploring the
possibility of achieving multi-objective CIT
optimization. Another work, S24, also employ multi
objectives fitness function to optimize CIT based on
genetic algorithm. It is extended as a tool named IPT in
primary study S3, which proposed Component Family
Model (CFM) that provides traces between test cases and
feature models. IPT has been validated in an industrial
setting of SATURN SPL.

Another approach proposed in S27 employs integer
programming in test configuration selection to anticipate
the trade-offs between maximizing test coverage and
minimizing test suite size, based on the non-domination
of any testing objectives. A more recent work in S14
proposed similar multi-objectives optimization based on
the work of CASA but with improvement in seeding
strategy. They suggested the seeding strategies to be
based on three information; (i) test suites size, (ii) test
suites that were generated using greedy algorithm and
(iii) test suites that were generated using an existing
single-objective pairwise testing approach.

A tool chain called as SPLVERIFIER was published
in S37. It has the capability to select product for testing
using either product-based, sample-based or family
based model checking. They claimed that family-based
model checking allows for better fault detection
compared to the other two. Meanwhile, FAKTUM,
published in S38 was the only work that attended the less
studied area of SPL testing which is testing the data
intensive SPL system. They proposed a divide-and
combine strategy to tackle feature interaction problem
using Generated Data Interactions.

Primary study S12 published a tool named
LOOKUP in 2014, which they claimed employed an
efficient algorithm based on validity checking using
minimum invalid tuples (MITs). Recently, in 2015,
TEMSA has been published in S17, which acts as a
recommender tool that suggests an appropriate meta-
heuristics algorithm based on the selected objective
function. It supports three families of meta-heuristics
algorithms, i.e., Evolutionary Algorithm (EA),
Particle Swarm Optimization (PSO) and Cellular

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

391

Genetic Algorithm + Differential Evolution (CellDE).
They defined five objective function that user can
select, i.e., Test Minimization Percentage (TMP),
Feature Pairwise Coverage (FPC), Fault Detection
Capability (FDC), Overall Execution Time (OET) and
Average Execution Frequency (AEF). Another work,
referred here in S18, proposed a feature transition
system that can be used to evaluate behavioral
coverage of a particular test configuration. Their
approach has been implemented in VIBeS.

Test Configuration Prioritization

The employment of test prioritization approach
driven by Combinatorial Interaction Testing for SPL first
appeared in year 2012. Primary study S21 (with tool
named pICPL) focused on industrial setting of TOMRA
SPL, where the main problem that they were dealing
with was unrealistic effort in generating test
configuration. Their most significant contributions were
to generate covering array by weight-based prioritization
of feature interactions. Weight is calculated based on the
number of product instances (exists in the market),
which results in fewer and more realistic set of product
to be tested. This allows the same covering array to be
generated on every execution.

Similarly, weight-based criteria had been exploited
by MPFM (S20), TESALIA (S40), S41, S44 and PROW
(S34) to achieve test configuration prioritization. The
weight for features is determined by a given feature
important ratings (S20). For TESALIA, weight is
assigned by feature value and cost, in which cost is
defined explicitly as the number of configuration that
include a specific feature. Cost per product instance is
calculated based on the number of concrete features,
whereas value is calculated based on the market share of
each feature. For S41, prioritization of test configuration
is achieved by analyzing historical faults. Faults in
Drupal system are captured in the project’s issue
tracking system. The issue tracking system of two
Drupal versions were manually searched in order to
extract faults in system evolution. Faults were mapped
with features and the higher the number of faults, the
higher the weight of a particular feature towards
prioritization. In an extension to S41 (S44), apart from
change driven weight assignment based on faults, they
also proposed product complexity criteria, product
dissimilarity criteria and non-functional properties of
features to guide in the prioritization process. Recently,
S34 introduced the notion of pair weight to mark pairs of
features that are more significant to be tested, thereby
imposing prioritization. However, weight is pre-assigned
based on testers' knowledge, hence it prioritization is
driven by human factor.

Meta-heuristic techniques have been proposed in S2
(PPGS), S28, S1 and S10 to further improve test
configuration prioritization results. In S28,
multiobjective optimization approach has been leveraged
as their prioritization technique. The criteria for
prioritization that they proposed were to maximize
pairwise coverage and minimize number of products and
cost. Another approach on prioritization that were based
on genetic algorithm is cited here as S1 (Enhanced-
SPLAR). The approach employs five criteria to assist in
test configuration prioritization, i.e., (i) Cross-Tree-
Constraints Ratio (CTCR), (ii) Coefficient of
Connectivity-Density (CoC), (iii) Variability Coverage
and Cyclomatic Complexity (VC&CC), (iv) Number of
Reused Features and (v) Product Dissimilarity. As
opposed to multi-goal in S28, S1 aimed at achieving
single goal, which is to detect fault as early as possible.

