

© 2015 Hala Albaroodi, Selvakumar Manickam and Mohammed Anbar. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Research Notes

A Proposed Framework for Outsourcing and Secure

Encrypted Data on OpenStack Object Storage (Swift)

Hala Albaroodi, Selvakumar Manickam and Mohammed Anbar

National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, 11800, Penang, Malaysia

Article history

Received: 09-02-2015

Revised: 11-03-2015

Accepted: 28-04-2015

Corresponding Author:

Hala Albaroodi

National Advanced IPv6

Centre (NAv6), Universiti

Sains Malaysia, 11800, Penang,

Malaysia

Email: hala@nav6.org

Abstract: Despite the numerous potential benefits of Open Source Cloud

Computing (OSCC) in several industrial and academic-oriented

environments, OSCC could be also associated with some risks. However,

which a proper awareness to the cloud consumers or organisations, these

risks can be clearly identify and avoided. OpenStack Swift security can

provide a greater understanding of how OpenStack Swift functions and

what types of security issues arise therein. In this study, a lightweight and

robust cloud-based security model for OpenStack object storage within a

cloud computing environment is proposed. Swift is a multi-user based

model in which every owner encrypts her/his files; each owner uses

different levels of cryptographic security. A reduction in the key

distribution complexity in this diverse model with a variety of security

based settings is critical. Note that proposed model incorporates

cryptographic algorithms at the first level (authentication/authorisation)

and a hash function to introduce a more secure access method for

authentication and authorisation.

Keywords: Security, Cloud Computing, Cloud Storage, OpenStack,

OpenStack Object Storage Swift

Introduction

Recently, a strong interaction between cloud

computing and Open Source Software (OSS) has been

demonstrated by the announcement of several Open

Source Cloud Computing (OSCC) projects, such as

OpenStack, OpenNebula, Hadoop and CloudStack

(Rodriguez-Martinez et al., 2010; Hala et al., 2013;

Albaroodi et al., 2013).

Typically, the security of data in the could computing

service providers would be the first matter to the most of

the potential cloud customers. In fact, questioning around

the security of personal data is one of the ultimate rights to

customers before making any decisions. It is known that

any incident related to the security and privacy of

consumers has the capability to break the brand equity and

the consumer trust. Further, the level of privacy and the

security models which implemented by different cloud

platforms reflect the acceptance of the developments of

several applications. Thus, there will be always an open

door to investigate security regardless of the innovations

of new technologies such as cloud computing.

Investigating the security of cloud computing will be of

great importance when the open source software OSS

technology comes over the picture Armbrust et al., 2010).

The security concerns of cloud computing is

investigated in this study as the primary motivation of

this research and a user-trusted model to mitigate and

avoid these concerns is proposed with the aid of OSS

(Popovic and Hocenski, 2010; Okuhara et al., 2010;

Cooper, 2013). As it forms one of the major parts of

this research, the object storage components of

OpenStack is considered in this study. However, other

concerns related to other components of OpenStack

are not considered. Moreover, as has been identified

in the security issues of this OSS-based solution, two

main security areas are investigated and solved: The

identity and access management and the access control

and data protection (Baset et al., 2013; Khan et al.,

2011; Kim et al., 2013). Further, in order to narrow the

scope of literatures concerning the security of the

object storage components of OpenStack, only those

literatures targeting the areas of identity and access

management, access control and privacy and data

protection are selected (Chou, 2013).

Hala Albaroodi et al. / Journal of Computer Science 2015, 11 (3): 590.597

DOI: 10.3844/jcssp.2015.590.597

591

Security Issues in OpenStack

As data needs to be immediately available and stored

indefinitely on a variety of devices, the demand on

storage is rapidly changing. This demand requires the

construction of storage silos that utilize non-web

protocols, which are restricted to specific applications.

Online video, social media, user-uploaded content,

gaming and SaaS applications are some of the demands

that are driving this change.

Public cloud storage services have strived to satisfy

these new storage needs; however, all organisations are

not capable of or should be allowed to use public cloud

storage. To provide these changing needs, a storage

model must be able to handle web-scale workloads with

many simultaneous readers and writers to a data store.

