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Abstract: Generation of membership functions is an important step in 

construction of fuzzy systems. Since membership functions reflect what is 

known about the variables involved in a problem, when they are correctly 

modeled the system will behave in the manner that is expected in the 

context of the problem being addressed. Since their creation, type-1 

membership functions have been used in domains characterized by 

uncertainty. Nevertheless, use of type-2 membership functions has been 

expanding over recent years because they are considered more appropriate 

for this application. Both types of membership function can be generated 

with the aid of automatic methods that implement generation of 

membership functions from data. These methods are convenient for 

situations in which it is not possible to obtain all the information needed 

from an expert or when the problem in question is complex. The aim of this 

study is to present a review of the most important automatic methods for 

generation of membership functions, both type 1 and interval type-2, 

highlighting the principal characteristics of each approach. 
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Introduction  

Fuzzy set theory was created by Zadeh (1965) and 

since then it has been applied to modeling of problems 

characterized imprecision or vagueness. It has 

contributed to many practical domains, such as, for 

example, medicine, economics, engineering, etc. 

A fuzzy inference system is comprised of variables 

and a rule base. The variables are represented by one or 

more fuzzy sets, which particularize knowledge about 

that domain. According to Ross (2010), the membership 

functions describe what is known about a fuzzy set. 

Definition of membership functions is therefore a 

very important step in designing fuzzy systems, because 

it is part of the knowledge base needed to make 

inferences and, consequently, achieve the desired results. 

It is through membership functions that knowledge 

about the variables involved in a problem is specified. 

The most commonly employed types of membership 

function are Gaussian, Triangular and Trapezoidal. 

Definition of functions can be based on the knowledge 

of experts on the subject in question or can be performed 

with the aid of automatic methods. 

The membership functions most commonly 

employed in fuzzy systems are those known as type-1 

functions. In a type-1 fuzzy membership function, 

each element of the problem domain has a degree of 

membership in the fuzzy set. This degree of 

membership is a real value in the range [0,1]. 

However, this characteristic has been identified as 

providing an inadequate representation of uncertainty, 

because it indicates with exactitude the degree of an 

element's membership of the fuzzy set (Klir and Yuan, 

1995; Mendel, 2003). Type-1 fuzzy sets are 

appropriate when the knowledge available for 

modeling is adequate to determine elements' 

membership of the fuzzy set (Ross, 2010). 

Sometime after their initial work on fuzzy sets, 

Zadeh (1975) published a work that takes into account 

the uncertainty in defining the degree of membership 

of an element in a fuzzy set. Thus, he introduced type-

2 fuzzy sets, which are sets whose membership degree 

of an element is a type-1 fuzzy set. This means that 

instead of a real value, the degree of membership can 

be a type-1 fuzzy set. A type-2 fuzzy set is 

represented by a type-2 fuzzy membership function. 
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Type-2 fuzzy sets have greater power to represent 

uncertainty, since they have more degrees of freedom 

and are three-dimensional (Mendel and John, 2002). 

According to Liang and Mendel (2000), the 

occurrence of uncertainty in modeling fuzzy systems 

can be identified: (a) in the definition of linguistic 

concepts, the meanings of which may be different for 

different people; (b) in the definition of the 

consequences of rules, which also may not be a common 

choice within a group of individuals; (c) when there is 

noise in the data. The use of type-2 sets to represent 

uncertainty creates greater computational complexity. 

To deal with this, a more specific type of fuzzy set, 

called the interval type-2 fuzzy set, can be used to 

reduce this complexity (Liang and Mendel, 2000). 

Automatic methods facilitate extraction of knowledge 

from databases and can help with discovery of the ideal 

parameters, thereby avoiding the need for exhaustive 

simulations to determine the best parametrization for 

the model. Methods for discovery of knowledge in 

large databases for modeling or identification of fuzzy 

systems are therefore desirable (Sala et al., 2005; 

Cintra, 2012). 

With regard to type-1 fuzzy sets, there are several 

proposals in the literature for discovering 

membership functions from data. However, the authors 

of previous reviews of the subject (Cintra et al., 2008; 

Medasani et al., 1998) have found that the methods 

investigated are complex and there is a lack of criteria 

on which to base the choice of which best fits the 

problem. 

It is against this background that this paper 

presents a review of the current state of the art in 

development of type-1 and type-2 membership 

functions. Overall, it is clear that there are still very 

few studies that have dealt with construction of type-2 

sets, while optimization methods are widely used for 

type-1 sets. Table 1 contains a summary of the 

characteristics of the methods reviewed for generation 

of type-1 membership functions. All of these methods 

are developed from the starting point of a database 

containing information about the problem domain. 