A more recent study reported here (S10) take
advantage of the simplified evolutionary algorithm, (1+1)
EA, with single population size, no crossover operator and
simple bit-wise mutation operator. S2 proposed parallel
genetic algorithm in 2014. The criteria for prioritization
proposed by them are based on nonfunctional criteria,
which consist of estimation of performance, memory
consumption and footprint. They also utilized product
dissimilarity criteria, based on ranking, as opposed to S1
and S10, which employs Jaccard Distance algorithm.
Product dissimilarity has also been applied by S36 using
Hamming Distance algorithm. Prioritization goals and
prioritization criteria for the relevant primary studies are
summarized in Table 9.

Parallelization of the Process

Realizing on the set back of the scalability aspect in
terms of covering array generation time, few primary
studies are already moving one step further by
accelerating the process with parallelization. Two
categories of parallelization have been identified. The
first one is based on cluster, proposed by three primary
studies S2, S14 and S27. The second category is based
on data parallel, employed by primary study S5 (ICPL).
Parallelization based on clusters requires the availability
of tens to hundreds of physical dedicated machine,
which logically being managed by a cluster manager.
Due to its more simpler implementation and deployment,
cluster based parallelization is more favorable than data
parallel, which require more customized codes and
settings. It is interesting to highlight that all the three
studies under cluster based parallelization only managed
to achieve t-wise of strength 2, whereas the data parallel
approach employed in ICPL managed to scale up to 3
twise strength. We also found that this parallel version of
ICPL is the only tool that is capable of generating
covering array for Linux data set, the largest data set
reported in this review.

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

392

Table 9. Prioritization criteria and prioritization goals
Prioritization criteria Prioritization goals
————————————————————————————————————— ———————————————————————————————
 Early Higher Small Maximize Maximize
Primary Product # of reused Products Non- Weight- fault fault covering weight T-Wis
study complexity Features dissimilarity functional Based Other detection detected array Coverage Coverage Other
S1 CTCR, Jaccard
 CoC, VCCC Yes distance Random Yes
S2 Ranked- Performance, Random Yes Yes
 Based memory
 consumption,
 footprint
S10 Jaccard
 distance Yes
S20 Feature Yes Yes
 importance
 ratings
S21 Product Yes
 instances
S28 Random Yes Yes Yes Minimize
 (Pairwise) cost
S34 Knowledge Yes
 based
S36 Hamming Yes Maximize
 distance interaction
 coverage
S40 Feature Yes
 value and
 cost
S41 Historical Yes
 faults
S44 VC,CC Jaccard Size Historical
 distance faults Yes

Discussion

Covering Array Generation Techniques

The influence and effectiveness of search-based
techniques in SPL combinatorial testing is still under-
explored, because there are still lack of work in
employing metaheuristics algorithms in covering array
generation as compared to greedy algorithms for t-wise
testing of strength less than 4. On the other hand, there
are some evidence that show the viability of both
approach in generating CA for higher strength of t-wise.
However, all works are dealing with only uniform
strength of t-wise covering array. They set a fixed and
single value of t during the covering array construction,
hence exercising uniform combination of features. An
alternative or perhaps a complementary strategy is to
consider a varying number of t, which is called as
variable strength of t-wise. This strategy is widely
accepted in non-SPL testing. Interactions do not exists
uniformly between inputs or parameters (Nie and Leung,
2011). Some inputs or parameters will have strong
interactions with other parameters, while some others
may have few or no interactions. Similarly in SPL,
some group of features have more critical processes
and requires much more features to support its
operations as oppose to other less critical features.
While lower t-wise strength might be sufficient in
testing the less critical features, a higher t-wise
strength could be needed to effectively test the more
critical features. To the best of this review process,
none of current state-of-the-art of CIT approaches in

SPL deal with variable strength of combinatorial
testing. This has to be further investigated as it could
possibly improve the effectiveness of SPL testing.

Data Sets Size

The results on the type and size of data sets
utilized by the selected primary studies suggests that
not only lower strength of t-wise is being handled by
majority of current works, as what being highlighted
by Henard et al. (2014), but it is generally limited to
small and medium sized SPL systems.

Reduction of Problem Space

Techniques reported in S7 and S38 suggested that the
problem space is divisible into smaller problem by using
divide and compose strategy. Solving the problem in a
number of small scale problems could hinder the
difficulties of testing in large scale SPL. In S7, they
proposed a systematic way to sample a small set of test
cases. Their strategy is to split the t-wise combinations
into solvable subsets. The idea is to model the problem
as a set of constraints and employs a constraint solver to
find for solutions for subsets of identified constraints. On
the other hand, S38 proposed a divide and combine
strategy to tackle feature interaction problem using
Generated Data Interactions. This idea was inspired by
the intuition that faults may occurred from interactions
of database features (e.g., Field values). As compared to
others, this primary study is the only work attending the
less studied area of SPL testing which is testing the data-
intensive SPL system.