The possibility of utilising cloud computing based on

the OSS technology such as OpenStack, is promising as

it is considered to be pioneer services of OSCC. As one

of the two basic components of the OpenStack project,

Swift is employed to satisfy a variety of demands.

Swift’s usage includes small deployments for storing

VM images, mission-critical storage clusters for high-

volume websites, custom file-sharing applications,

mobile application development, data analytics and

private storage IaaS. Swift is OSS under the Apache 2

licenses and has over 70 contributors; new developers

are contributing every year.

However, weaknesses in hardware, networks,

software and service compel researchers to explore

security issues. Therefore, interesting in security issues

OpenStack object storage environments as illustrates in

Fig. 1. The most common security threats on the

OpenStack Swift environment are as follows (Gellman,

2012). The following subsections verify these challenges

to OpenStack object storage:

The cloud computing paradigm has attracted

considerable attention as it provides Infrastructure as

a Service (IaaS); IaaS providers can enjoy virtually

infinite storage and cloud computing resources.

Willing providers are increasingly shifting their data

storage and application services into cloud computing,

which decreases their operational costs, rather than

building specialised data centres. Data storage

services in the cloud computing environment should

be available to everyone but many security risks exist

that may delay its adoption (Gansen et al., 2010;

Venkatesa and Palaniswami, 2012). The main issue

concerns the security of a user’s sensitive data and who

can obtain access to storage when data are saved in a

cloud computing server. Users lose physical control

over their sensitive data when they directly place these

data in the control of a server that cannot provide

privacy assurance (Venkatesa and Palaniswami, 2012;

Dai Yuefa et al., 2009; Albaroodi et al., 2014a;

Ponnuramu and Tamilselvan, 2012).

Fig. 1. OpenStack swift weaknesses

Table 1. Summary of the core related work

Security criteria Shortcoming

Identity OpenStack identity of data user's from client to storage server is not secure. In addition, high-value sensitive information

 may leak from data storage by vulnerability.

Access control Access control (authentication) must be designed to prevent accidental users from engaging in malicious practices and

 spammers and bots from registering on any site.

Password storage The URL of the file that is used to save user information must be examined prior to making any changes to rights of access.

 Only the Swift user should have access to this file to prevent other users from obtaining user credential information. Users

 should be registered with appropriate passwords that contain special characters.

Securing password The strength of passwords should be checked before registering users can reject weak passwords. In addition, these

 passwords should be hashed before they are saved in the model. Before saving, strong passwords should be concatenated to

 a username and hashed with an appropriate algorithm. The SHA-256 algorithm can be employed to hash the passwords.

Data protection All important and sensitive files should be encrypted before they are uploaded to OpenStack Swift to prevent users from

 viewing files that belong to other users.

Authentication and User authentication and authorisation functionality in an OpenStack Swift environment utilise non secured process during

authorization the account generation and the keystone where the account save not protected.

Hala Albaroodi et al. / Journal of Computer Science 2015, 11 (3): 590.597

DOI: 10.3844/jcssp.2015.590.597

592

Thus, this research has focused on the security

variances within the OpenStack object storage (Swift)

environment. Particularly, several works which are

addressing the security concern of the swift component

of OpenStack are discussed. Generally and as has been

individually mentioned in the presentation of each

work, enhancing the security mechanism of swift has

lacked to provide comprehensiveness (Hala et al.,

2013; Albaroodi et al., 2014a; 2014b). These lacks

were identified to by ranging from securing the

identity, access control, passwords, protecting the data,

to the protecting of the authentication and authorization

process. In details, an explanation to the technical

shortcomings of previous works with regards to the

above criteria is given in Table1.