Some of the types of problems that are explored by 

each method include controllers, data mining, image 

processing, pattern recognition and classification. 

The shape of membership functions is 

predetermined for all of the methods except for the 

method based on neural networks. The type most 

often used is the triangular function. Additionally, the 

only method in which the number of fuzzy sets 

defined for each membership function is not fixed is 

the histogram method. It should be pointed out that 

the characteristics listed in Table 1 are specific to the 

models described in the studies reviewed in this paper, 

which will be presented in greater detail in the 

sections that follow. 

There is little published on methodology for 

constructing membership functions for type-2 fuzzy sets 

and this is therefore a fertile field for research (Mendel, 

2010). The subject is also increasing in importance 

because of the growing number of applications for type-

2 functions (Wu and Mendel, 2014).  

Optimization algorithms are often used to define 

type-1 membership functions and they can also be 

used for definition of type-2 membership functions. 

However, in this case they are only able to explore a 

restricted number of parameters, because of the 

computational complexity involved (Linda and Manic, 

2011). In general, the studies reviewed in this paper 

employ heuristics, histograms, C-means algorithms, 

simulated annealing and/or statistical data for 

definition of type-2 set membership functions, as 

summarized in Table 2. 

It was observed that the majority of the methods 

reviewed do not concern themselves with 

transparency, i.e., with the interpretability of the sets 

that are generated.  Additionally, the shapes of the 

functions are not discovered as part of this process, 

rather they are chosen a priori. Some of these methods 

employ data during the process of function definition, 

while others employ domain experts. 

 
Table 1. Characteristics of methods for generation of type-1 membership functions 

 Characteristics 

 -------------------------------------------------------------------------------------------------------------------------------------- 

   Shape of the  Number of  

Methods Source of knowledge Domains membership functions fuzzy sets 

Neural networks Data Classification Variable Fixed 

Histogram Data Pattern recognition, classification Gaussian Variable 

Genetic algorithms Data and experts on the Controllers Triangular, trapezoidal Fixed  

 problem domain 

Ant colony Data Data mining, controllers Triangular, variable Fixed, variable 

particle swarm Data and experts on the Controllers, image Gaussian, triangular, Fixed 

 problem domain processing s-shaped 

Others Data Classification, controllers Triangular, Gaussian 2 to 9 sets 



Andréia Alves dos Santos Schwaab et al. / Journal of Computer Sciences 2015, 11 (9): 976.987 

DOI: 10.3844/jcssp.2015.976.987 

 

978 

Table 2. Characteristics of methods for generation of type-2 membership functions 

 Characteristics 

 ------------------------------------------------------------------------------------------------------------------------------- 

   Shape of the  Number of  

Methods Source of knowledge Domains membership functions fuzzy sets 

Linda and Manic Data and experts on Sensors Gaussian Fixed  

(2011) the problem domain 

Mendel (2007b) Experts and non-experts  Any All types Undefined 

 on fuzzy systems 

Choi and Rhee Data and experts on  Pattern recognition All types Fixed and variable 

 (2009) the problem domain 

Almaraashi (2012) Data Prediction of temporal series Gaussian Fixed 

Hidalgo et al. (2012) Data Biometrics Gaussian Fixed 

Maldonado et al. (2014) Data Controllers Triangular and trapezoidal Fixed 

 

Methods for generation of type-1 and type-2 

membership functions will be presented in detail in 

Sections 2 and 3 of this article. Section 4 ends the 

paper with the Conclusions. 

Type-1 Fuzzy Sets  

Fuzzy modeling is an important approach that is 

widely used in applications in which the domain is 

characterized by uncertainty or by imprecise information. 

Applications of fuzzy modeling can be found in fields 

such as pattern recognition and classification (Das, 

2013; Bombardier and Schmitt, 2010; Al-Sakka et al., 

2013), controllers (Karthikeyan et al., 2013), 

simulation (Abd et al., 2013), image processing (Kaur 

and  Sethi, 2013) and others. 

By constructing these applications employing 

fuzzy set theory, it is possible to build a mechanism 

that is capable of representing the approximate 

reasoning that human beings engage in when faced 

with uncertainty and can also be used as a tool for 

representing the terms used in natural language (Ross, 

2010). This is because, in contrast with classic set 

theory, in which the elements either are or are not 

members of a given set, a fuzzy set has the ability to 

represent the degrees of membership of elements of a 

universe of discourse. This makes a fuzzy set a 

powerful tool for representing the uncertainty and 

vagueness of linguistic terms (Klir and Yuan, 1995). 