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

393

Evaluation Metrics

Regarding to the evaluation metrics, in general,
relatively small number of primary studies are focusing
on faults related metrics, which is only four percent
reported for Average Percentage of Faults Detected
(APFD) and seven percent for Faults Detection
Capability (FDC). Almost one third of the studies were
measuring based on Covering Array Size (CAS) and
another one third on Overall Execution Time (OET).
Although, both (CAS and OET) are beneficial in measuring
the efficiency of the proposed technique, it is of equal
important to measure the effectiveness, which could be
evaluated using faults related metrics. Thus, we perceived
more works should be conducted to further evaluate the
effectiveness of CIT in testing SPL-based systems.

Test Selection and Prioritization

There have been quite a number of established works
in non-SPL testing especially in the area of test case
selection and test case prioritization. This has been
motivated by the needs to have a more practical and
economical testing process. It could be achieved by
systematically selecting subset of test cases or running
prioritized test cases based on particular testing
objectives, which normally is to find faults as early as
possible. Similarly, in SPL, the needs to have an efficient
and effective testing process have been identified during
the early years of SPL software paradigm adoption.
Running all the test cases in an existing test suite can
results in a large amount of effort or even become
infeasible due to deadlines and cost constraints. It may
take few days to complete the test configuration
generation on an SPL using CIT even with low (2 or 3) t-
wise covering array (Johansen et al., 2012a). To tackle
this, Combinatorial Interaction Testing techniques that
employ systematic selection, objective prioritization,
or combination of both have been proposed by many
and are still an active research area. Weight-based
prioritization and product dissimilarity are suggested
as most popular prioritization approaches. It is to our
surprise that prioritization based on the number of
reused features is less considered (one out of eleven)
by researchers that adopted CIT in SPL. Feature is one
of the most substantial elements in variability
modeling of SPL and reusability is one of the must-
have ingredients in SPL. Thus, we expect to see more
works in prioritizing test configuration using number
of reused features.

Parallelization

A couple of attempts have been seen to incorporate
parallel processing to speed up the selection and
prioritization process. However, we suggest this area
demands further research, because of the lack of work

especially on handling higher strength of t-wise and
evaluation against large-scale data sets.

Threats to Validity

Several limitations have been identified during the
review works. Proper treatments have been put in place
to ensure the review to be as complete and
comprehensive as possible. The suitability of the search
terms could be questioned, however to the best of our
knowledge, all the search terms especially “software
product lines” and “combinatorial testing” are well
established and universally accepted in its respective
context. On the other hand, the accuracy of the search
strings is also of our concern. Therefore, search strings
were carefully constructed and suited to each search
engine. Apart from Boolean operators, we also employed
proximity operators (i.e., ONEAR, PRE) to get the best
and precise search results. Regarding to the quality of
source of primary studies, all primary studies were
obtained from reliable and reputable sources, coming
from various academic publication fora.

Related Works

This mapping study is focusing on finding evidences
in the form of primary studies that are related to the
application of Combinatorial Interaction Testing for
SPL. An earlier mapping study (Engstrom and
Runeson, 2011) highlighted that one of the main
challenge in SPL testing is the large number of tests.
Reuse of test assets by considering commonalities
perceived as one way to enable test effort reduction,
but da Mota Silveira Neto et al. (2011) highlighted that
there was no general solution that deals with systematic
reuse in SPL testing. Generally, based on current
evidences, this review suggests that CIT is a plausible
approach to minimize the redundancy of test assets.

A systematic review by Lamancha et al. (2013)
reported that works have been done on SPL testing on
different testing phases which includes unit testing,
integration testing and functional testing. Multitudes of
works have been reported on functional testing and
variability testing by exploiting UML models and use
cases. Other related systematic review performed by
Machado et al. (2014) only focusing on general
testing strategies for SPL. The author reported that
testing strategies can be classified as either selecting
products prior to testing, or conducting test on
individual product. Despite of different scope of
study, it shares a common aim with this mapping
study, which is to collect and review all relevant
primary studies towards test effort reduction.

An orchestrated survey by Khalsa and Labiche
(2014) provides a comprehensive and lengthy discussion
on available algorithms and tools based on
Combinatorial Testing on non-SPL domains.

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

394

Recently, a mapping study published by
Lopez-Herrejon et al. (2015) reported that numerous
works have been done on Combinatorial Interaction
Testing in SPL, by looking from two perspectives which
is what phase and how phase of CIT. Similar to our
work, they also presented state-of-the-art works based on
the techniques employed in CIT. While their works
focused on finding evidences based on different phases
of SPL testing, our work investigate the level of t-wise
strength in covering array generation towards test
configuration selection and prioritization. Our work also
differs from theirs such that we reports on the current
trend in evaluation metrics employed in CIT testing of
SPL. Very small number of works evaluates the
effectiveness (such as APFD) of their approach against
efficiency measures (such as CAS).