Objectives

The main goal of this research is propose a security

model for OpenStack Storage to address the

shortcoming security issues in OpenStack Swift this

research are as follows:

• To achieve strict authentication and authorisation by

designing implications for the use of CAPTCHA,

this ensures that only appropriate users have access

• To maintain the safety of usernames and passwords

by a symmetric algorithm and hash function before

usernames and passwords are saved in the

authentication module of proposed model and verify

their robustness by cryptanalysis

• To establish a trust relationship among entities as a

vital aspect of the creation of a security mechanism

in the proposed model environments by the keystone

module to authorise identity federation and prevent

being locked into proprietary solutions

• To centralise the resource information of an

available proxy using the keystone module

• To protect sensitive files using an asymmetric

algorithm prior to uploading or downloading these files

to prevent users from viewing files that belong to other

users. To check the vulnerability by applying

cryptanalysis on the asymmetric algorithm. To address

the fault tolerance architecture, proposed model backup

database repository. In addition, the loud balancing will

be solved by multiple proxy servers

Existing OpenStack Swift

OpenStack is aIaaS delivery model that can be

distributed in any deployment model. When OpenStack

is deployed in a private cloud delivery model, a cloud

vendor maintains security control from layer 1 to layer

7. When OpenStack is deployed in public and hybrid

clouds; subsequently, all security services are available

through web services at the previously discussed

application levels. Figure 2 depicts the OpenStack

Swift authentication.

Fig. 2. OpenStack Swift (AS, 2010)

Hala Albaroodi et al. / Journal of Computer Science 2015, 11 (3): 590.597

DOI: 10.3844/jcssp.2015.590.597

593

Based on the discussion in chapter two identifying the
problem integrated with the current OpenStack Swift,
which uses Keystone as a principal for user authentication
security (Adam.Younglogic.Com, 2012). The

authentication process is based on usernames and
passwords, which are transmitted as clear text. A
successful authentication on a storage service (Swift) must
invoke the Keystone server, which generates a valid token
for use by the end-user for additional processing. The use
HTTP protocol in all communications (secure banking

online transaction system, secure cloud-based data
services etc.) is considered to be less secure than the use
of HTTPS. HTTP increases the potential for particular
security issues, such as access identity. The randomness of
the 32-bit token remains ambiguous compared with a
signed token by a certificate authority.

These tokens are short-lived as they are valid for only
24 h; users have to authenticate themselves again after
the validity of the token expires. With the
implementation of a Public Key Infrastructure (PKI),
Keystone can provide a Strong authentication Key
Appliance that uses a third-party library to develop an

enterprise key management infrastructure, which
supports the services of PKI and provides symmetric key
management libraries. However, this library does not
include features that can securely manage keys at the
cloud platform. This library does not include features
that can securely manage keys at the cloud platform. It

requires a separate server for key storage and a
compromise of this server can create a bottleneck for key
security and generate the certificate for longer time
validity. OpenStack has a greater number of weaknesses

regarding data protection (Cooper, 2013; Cigoj and
Klobučar, 2012). In this context, primarily focus on
these enhancements, which consider security as an
important key metric for all levels of OpenStack Swift.

Proposed Framework

This research focused on OpenStack security issues.

Specific component is Swift of OpenStack is considered to

be secure, whereas other components like nova, cinder and

dashboard and so on need to be improved. OpenStack not

supports password complexity requirements and passwords

are stored in a plaintext text format and some. The access

on sensitive data files not secure can be attacked.

Information transformed within the cloud is not protected

via using encryption and decryption files techniques.

The present research framework is limited to the

development and evaluation of a new model in which

enhanced security will be applied in the form of symmetric

and asymmetric cryptographic algorithms; proposed model

consists of four main modules: (1) user credentials, (2)

keystone module, (3) proxy module and (4) Database

module. The user credential module addresses secure

information and the Keystone module handles

authentication, authorisation and scheduling. The

objective of the proxy module is to manage public and

private keys using asymmetric encryption. The last

module is a database module that is responsible for

storing and retrieving data. These modules will be

detailed in the next subsection. Fig. 3 shows the

proposed model framework.

Fig. 3. A framework for proposed model

Hala Albaroodi et al. / Journal of Computer Science 2015, 11 (3): 590.597

DOI: 10.3844/jcssp.2015.590.597

594

Module I: User credentials

In authentication, the new user will create the

credential by a sign-up that will be approved by the

model administrator. After the user credentials have been

successfully created, the user will be given a username

and password.