The Equation 1 (Klir and Yuan, 1995) represents 

the mapping of degrees of membership of elements in 

universe X onto a fuzzy set A, which is also known as 

a type-1 fuzzy set. This notation signifies that each 

element  x in universe X, does not simply belong or 

not to fuzzy set A, rather it has a degree of 

membership of fuzzy set A that falls within an interval 

from zero to 1: 

]1,0[: →X
A

µ  (1) 

 

The membership function for fuzzy set A can be 

written as in Equation 2 (Zadeh, 1965), which is a 

representation that is adequate for a continuous domain: 

 









= ∫
x

x
A

A
)(µ

 (2) 

 

In order to be in a position to define the fuzzy set 

for the domain of a problem, it is necessary to plan the 

concepts that will be dealt with in the problem in such 

a way that they adequately reflect the knowledge, 

whether this is acquired from data or from experts. 

With regard to this, it is necessary, in addition to 

mapping the degrees of membership, to also 

determine the shape of the fuzzy set's membership 

function. Commonly used shapes include: Triangular, 

Trapezoidal, Gaussian, S-shaped and Z-shaped. The 

shape of the membership function also has an impact 

on the results and so the function that best fits the 

representation of the fuzzy set should be chosen. 

Figure 1 illustrates the elements of a fuzzy set. A 

normal fuzzy set will have at least one element that 

has a membership value equal to one, which is shown 

in the center, or core. There are also elements that 

have degrees of membership that fall within the 

interval from 0 to 1, which is an area that has been 

termed the boundary. All elements x of universe X that 

are part of fuzzy set A are distributed within a region 

called the support (Ross, 2010). 

Therefore, definition of a membership function 

must take account of the following: (a) how many 

fuzzy sets will be defined for the variable, (b) what 

shapes the functions have and (c) which parameters 

will be adopted for the membership function. 
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Fig. 1. Elements of a fuzzy set. Source: Ross (2010) 

 

Automatic Methods for Generation of Type-

1 Membership Functions 

Although definition of membership functions is an 

important step in modeling fuzzy systems, there is no 

predefined sequence of steps to be followed. 

Additionally, the methods that have been described in 

the literature are restricted to specific domains of 

application (Cintra et al., 2008; Medasani et al., 1998). 

Calling on the help of experts on the domain of the 

problem is a widely-employed technique. Very often, 

however, the complexity of the problem to be dealt 

with and the number of variables involved mean that 

the task is onerous. The alternative is to choose a 

method for automatization of development of 

membership functions. The subsections that follow 

will present some of these methods, based on neural 

networks, heuristics, histograms, genetic algorithms, 

ant colonies, particle swarms and other techniques. 

Neural Networks 

Neural networks are one way of acquiring degrees of 

membership. The method requires both a training dataset 

(to enable the network to learn from examples) and a 

dataset for generating the membership functions. In a 

neural network designed for classification, the 

conventional architecture takes the characteristics of the 

problem as input neurons and the problem classes as 

output neurons (Ross, 2010). The membership function 

that results from this proposal is illustrated in Fig. 2. 

It can be observed from Fig. 2 that the result of this 

neural network is a given element's degree of membership 

of the regions of the problem, which are R1, R2 and R3. 

Yang and Bose (2006) performed the generation of 

membership functions using self-organizing maps and 

applied the method to a classification problem. In this 

model the network input vector is composed both of the 

problem characteristics and of the problem classes. 

According to the authors, this approach offers advantages 

over other methods when there are imbalances in samples. 

 

 

Fig. 2. Membership function for one point (x1, x2) in the 

problem domain. Source: Ross (2010) 

 

Other methods that were investigated in that study 

exhibited variations in the shape of the membership 

function when the data contained noise (the Histogram 

and Fuzzy C-Means methods). 

Histogram 

A histogram represents the frequency distribution of 

a variable. In statistics, a histogram is used to understand 

the scenario of which the variable whose distribution it 

represents is a part. It is this property that has enabled 

researchers to explore methods for using a histogram to 

define membership functions. 

Medasani et al. (1998) proposed a method for 

definition of membership functions for each class or 

region of a problem using characteristics histograms. To 

achieve this, histograms must be obtained for each 

characteristic of the class or region and then a Gaussian 

distribution mixture model must be found that 

represents the weighted sum of the densities of the 

characteristics of the problem (Reynolds, 2008). The 

resulting distribution will then be used as the 

membership function. The authors who describe this 

technique consider it simple to implement. 