Conclusion

SPL testing demands new mechanism due to its
nature of feature commonality and variability. Feature
interaction problem of SPL received numerous attentions
from testing community, hence showing that it is a
significant issue to be addressed. Combinatorial
Interaction Testing that employs greedy-based algorithms
and meta-heuristics algorithms are identified as two
prominent techniques to anticipate the feature interaction
problem, thus it is interesting to investigate how well the
feature interaction problem has been tackled so far.

Based on this mapping study, it is learnt that most
studies are focusing on lower strength of t-wise
combinatorial testing. Over ninety percent of the
reviewed primary studies were engaging t-wise of
strength two or three, further substantiating claims made
by Henard et al. (2014). The main limitation that is
causing this phenomenon is due to the expensive
computation time required to deploy higher strength t-
wise testing. The exploitation of Combinatorial
Interaction Testing technique has long been leveraged on
single software product development. Some empirical
results for single software development problem
suggested that higher strengths are important in detecting
more faults. Therefore, based on the small quantity of
studies on high strength t-wise, it is deemed necessary to
further explore the possible correlation between higher
strength of t-wise with higher faults detection. Apart
from that, thus far, we have not discovered any works
that exploit variable strength covering array in
Combinatorial Interaction Testing of SPL. It is therefore
our plan to devise a work towards that direction.

With respect to meta-heuristics techniques, so far,
only classical evolutionary algorithms are appearing on
the primary studies that were engaged in order to
improve the covering array generation process.
However, to our best knowledge, there are still no work
that employs other evolutionary algorithms such as Fruit

Flies Algorithm, Artificial Fish Swarm Algorithm,
Firefly Algorithm, Cultural Algorithm and Estimation of
Distribution Algorithms. While these algorithms
demonstrate convincing achievements in other area of
software testing, it might produce a plausible
contribution towards a better Combinatorial Testing of
SPL system.

Acknowledgement

The authors wish to thank anonymous reviewers for
their valuable, insightful comments that improve the
content of this review paper. We also express our great
appreciation and thanks to MOHE and UTHM for
sponsoring one of the authors in PhD research. The
authors also wish to thank Universiti Putra Malaysia
(UPM) which provided the facilities and appropriate
environments for carrying out this study and to the
Software Engineering research group of FSKTM/UPM
for their invaluable comments and suggestions.

Funding Information

This research is funded by the Malaysia's Ministry of
Higher Education (MOHE), Universiti Putra Malaysia
(UPM) and Universiti Tun Hussein Onn Malaysia
(UTHM).

Author’s Contributions

Mohd Zanes Sahid: Designed the literature review
plan and organized the study and contributed to the
writing of the manuscript.

Abu Bakar Md Sultan: The main research
supervisor, advised and supervised in the review process
of this systematic mapping study.

Abdul Azim Abdul Ghani: Advised and supervised
in the software engineering review process of this study.

Salmi Baharom: Advised and supervised in
theoretical and technical aspect of software testing issues
of the research.

Ethics

The corresponding author confirms that the other
authors have read and approved the manuscript and there
is no ethical issue involved. This paper is original and
contains unpublished material.

References

Al-Hajjaji, M., T. Thüm, J. Meinicke, M. Lochau and
G. Saake, 2014. Similarity-based prioritization in
software product-line testing. Proceedings of the
18th International Software Product Line
Conference, ACM, pp: 197-206.

 DOI: 10.1145/2648511.2648532

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

395

Apel, S., A.V. Rhein, P. Wendler, A. Größlinger and
D. Beyer, 2013. Strategies for product-line
verification: Case studies and experiments.
Proceedings of the 35th International Conference on
Software Engineering, May 18-26, IEEE Xplore
Press, San Francisco, CA, USA, pp: 482-491.

 DOI: 10.1109/ICSE.2013.6606594
Atkinson, C. and D. Muthig, 2002. Component-Based

Product-Line Engineering with the UML. Software
Reuse: Methods, Techniques and Tools, Gacek,
C. (Ed.), Springer, Berlin, ISBN-10: 3540460209,
pp: 343-344.

Calder, M., M. Kolberg, E.H. Magill and S. Reiff-
Marganiec, 2003. Feature interaction: A critical
review and considered forecast. Comput. Networks:
Int. J. Comput. Telecommun. Network., 41: 115-141.
DOI: 10.1016/s1389-1286(02)00352-3

Calvagna, A., A. Gargantini and P. Vavassori 2013.
Combinatorial testing for feature models using
citlab. Proceedings of the 6th International
Conference on Software Testing, Verification and
Validation Workshops, Mar. 18-22, IEEE Xplore
Press, pp: 338-347. DOI: 10.1109/ICSTW.2013.45

Clements, P. and L. Northrop, 2002. Software Product
Lines: Practices and Patterns. 3rd Edn., Addison-
Wesley, Boston, ISBN-10: 0201703327, pp: 563.

Cohen, M.B., M.B. Dwyer and J. Shi, 2007. Interaction
testing of highly-configurable systems in the
presence of constraints. Proceedings of the
International Symposium on Software Testing and
Analysis, Jul. 09-12, ACM, pp: 129-139.