To prevent possible robot and insecure attempts of

authentication, the CAPTCHA functionality is

introduced and displayed for the user during the

authentication process. After the user has entered his

credentials, the authentication information, namely,

username, password and CAPTCHA, will be

encrypted using a symmetric cryptography algorithm

and the hash function is applied to improve the

security of the process. The secure information is sent

to the authentication that will check the hash value

and then apply the symmetric cryptography algorithm

to verity a possible attempt of eavesdropping on the

data. Once satisfied, the validity of the username,

password and CAPTCHA with be verified.

Module II: Keystone Module

After the Keystone module is executed, it will wait

for the client request. The process will be repeated in the

case of no response; otherwise, the user credentials will

be decrypted and the hash function will be applied. With

a successful decryption and hash function, the username

and password will be verified. On the other words, when

verification is successful:

• If user credential is correct, then

• Authorization will be checked

• Else

• A failure message will be sent back to the client.

• End if

In terms of validation of authorization type:

• IF user type is a “normal user” THEN

• Model request sent to keystone resources manager

• Process will be continued

• Else IF user type is “administrator user” THEN

• Display

• Administrator panel

• Display User credentials

• Wait for user response.

• If the response key pressed is “exit” THEN

• Display Success message and exit

• ELSE IF response key pressed is

“add/delete/modify” THEN

• Display User credential screen

• End IF

• END IF

Module III: Proxy Module

The proxy module communicates with the PKI server

that stores the private key. The least busy server that is

connected with the proxy module will handle the private

and public keys. Asymmetric encryption will be utilised

in this part to increase security. Symmetric encryption

exhibits a weakness as the secret (which can be a

number, word, or string of random letters) key can be

easily accessible by everyone.

Module IV: Database Module

The database module is a crucial modules of proposed
model in which the user resources will be saved securely.

The information stored in the database repository is in the
form of text and multimedia (audio and video). Per the
request of a user, the following information will be sent
and received by the user. To address the fault tolerance
architecture, proposed model contains a backup database
repository. If there is user congestion or fault in the main

database, the user can access the backup database
repository. The database module contains the database
repository server. The database repository server is
responsible for saving and retrieving data securely that is
related to the entire model.

The Implementation Details of Proposed

Model

The graphical interface of proposed model will display

the username and password and prompt a client to enter

his credentials. After the user credentials are entered, the

process is initiated by displaying CAPTCHA on the

screen to verify the validity of the remote user. After the

correct CAPTCHA has been entered, the data are

encrypted and a hash value is applied prior to submitting

to the keystone authentication server.

Note that the CAPTCHA value will be sent to the

client (hidden to the client) and verified on the client’s

machine to reduce the cost of communication between

the client and the server. After the CAPTCHA value is

authenticated on the user’s machine, the data is

transmitted to the keystone authentication server. If

the keystone authentication is false, the wrong user

credential message will be transmitted from the

keystone authentication server to the client, where the

user must re-enter a username and password. After

correct user authentication then the user authorisation

will be verified to determine whether the type of user

is a normal user or an administrator (admin) user. In

the next phase, the keystone manager will verify the

proxy server credential information, such as hardware

processing power (CPU), the available memory

resources (RAM) and the number of active users in its

database. The database will be updated periodically

to obtain current proxy server credential information.

Hala Albaroodi et al. / Journal of Computer Science 2015, 11 (3): 590.597

DOI: 10.3844/jcssp.2015.590.597

595

Fig. 4. Proposed model flow diagram

The Keystone manager will select the least busy proxy

server and send its credential information to the client

to ensure that it will be redirected to the specified

proxy server for communication. The process is

depicts in Fig. 4.

After the user receives the proxy credential

information from the keystone manager, it will directly

connect to the proxy server. The communication is

initiated with the PKI in which the RSA keys will be

retrieved from the proxy database and sent to the client.

Hala Albaroodi et al. / Journal of Computer Science 2015, 11 (3): 590.597

DOI: 10.3844/jcssp.2015.590.597

596

When the client receives the encrypted RSA key, the

secure communication will be initiated between the

user client and the proxy server. After the key is

provided and any interruption occurs via the

communication, a new key is generated.

Data will be retrieved from the database module

and the process will end if the user wants to exit;

otherwise, communication with the database will

continue. If the administrator is using the model, the

user credentials will be displayed. The model

administrator has the authority to check the list of

users, troubleshoot any problems in the model and

monitor the activities of the end user for the purpose

of security.