A study published by Choi and Rhee (2009) 

investigating fuzzy pattern recognition proposed a 

strategy for obtaining membership functions in which 

histograms for the classes in the problem are smoothed 

using a method called 3 point Triangular window. 

Additionally, the histogram is also normalized so that it 

can be fitted to a polynomial function (of the minimum 

possible degree). In that study specifically, the histogram 

was fitted to a Gaussian function. The total number of 

Gaussian functions depends on the peaks that are 

obtained from the histogram and the mean of the 

Gaussian functions will be located at the apices of the 

peaks of the histogram. The procedure proposed is not 

considered complex. 

Genetic Algorithms 

A genetic algorithm (Holland, 1975) is an 

evolutionary method that has been widely adopted and 
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employed for problems of optimization. The algorithm 

develops a strategy for generation of populations that 

is always based on the best individuals from previous 

generations. At the end of the algorithm's execution, it 

is obtained a population with the fittest individuals 

(solutions) in accordance with the objective function 

of the method. Methods based on genetic algorithms 

are widely used for generation of membership 

functions. Herman et al. (2009) developed a genetic 

algorithm to find the membership functions for a 

fuzzy controller. The algorithm evaluates the 

membership functions of the population based on the 

overshoot (the percentage that exceeds the variable's 

final values) of the response. Each individual in the 

population represents all of the membership functions, 

both input and output and each gene in the 

chromosome is a linguistic variable in the problem. 

Each membership function has five fuzzy sets, three 

Triangular and two Trapezoidal. Additionally, the 

parameters are real numbers. The results observed in 

that study were considered satisfactory for the 

problem in question (Herman et al., 2009). 

Figure 3 illustrates the structure usually employed 

for genetic algorithms for optimization of fuzzy 

membership functions. Each chromosome in the 

solution presents the codification of the parameters of 

all of the membership functions, both input and output. 

Each element shown in the definition of Input 1 

represents the parameter of a specific membership 

function (MF1P1 -parameter 1 of membership function 

1). In the case of Fig. 3, the definition of Input 1 has n 

membership functions, and trapezoidal functions are 

represented at the start and the end of the string. 
A paper published by Huynh et al. (2012) presents 

a proposal in which different shapes of membership 

functions are employed. The parameters of the 

membership functions are each adjusted individually 

and the functions can take asymmetrical shapes. The 

result was improved interpretability of the rule base 

through a process of reducing the number and length 

of the rules for the fuzzy system for which the method 

was tested. 

Ant Colony 

The Ant Colony System is a method inspired on the 

behavior of ant colonies. It is an algorithm for search and 

optimization according to an objective function, which 

can either be minimization or maximization (Colorni and 

Dorigo, 1991) (Dorigo et al., 1996). 

Hong et al. (2009) applied the Ant Colony System 

algorithm to extraction of membership functions in a 

fuzzy data mining problem. Each membership 

function has discreet parameters and is represented by 

a string of bits and each membership function 

represents one possible solution within the search space.  

 
 
Fig. 3. Chromosomal structure of a genetic algorithm for 

optimization of membership functions 

 

 
 
Fig. 4. The solution found by an ant. Source: adapted from 

Hong et al. (2009) 

 

At the end of execution of the algorithm, the 

membership function with the highest fitness value is 

chosen, i.e., the function closest to the objective function 

(and which corresponds to the route followed by the ant 

that had the greatest quantity of pheromone). The 

membership functions produced in that study are 

triangular and are defined by 2 parameters, which 

indicate the center of the triangle and its width. Initially, 

the membership function parameters are set to values 

that include the interval of the items in the database. 

Graphs are plotted to identify the path to the best set of 

membership functions. 

Figure 4 illustrates an example of the graph plotted 

during execution of the algorithm. In this graph, each point 

that is plotted will be used to define the width and center of 

a triangular membership function (Hong et al., 2009). 

A later paper by Wu et al. (2012) described an 

improved method for discovery of membership functions 

in the domain of fuzzy data mining in which the 

parameters can be continuous. Additionally, the adapted 

version generates the solution discovery graph 

dynamically. The authors stated that the results achieved 

were of higher quality than those reported in the earlier 

paper by Hong et al. (2009), in which the parameters had 

been defined in a discrete space. 