 DOI: 10.1145/1273463.1273482
Cohen, M.B., M.B. Dwyer and J. Shi, 2008.

Constructing interaction test suites for highly-
configurable systems in the presence of constraints:
A greedy approach. IEEE Trans. Software Eng., 34:
633-650. DOI: 10.1109/TSE.2008.50

Czarnecki, K. and U.W. Eisenecker, 2000. Generative
Programming: Methods, Tools and Applications. 1st
Edn., Addison Wesley, Boston ISBN-10: 0201309777,
pp: 832.

Czarnecki, K., P. Grünbacher, R. Rabiser, K. Schmid
and A. Wąsowski, 2012. Cool features and tough
decisions: A comparison of variability modeling
approaches. Proceedings of the 6th International
Workshop on Variability Modeling of Software-
Intensive Systems, Jan. 25-27, Leipzig, Germany,
pp: 173-182. DOI: 10.1145/2110147.2110167

da Mota Silveira Neto, P.A., I.D. Carmo Machado,
J.D. McGregor, E.S. de Almeida and S.R. de
Lemos Meira, 2011. A systematic mapping study
of software product lines testing. Inform.
Software Technol., 53: 407-423.

 DOI: 10.1016/j.infsof.2010.12.003

Devroey, X., G. Perrouin, A. Legay, P.Y. Schobbens and
P. Heymans, 2015. Covering SPL behaviour with
sampled configurations: An initial assessment.
Proceedings of the 9th International Workshop on
Variability Modelling of Software-Intensive Systems,
Jan. 21-23, Hildesheim, Germany, pp: 59-59.

 DOI: 10.1145/2701319.2701325
Do, T.B.N., T. Kitamura, V.T. Nguyen, G. Hatayama

and S. Sakuragi et al., 2013. Constructing test
cases for N-wise testing from tree-based test
models. Proceedings of the 4th Symposium on
Information and Communication Technology,
Dec. 05-06, Danang, Viet Nam, pp: 275-284.

 DOI: 10.1145/2542050.2542074
Engstrom, E. and P. Runeson, 2011. Software product

line testing-a systematic mapping study. Inform.
Software Technol., 53: 2-13.

 DOI: 10.1016/j.infsof.2010.05.011
Galindo, J.A., H. Turner, D. Benavides and J. White,

2014. Testing variability-intensive systems using
automated analysis: An application to Android.
Software Quality J., 24: 1-41.

 DOI: 10.1007/s11219-014-9258-y
Garvin, B.J., M.B. Cohen and M.B. Dwyer, 2009. An

improved meta-heuristic search for constrained
interaction testing. Proceedings of the 1st International
Symposium on Search Based Software Engineering,
May 13-15, IEEE Xplore Press, pp: 13-22.

 DOI: 10.1109/SSBSE.2009.25
Garvin, B.J., M.B. Cohen and M.B. Dwyer, 2011.

Evaluating improvements to a meta-heuristic search
for constrained interaction testing. Empirical
Software Eng., 16: 61-102.

 DOI: 10.1007/s10664-010-9135-7
Harman, M., Y. Jia, J. Krinke, W. B. Langdon, J. Petke

and Y. Zhang 2014. Search based software
engineering for software product line engineering: a
survey and directions for future work. Proceedings
of the 18th International Software Product Line
Conference-Volume 1, Sept. 15-19, Florence, Italy,
pp: 5-18. DOI: 10.1145/2648511.2648513

Haslinger, E.N., R.E. Lopez-Herrejon and A. Egyed,
2013. Using feature model knowledge to speed up
the generation of covering arrays. Proceedings of the
7th International Workshop on Variability
Modelling of Software-Intensive Systems, Jan. 23-
25, Pisa, Italy, pp: 16-16.

 DOI: 10.1145/2430502.2430524
Henard, C., M. Papadakis, G. Perrouin, J. Klein and

Y.L. Traon, 2013. Multi-objective test generation
for software product lines. Proceedings of the 17th
International Software Product Line Conference,
Aug. 26-30, Tokyo, Japan, pp: 62-71.

 DOI: 10.1145/2491627.2491635

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

396

Henard, C., M. Papadakis, G. Perrouin, J. Klein and
P. Heymans et al., 2014. Bypassing the
combinatorial explosion: Using similarity to
generate and prioritize t-wise test configurations
for software product lines. IEEE Trans. Software
Eng., 40: 650-670. DOI: 10.1109/tse.2014.2327020

Hervieu, A., B. Baudry and A. Gotlieb, 2011a.
PACOGEN: Automatic generation of pairwise test
configurations from feature models. Proceedings of
the IEEE 22nd International Symposium on
Software Reliability Engineering, Nov. 29-Dec. 2,
IEEE Xplore Press, pp: 120-129.