Castillo et al. (2015), the authors proposed a 

modified ACO based on five of its variations:  Ant 

System (AS), Elitist Ant System (EAS), Rank Based Ant 

System (ASRank), Man-Min Ant System (MMAS), Ant 

Colony System (ACS). These variations of the ACO are 

applied sequentially to optimize the shape of the MF 
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(Triangular, Trapezoidal, Gaussian, etc.) and its 

parameters, and the rules of the fuzzy system. The 

algorithm was applied to a ball and beam system. The 

results obtained by the proposed method were 

satisfactory when comparing to each variation applied 

individually. 

Particle Swarm 

Particle Swarm Optimization (PSO) is based on the 

behavior of groups of individuals, such as birds or fish, 

for example. In this type of algorithm, the individual 

members of a population learn from their own 

experiences and also from the experiences of the 

individuals that exhibit the best performance in the 

group. This property can allow the group to successfully 

locate its goal (Kennedy and Eberhart, 1995). There are a 

number of publications that describe development of 

membership functions based on particle swarm 

algorithms (Nieradka and Butkiewicz, 2007; Fang et al., 

2008; Permana and Hashim, 2010). 

Nieradka and Butkiewicz (2007) conducted a study 

employing a PSO algorithm to optimize the parameters 

of fuzzy membership functions. Their research was in 

the area of image processing and the purpose was to 

model linguistic concepts used in the area. The 

membership functions parameters were optimized using 

the concepts of entropy and a fuzzy index. The function 

that best fits the problem is the one with greatest entropy 

(the greatest quantity of information) and has the greatest 

vagueness index (the function with the highest index is 

that which best describes the fuzzy set). The format 

chosen for the sets was S-shaped. 

Fang et al. (2008) developed a fuzzy controller to 

control water level in a water tank. The particle swarm 

method was used to find parameters of a membership 

function with a pre-established shape. Thus, the particle 

represents the input and output parameters of the 

function. The objective is to minimize the control's error, 

tuning the membership functions as necessary. The 

method proved to be adequate when compared with a 

conventional PDI controller. However, the membership 

functions had subnormal shapes (there were sets with no 

elements with a degree of membership equal to 1) and 

only Gaussian functions were used. 

In research by Permana and Hashim (2010), the 

particle swarm algorithm was used to optimize the 

response of a controller for the Backup trucker problem, 

in which the intention is to guide a wagon from any 

point so that it arrives at the dock perpendicularly. Both 

input and output membership functions have a triangular 

shape. The PSO algorithm is used to optimize three 

parameters of these functions: center, right and left. The 

membership functions are tuned using the algorithm 

until the performance of the fuzzy system is considered 

adequate. The number of fuzzy sets for the membership 

functions was determined on the basis of existing 

knowledge about the Backup trucker problem, for which 

linguistic terms are already known. The results achieved 

with this method were superior in terms of response and 

convergence, when compared to a fuzzy system defined 

at the start on the basis of prior knowledge (Permana and 

Hashim, 2010). 

Methods Based on Heuristics 

Finally, there are also strategies described in the 

literature employing heuristics to investigate definition 

of membership functions. Two such heuristic 

approaches, applied to pattern recognition problems, are: 

FuzzyDBD (Cintra et al., 2009) and FuzzyDBDII 

(Cintra et al., 2011). 

The FuzzyDBD method (Cintra et al., 2009) was 

considered a rapid method by its authors. Working from 

a database, the result of the method is the membership 

functions for the problem. In order to achieve this 

purpose, the membership function is defined as 

triangular, the total number of fuzzy sets for each 

variable is determined using the Wang and Mendel 

method (Wang, 2003) and the fuzzy sets are equally 

distributed across the problem domain (all sets have the 

same sized support). The steps followed in that study are 

summarized in Fig. 5. 

With the aim of not always generate the same number 

of fuzzy sets for all attributes, Cintra et al. (2011) 

improved FuzzyDBD to create FuzzyDBDII. In the later 

study each attribute was evaluated individually to 

determine the total number of sets needed. Three 

different techniques to achieve this end were assessed: 

gain information, ReliefF ranking filter, and the Wang 

and Mendel method. These techniques were analyzed 

using a FuzzyDT, which is a fuzzy decision tree. 

Experiments were conducted using a database for 

classification problems and the proposed method 

exhibited promising results (Cintra et al., 2011). The 

authors concluded that the interval of 2 to 9 fuzzy sets 

per problem attribute should have been restricted further 

in order to avoid generating large rule bases. 
 

 
 
Fig.  5. Steps in implementation of the Fuzzy DBD method. 

Source: Cintra et al. (2009) 
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Another interesting research is related to hybrid 

methods. Martínez-Soto et al. (2015), the authors 

developed a hybrid GA-PSO to solve the minimization 

of the steady state error in two types of controllers, with 

different levels of complexity. The results obtained by 

the hybrid method were better than those achieved by the 

application of PSO and GA individually. 

Considerations on Methods for Generation of Type-

1 Membership Functions 

All of the methods reviewed and described above 

were applied to specific domains and are not therefore 

generic approaches. Furthermore, each of them has its 

own problems that are dependent on the domain of 

application. In the case of neural networks, for 

example, these require training data and can be 

complex to implement, but they can be a good option 

for nonlinear problems. 

The histogram technique can be implemented when 

problems have a significant quantity of data. However, 

whether or not the quantity of data is significant will 

only be known when the method is implemented. 

Genetic algorithms, the ant colony system and 

particle swarms all require an objective function to be 

able to find a solution. Additionally, they can become 

stuck at local maximums (minimums) and can also 

take a long time to converge. Heuristic methods have 

provided good solutions with low computational 

complexity, with restriction of the domain of 

application. Additionally, the heuristic methods 

described in this article offer a more wide ranging 

solution for design of fuzzy systems, including with 

regard to the rule base. 

Type-2 Fuzzy Sets 

Type-2 fuzzy sets were introduced by Zadeh (1975), 

who created them as a method for dealing with 

uncertainty related to construction of the membership 

functions themselves, allowing degrees of membership 

to be represented not by crisp numbers, but by another 

fuzzy set. However, until the 1990s the volume of 

research in this area was small, although it has 

increased since then (Mendel, 2007a; John and 

Coupland, 2007). As the field matured, two classes of 

type-2 sets have coalesced: 
 

• General type-2 fuzzy sets: these are sets for which 

the degree of membership is also a fuzzy set. Thus, 

fuzzification of element x in the primary domain 

has a degree of membership u which, in turn, has 

a degree of membership, known as secondary 

degree of membership. Mathematically, the 

definition of a general type-2 fuzzy set can be 

expressed by Equation 3: 

{ }]1,0[,,),,( ⊆∈∀∈∀=
x

J
x

JuXx
Ã

uxÃ µ  (3) 

 

Where: 

 X = Primary domain 

J
x
 = Secondary domain, and the values of both vary 

within the range 0 to 1 

 

• Interval type-2 fuzzy sets (Liang and Mendel, 2000): 

these are sets in which the secondary degree of 

membership always has the value 1. Therefore, in 

fuzzification of element x, the value of u is found, 

which, in turn, reaches 1. This means that the 

combination of input x and the primary degree of 

membership u always result in the same secondary 

degree. The definition of an interval fuzzy set is 

expressed in Equation 4:  

 

{ }]1,0[,,1),,( ⊆∈∀∈∀=
xx

JJuXxuxÃ  (4) 

 Where: 

X = Primary domain 
J
x 
= Secondary domain, and the values of both vary 

within the range 0 to 1 

 

The primary uncertainty of a type-2 fuzzy set can 

illustrated as its Footprint of Uncertainty (FOU), 

whereby the greater the footprint, the greater the 

uncertainty (Mendel, 2003). In the case of type-2 

interval sets, the FOU completely describes the 

uncertainty present in the fuzzy set. 

Figure 6 shows three different shaped footprints of 

uncertainty. The footprint of uncertainty of a type-2 

function is delimited by a lower membership function 

and by an upper membership function. Example (a) in 

Fig. 6 illustrates a Gaussian type-2 fuzzy function 

with uncertainty at the standard deviation, which 

means that there are a range of values for the standard 

deviation. Note that the mean is the same for the 

upper and lower functions.  Figure 6b illustrates a 

footprint of uncertainty formed by two functions with 

differing means and standard deviations. The example 

in Fig. 6c illustrates a sigmoidal function with 

inflection uncertainty, indicating that the functions 

have different inclines. The greater the difference 

between the upper and lower functions, the larger the 

footprint of uncertainty, which denotes greater 

uncertainty. The FOU is expressed by Equation 5: 

 

( )
x

x X

FOU Ã J
∈

= ∪  (5) 
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Fig. 6. Footprints of Uncertainty: (a) Gaussian Function with 

uncertain standard deviation; (b) Gaussian Function with 

uncertain mean; (c) Sigmoidal Function with inflection 

uncertainties. Source: Mendel and John (2002) 
 

 
 
Fig. 7. Interval type-2 membership function in a discrete 

universe. Source: Mendel et al. (2006) 
 

In Equation 5, X represents the set of all elements 

in the problem domain and 
x

J  represents all primary 

degrees of membership. The footprint of uncertainty 

of a fuzzy set is therefore the union of all primary 

degrees of membership. The FOU is delimited by two 

membership functions, called the upper membership 

function and the lower membership function. Figure 7 

shows a three-dimensional illustration of an interval 

type-2 membership function. 