 DOI: 10.1109/issre.2011.31
Hervieu, A., B. Baudry and A. Gotlieb, 2011b. Pacogen:

Automatic generation of pairwise test configurations
from feature models. Proceedings of the 22nd
International Symposium on Software Reliability
Engineering, 29 Nov.-2 Dec., IEEE Xplore Press,
pp: 120-129. DOI: 10.1109/ISSRE.2011.31

Johansen, M.F., Ø. Haugen and F. Fleurey, 2011b.
Properties of realistic feature models make
combinatorial testing of product lines feasible.
Proceedings of the 14th International Conference on
Model Driven Engineering Languages and Systems,
Oct. 16-21, Wellington, New Zealand, pp: 638-652.

Johansen, M.F., Ø. Haugen and F. Fleurey, 2012a. An
algorithm for generating t-wise covering arrays from
large feature models. Proceedings of the 16th
International Software Product Line Conference,
Sept. 02-07, Salvador, Brazil, pp: 46-55.

 DOI: 10.1145/2362536.2362547
Johansen, M.F., Ø. Haugen and F. Fleurey, 2012b. Bow

tie testing: A testing pattern for product lines.
Proceedings of the 16th European Conference on
Pattern Languages of Programs, Jul. 13-17, Irsee,
Germany. DOI: 10.1145/2396716.2396725

Johansen, M.F., Ø. Haugen, F. Fleurey, A.G. Eldegard
and T. Syversen, 2012d. Generating better partial
covering arrays by modeling weights on subproduct
lines, Springer.

Johansen, M.F., Ø. Haugen, F. Fleurey, E. Carlson and
J. Endresen et al., 2012c. A Technique for Agile and
Automatic Interaction Testing for Product Lines.
Testing Software and Systems, Nielsen, B. and C.
Weise, (Eds.), Springer, ISBN-10: 3642346901,
pp: 39-54.

Johansen, M., Ø. Haugen and F. Fleurey, 2011a. Properties
of realistic feature models make combinatorial testing
of product lines feasible. Proceedings of the 14th
International Conference on Model Driven
Engineering Languages and Systems, Oct. 16-21,
Wellington, New Zealand, pp: 638-652.

Khalsa, S.K. and Y. Labiche, 2014. An orchestrated
survey of available algorithms and tools for
combinatorial testing. Proceedings of the 25th
International Symposium on Software Reliability
Engineering, Nov. 3-6, IEEE Xplore Press,
pp: 323-334. DOI: 10.1109/ISSRE.2014.15

Kim, C.H.P., D.S. Batory and S. Khurshid, 2011.
Reducing combinatorics in testing product lines.
Proceedings of the 10th International Conference on
Aspect-Oriented Software Development, Mar. 21-25,
Porto de Galinhas, Brazil, pp: 57-68.

 DOI: 10.1145/1960275.1960284
Kitchenham, B.A. and S. Charters, 2007. Guidelines for

performing systematic literature reviews in software
engineering. Software Engineering Group, Keele
University.

Kowal, M., S. Schulze and I. Schaefer, 2013. Towards
efficient SPL testing by variant reduction.
Proceedings of the 4th International Workshop on
Variability and Composition, Mar. 24-29, Fukuoka,
Japan, pp: 1-6. DOI: 10.1145/2451617.2451619

Kuhn, D.R., R.N. Kacker and Y. Lei, 2010. SP 800-142.
Practical Combinatorial Testing, National Institute
of Standards and Technology.

Kuhn, R., R. Kacker, Y. Lei and J. Hunter, 2009.
Combinatorial software testing. Computer, 42: 94-96.
DOI: 10.1109/MC.2009.253

Lamancha, B.P., M. Polo and M. Piattini, 2013.
Systematic Review on Software Product Line
Testing. Software and Data Technologies, Springer,
Heidelberg, ISBN-10: 3642361773, pp: 58-71.

Lamancha, B.P., M. Polo and M. Piattini, 2015. PROW:
A pairwise algorithm with constraints, order and
weight. J. Syst. Software, 99: 1-19.

 DOI: 10.1016/j.jss.2014.08.005
Lauenroth, K. and K. Pohl, 2005. Principles of Variability.

Software Product Line Engineering: Foundations,
Principles and Techniques, Pohl, K., G. Böckle, F.J.
van der Linden, (Eds.), Springer Science and Business
Media, Berlin, ISBN-10: 3540289011, pp: 57-88.

Lee, K., K. Kang and J. Lee, 2002. Concepts and
Guidelines of Feature Modeling for Product Line
Software Engineering. Software Reuse: Methods,
Techniques and Tools, Gacek, C. (Ed.), Springer,
pp: 62-77.

Lochau, M., S. Oster, U. Goltz and A. Schürr, 2012.
Model-based pairwise testing for feature interaction
coverage in software product line engineering.
Software Quality J., 20: 567-604.

 DOI: 10.1007/s11219-011-9165-4
Lopez-Herrejon, R.E., F. Chicano, J. Ferrer, A. Egyed

and E. Alba, 2013. Multi-objective optimal test suite
computation for software product line pairwise
testing. Proceedings of the 29th IEEE International
Conference on Software Maintenance, Sept. 22-28,
IEEE Xplore Press, pp: 404-407.