It can be observed from Fig. 7 that the area under 

the x and u axes represents the FOU (Mendel et al., 

2006). An image of the FOU is reflected along the 

secondary degree of membership axis because all of 

its elements have degrees of membership of 1. 

There are currently a number of tools and 

procedures for development of type-2 fuzzy systems, 

but the number is still limited. Two such solutions 

were developed for Matlab® software (Karnik et al., 

2008; Castro et al., 2007). The first is a set of 

procedures for conducting operations on type-2 fuzzy 

sets and can be obtained free of charge. Both 

procedures for operations on type-1 and type-2 sets 

are available. The second implementation for Matlab 

(Castro et al., 2007) offers algorithms for executing 

operations on interval type-2 sets and has a similar 

interface to that of the well-known “Fuzzy Logic 

Toolbox” for Matlab®. A more recent solution is a 

framework developed on the Java platform (Wagner, 

2013), created with the objective of facilitating access to 

and widening use of type-2 fuzzy systems. This tool 

implements type-1 and type-2 fuzzy inference systems 

and can be obtained free of charge. The authors recently 

made a web-based interface (Wagner et al., 2014). 

Methods for Generation of Type-2 Membership 
Functions 

Bearing in mind how long it is since type-2 fuzzy sets 

were first proposed by Zadeh (1975), their use remains 

restricted (Mendel, 2007a). Nevertheless, they have been 

successfully used in several applications, such as: 

Controllers (Sepúlveda et al., 2012; Chaoui et al., 2013), 

industrial applications (Dereli et al., 2011), data mining 

(Turksen and Celikyilmaz, 2010), image processing and 

pattern recognition (Melin, 2012; Mitchell, 2005) and in a 

predictive model for financial applications (Bernardo et al., 

2013). In terms of approaches to construction of the 

membership functions, in the majority of the studies 

each author develops functions employing the available 

knowledge (which is dependent on the domain of the 

application), heuristically or with the help of experts. 
The type-2 fuzzy set approach has proven appropriate 

in applications involving data that vary over time and 
data containing noise or when it is necessary to extract 
information from an expert (Mendel, 2004). 

Although type-2 membership functions offer 

satisfactory results for domains involving uncertainty, 

they also involve greater computational complexity 

because of the type reduction stage. For this reason, the 

majority of applications employ interval type-2 sets 

(Mendel, 2004). Interval type-2 sets require less complex 

calculations and apply the same types of calculations 

employed for type-1 sets (Mendel et al., 2006). 

Techniques for defining type-2 fuzzy systems have 
been receiving growing research interest in response to 
the promising results and the consequent increase in use. 
This is because definition of membership functions is an 
important stage in the process of developing these 

systems and one that has a strong impact on the results. 
However, few studies have focused on development of 
type-2 membership functions. 
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When input membership functions are adequately 

constructed and are compatible with a representation of 

the uncertainty that is present, then the system's output 

will also adequately represent uncertainty (Linda and 

Manic, 2011). A study by Linda and Manic (2011) 

attempted to achieve this, focusing on development of 

interval type-2 functions in which the FOU is 

characterized by the standard deviation of the data.  

A study by Mendel (2007a) proposed methodology 

for development of interval type-2 functions for 

words, in which knowledge is extracted from experts 

on the subject of fuzzy systems; and also proposed 

methodology for knowledge extraction from people 

who are not experts in fuzzy systems. The data are 

aggregated with equal weighting given to data from 

many different individuals and, because of this, the 

author suggests that the technique could be called 

fuzzistics, since it also combines statistics. 

Choi and Rhee (2009) focused on problems of 

pattern recognition, presenting three methods for 

obtaining the FOU for interval type-2 fuzzy sets: 

heuristics, histograms and C-means. In the heuristic 

approach, a type-1 membership function shape is 

chosen to best fit the problem and then the lower 

membership function for the FOU is found by 

multiplying the first by a constant from 0 to 1. This 

method is conducted with the help of experts on the 

subject. The same authors then propose a solution 

based on histograms. In this case, histograms for the 

characteristics of the problem are needed. These are 

then smoothed and normalized to obtain the minimum 

degree polynomial function possible. The total 

number of fuzzy sets and their heights are determined 

by this polynomial function. The technique employing 

the C-means algorithm utilizes two equations to 

define the upper and lower membership functions, 

rather than the single equation used in the standard 

method. However, although all three methods proved 

satisfactory, the authors themselves wonder whether 

the resulting membership functions may not correctly 

represent the uncertainty present in the data and 

considered the study as a starting point for developing 

improved methods. 
The approach adopted by Hidalgo et al. (2012) was 

to start with an existing type-1 system and then, with 
the help of a genetic algorithm, they optimized the 
parameters. Optimization of parameters was conducted 
in three different ways, applying three different levels 
of uncertainty. At the first level, the footprint of 
uncertainty was the same size for all inputs. In the 
second treatment, each input could have different FOUs 
and in the third, each input was tested with different 
FOUs for its own sets. At the end of execution, the 
system that best fits the problem is chosen. 

Almaraashi (2012) published a study employing an 

optimization method that had not previously been 

used to determine type-2 membership functions, 

Simulated Annealing.  The initial optimized sets are 

randomly generated and then the Simulated Annealing 

algorithm is executed to find the best combination of 

parameters, the optimum combination. Although this 

author reported promising results using type-2 sets, 

the complexity of the algorithm and the time required 

were significant. 

Maldonado et al. (2014) performed a multi-

objective genetic optimization of an AT2-FIS. An 

AT2-FIS is an Interval Type-2 Fuzzy Inference 

System obtained by means of two averaged T1-FIS. 

The system was developed in hardware, more 

specifically in a FPGA (Field-Programmable Gate 

Array). The goal of the work was controlling the 

speed of a direct current motor. The results obtained 

by the system (error rate and runtime) were 

satisfactory even when facing external interference. 

Considerations on Automatic Methods for 

Generation of Interval Type-2 Functions 

The greater part of the methods reviewed do not 

attach significance to the membership function's 

Footprint of Uncertainty (FOU), i.e., they do not 

explain the origin of the uncertainty in the data of the 

problem. Rather, these applications define a footprint 

of uncertainty that enables system to achieve results 

appropriate to the context. However, Linda and Manic 

(2011) did employ the standard deviation of the data 

as a link to the uncertainty of the membership 

functions. Similarly, Mendel's approach (2007a) is 

naturally transparent with regard to the FOU, because 

it involves people in the process of defining the 

membership functions, but it is not an automatic 

method. An automatic method may take into 

consideration the transparency of the membership 

functions, which is an appreciable characteristic of a 

fuzzy inference system (Riid, 2002; Chen and Chen, 

2007). In this regard, some restrictions could be 

implemented, such as in Castellano et al. (2003). 

Furthermore, it must be considered if the desired 

results are achieved by the system. Thus, the balance 

between these features should be performed by the 

designers and experts, depending on the importance of 

each of these characteristics to the problem addressed. 

With regard to the domains of application of these 

methods, the range is varied, but each method is 

developed for a specific domain, such as, for example, 

pattern recognition. The exception is a study 

published by Mendel (2007a), which was an approach 

to modeling words and can therefore be applied to any 

domain in which this type of modeling is necessary. 

The absence of arguments to justify the choice of 

membership function shape, which in the majority of 

cases is Gaussian, is worth noting. Even in methods 
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that used other types of membership functions, the 

shapes were chosen before execution of the method. 

Along the same lines, the number of sets used for each 

variable is fixed before the procedure proposed is 

applied. Wu and Mendel (2014) make some 

suggestions about configuration of type-1 and type-2 

fuzzy systems in a recent publication. For example, 

they suggest using Gaussian or trapezoidal functions 

to define type-2 sets. 

Conclusion 

This paper has presented a review of methods for 

generation of type-1 and type-2 membership 

functions. Type-1 membership functions have existed 

for longer and as a result are the subject of a greater 

number of studies. In general, type-1 membership 

functions are defined using parameter optimization 

methods. As has been observed in previous studies 

(Medasani et al., 1998; Cintra et al., 2008), these 

mechanisms are complex and application dependent. 

The heuristic approach may offer advantages over the 

other methods because of reduced complexity, but it is 

necessary to evaluate whether the results returned will 

be satisfactory. 

With regard to interval type-2 sets extracted from 

data, there is not yet a generalized method or an 

established methodology. Since type-2 sets are 

employed for representation of uncertainty, it is 

necessary that the automatic methods improve in their 

ability to represent the FOU (footprint of uncertainty) 

in a manner that reflects this uncertainty. Acquisition 

of information from domain experts is already at a 

more advanced stage, with recommendations of a 

series of steps to be followed to define the fuzzy 

membership functions. 
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