 DOI: 10.1109/ICSM.2013.105
Lopez-Herrejon, R.E., J. Ferrer, F. Chicano, A. Egyed

and E. Alba, 2014a. Comparative analysis of classical
multi-objective evolutionary algorithms and seeding
strategies for pairwise testing of software product
lines. Proceedings of the IEEE Congress on
Evolutionary Computation, Jul. 6-11, IEEE Xplore
Press, pp: 387-396. DOI: 10.1109/CEC.2014.6900473

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

397

Lopez-Herrejon, R.E., J. Javier Ferrer, F. Chicano, E.N.
Haslinger and A. Egyed et al., 2014b. A parallel
evolutionary algorithm for prioritized pairwise
testing of software product lines. Proceedings of the
Annual Conference on Genetic and Evolutionary
Computation, Jul. 12-16, Vancouver, BC, Canada,
pp: 1255-1262. DOI: 10.1145/2576768.2598305

Lopez-Herrejon, R.E., S. Fischer, R. Ramler and A.
Egyed, 2015. A first systematic mapping study on
combinatorial interaction testing for software product
lines. Proceedings of the 8th International Conference
on Software Testing, Verification and Validation
Workshops, Apr. 13-17, IEEE Xplore Press, pp: 1-10.
DOI: 10.1109/ICSTW.2015.7107435

Machado, I.D.C., J.D. McGregor, Y.C. Cavalcanti and
E.S. de Almeida, 2014. On strategies for testing
software product lines: A systematic literature
review. Inform. Software Technol., 56: 1183-1199.
DOI: 10.1016/j.infsof.2014.04.002

Marijan, D., A. Gotlieb, S. Sen and A. Hervieu, 2013.
Practical pairwise testing for software product lines.
Proceedings of the 17th International Software
Product Line Conference, Aug. 26-30, Tokyo, Japan,
pp: 227-235. DOI: 10.1145/2491627.2491646

Nie, C. and H. Leung, 2011. A survey of combinatorial
testing. ACM Comput. Surveys, 43: 1-29.

 DOI: 10.1145/1883612.1883618
Olimpiew, E.M. and H. Gomaa, 2009. Reusable Model-

Based Testing. Formal Foundations of Reuse and
Domain Engineering, Edwards, S.H. and G.
Kulczycki (Eds.), Springer Science and Business
Media, Berlin, ISBN-10: 3642042104, pp: 76-85.

Oster, S., F. Markert and P. Ritter, 2010. Automated
Incremental Pairwise Testing of Software Product
Lines. Software Product Lines: Going Beyond,
Bosch, J. and J. Lee (Eds.), Springer, Berlin,

 ISBN-10: 3642155790, pp: 196-210.
Oster, S., I. Zorcic, F. Markert and M. Lochau, 2011b.

MoSo-PoLiTe: Tool support for pairwise and model-
based software product line testing. Proceedings of
the 5th Workshop on Variability Modeling of
Software-Intensive Systems, Jan. 27-29, Namur,
Belgium, pp: 79-82. DOI: 10.1145/1944892.1944901

Oster, S., M. Zink, M. Lochau and M. Grechanik, 2011a.
Pairwise feature-interaction testing for SPLs:
Potentials and limitations. Proceedings of the 15th
International Software Product Line Conference,
Aug. 22-26, Munich, Germany.

 DOI: 10.1145/2019136.2019143
Patel, S., P. Gupta and V. Shah, 2013. Feature

interaction testing of variability intensive systems.
Proceedings of the 4th International Workshop on
Product Line Approaches in Software Engineering,
May 20-20, IEEE Xplore Press, pp: 53-56.

 DOI: 10.1109/PLEASE.2013.6608666

Lamancha, B.P. and M.P. Usaola, 2010. Testing Product
Generation in Software Product Lines Using Pairwise
for Features Coverage. Testing Software and Systems,
Petrenko, A., A. Simão and J. Maldonado, Springer,
Berlin, ISBN-10: 3642165737, pp: 111-125.

Perrouin, G., S. Oster, S. Sen, J. Klein and B. Baudry et
al., 2012. Pairwise testing for software product lines:
Comparison of two approaches. Software Quality J.,
20: 605-643. DOI: 10.1007/s11219-011-9160-9

Perrouin, G., S. Sen, J. Klein, B. Baudry and Y. le Traon,
2010. Automated and scalable t-wise test case
generation strategies for software product lines.
Proceedings of the 3rd International Conference on
Software Testing, Verification and Validation, Apr.
6-10, IEEE Xplore Press, pp: 459-468.

 DOI: 10.1109/icst.2010.43
Petersen, K., R. Feldt, S. Mujtaba and M. Mattsson,

2008. Systematic mapping studies in software
engineering. Proceedings of the 12th International
Conference on Evaluation and Assessment in
Software Engineering, Jun. 26-27, ACM, pp: 68-77.
dl.acm.org/citation.cfm?id=2227123

Reis, S., A. Metzger and K. Pohl, 2007. Integration testing
in software product line engineering: A model-based
technique. Proceedings of the 10th International
Conference on Fundamental Approaches to Software
Engineering, Mar. 24-Apr. 1, Braga, Portugal, pp: 321-
335. DOI: 10.1007/978-3-540-71289-3_25

Sánchez, A.B., S. Segura and A. Ruiz-Cortés, 2014a. A
comparison of test case prioritization criteria for
software product lines. Proceedings of the 7th
International Conference on Software Testing,
Verification and Validation, 31 Mar.-4 Apr., IEEE
Xplore Press, pp: 41-50. DOI: 10.1109/ICST.2014.15

Sánchez, A.B., S. Segura and A. Ruiz-Cortés, 2014b.
The Drupal framework: A case study to evaluate
variability testing techniques. Proceedings of the 8th
International Workshop on Variability Modelling of
Software-Intensive Systems, Jan. 22-24, Sophia
Antipolis, France. DOI: 10.1145/2556624.2556638

Sánchez, A.B., S. Segura, J.A. Parejo and A. Ruiz-
Cortés, 2015. Variability testing in the wild: The
Drupal case study. Software Systems Model., 1: 1-
22. DOI: 10.1007/s10270-015-0459-z

Scheidemann, K.D., 2006. Optimizing the selection of
representative configurations in verification of
evolving product lines of distributed embedded
systems. Proceedings of the 10th International on
Software Product Line Conference, IEEE Computer
Society, Aug. 21-24, IEEE Xplore Press, pp: 75-84.
DOI: 10.1109/SPLINE.2006.1691579

Sen, S. and A. Gotlieb, 2013. Testing a Data-Intensive
System with Generated Data Interactions. Advanced
Information Systems Engineering, Salinesi, C., M.C.
Norrie and O. Pastor, Springer Berlin Heidelberg,
Berlin, ISBN-10: 364238708X, pp: 657-671.

Mohd Zanes Sahid et al. / Journal of Computer Sciences 2016, 12 (8): 379.398
DOI: 10.3844/jcssp.2016.379.398

398

Sisodia, R.S. and V. Channakeshava, 2009.
Combinatorial approach for automated platform
diversity testing. Proceedings of the 4th International
Conference on Software Engineering Advances, Sept.
20-25, IEEE Xplore Press, pp: 134-139.

 DOI: 10.1109/ICSEA.2009.28
Sloane, N.J., 1993. Covering arrays and intersecting

codes. J. Combinat. Designs, 1: 51-63.
 DOI: 10.1002/jcd.3180010106
Steffens, M., S. Oster, M. Lochau and T. Fogdal, 2012.

Industrial evaluation of pairwise spl testing with
moso-polite. Proceedings of the 6th International
Workshop on Variability Modeling of Software-
Intensive Systems, Jan. 25-27, Leipzig, Germany,
pp: 55-62. DOI: 10.1145/2110147.2110154

Thiel, S. and F. Peruzzi, 2000. Starting a product line
approach for an envisioned market: Research and
experience in an industrial environment.
Proceedings of the 1st Conference on Software
Product Lines: Experience and Research Directions,
(ERD’ 00), Kluwer Academic Publishers, Denver,
Colorado, USA, pp: 495-512.

 DOI: 10.1007/978-1-4615-4339-8_26
Wang, S., S. Ali and A. Gotlieb, 2013. Minimizing test

suites in software product lines using weight-based
genetic algorithms. Proceedings of the 15th Annual
Conference on Genetic and Evolutionary
Computation, Jul. 06-10, AMSTERDAM,
Netherlands, pp: 1493-1500.

 DOI: 10.1145/2463372.2463545

Wang, S., S. Ali and A. Gotlieb, 2015. Cost-effective
test suite minimization in product lines using search
techniques. J. Syst. Software, 103: 370-391.

 DOI: 10.1016/j.jss.2014.08.024
Wang, S., S. Ali, A. Gotlieb and M. Liaaen, 2014. A

systematic test case selection methodology for
product lines: Results and insights from an industrial
case study. Empirical Software Eng., 21: 1-37.

 DOI: 10.1007/s10664-014-9345-5
Weiss, D.M. and C.T.R. Lai, 1999. Software Product-

Line Engineering: A Family-based Software
Development Process. 1st Edn., Addison-Wesley,
Reading, ISBN-10: 0201694387, pp: 426.

Yu, L., F. Duan, Y. Lei, R.N. Kacker and D.R. Kuhn,
2014. Combinatorial test generation for software
product lines using minimum invalid tuples.
Proceedings of the 15th International Symposium on
High-Assurance Systems Engineering, Jan. 9-11, IEEE
Xplore Press, pp: 65-72. DOI: 10.1109/HASE.2014.18