Characteristics of the Proposed Model Vs.

the OpenStack Swift

A characteristics comparison between the proposed

model and the OpenStack Swift architecture is

provides in Table 2. The first feature is the

authentication of a user prior to accessing the entire

model in the OpenStack Swift model only uses tokens

identity per user supplement the negotiation protocols

within the Keystone; Even, the encrypted password

login not enough which can be compromised by

eavesdropping. Proposed model is more secure

because the authentication feature utilises symmetric

cryptography (Blowfish algorithm) with the MD5

hash function and the CAPTCHA feature for greater

security. Second feature is an authorisation, proposed

model provides user-level authorisation with two

types of users, namely, a normal user and an

administrator (admin) user, the latter being granted a

greater number of privileges if compared with

OpenStack Swift admin because in proposed model

the admin is customizable. Third feature is keystone

manager, to verify the least busy proxy to offer a

faster service to the user. This feature is not enabling

in the OpenStack Swift.

Forth feature PKI, this feature is provides a strong

secure appliance for developing the proposed model

key management infrastructure, by utilized the

symmetric key management libraries, as compared

with the OpenStack Swift this features not included.

Fifth feature database, the database in the OpenStack

Swift not secure but on the proposed model the

database repository server is secure and is responsible

for encrypting the saving and retrieving data. Sixth

feature fault tolerance, these features is supported in

both models. Seventh feature cross-platform these

features is addressed in both models.

Table 2. Comparison of the characteristics proposed model and

the OpenStack swift model

Features Proposed model OpenStack swift

Authentication enabled Supported Not Supported
(symmetric encryption,

hash function and

CAPTCHA functionality)
Authorisation user-level Supported Supported

Keystone manager Supported Not Supported

PKI Supported Limited
Encrypted database Supported Not Supported

Fault tolerance Supported Supported

Cross-platform system Supported Supported

Conclusion

This paper discusses issues that arise with the

OpenStack Swift; Swift enables users to manage their own

data in a secure and centralised manner, which

significantly facilitates the storage and access of personal

data. The emergence of cloud computing has prompted

Swift service providers to shift their user’s applications

and storage into the cloud to benefit from elastic resources

and reduce operational costs. By storing users in the cloud

computing platform, users lose physical control of their

personal data, which requires each user to encrypt her/his

data prior to uploading data to the cloud servers. The use

of cryptographic and hash function algorithms for data

security will enable secure and efficient access control to

user data. It also enables the separation of security from

the cloud infrastructure without losing the advantages of

cloud computing. Proposed model gain the ability to store

data in multi-tenant models and services.

Users must be identified by keystone before they are

allowed to use any of the OpenStack storage services.

This step guarantees a unique point of entry. Keystone

decrypts usernames and passwords and provides each

user with a unique token that enables access to the

services for which they are authorised. At the second

level (proxy), asymmetric encryption RSA is

implemented and the third level DB employs a unique

cryptographic algorithm to protect sensitive data storage

on Swift. Cryptographic keys are sensitive data that are

required on the cloud platform in different cases.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

Hala Albaroodi: All the work belongs to me is my

PhD work.

Selvakumar Manickam: My supervisor he

support me a lot.

Mohammed Anbar: He is post-doctorate, he

advise me a lot.

Hala Albaroodi et al. / Journal of Computer Science 2015, 11 (3): 590.597

DOI: 10.3844/jcssp.2015.590.597

597

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Adam.Younglogic.Com, 2012. Keystone-should-move-

to-apache. World Wide Web.

Albaroodi, H.A., S. Manickam and M.F. Aboalmaaly,

2013. The classification and arts of open source

cloud computing: A review. Adv. Inform. Sci.

Service Sci., 5: 16-25.

Armbrust, M., A. Fox, R. Griffith, A.D. Joseph and R. Katz

et al., 2010. A view of cloud computing. Commun.

ACM, 53: 50-58, DOI: 10.1145/1721654.1721672

AS, 2010. The Auth System.

Albaroodi, H., S. Manickam and P. Singh, 2014a.

Critical review of OpenStack security: Issues and

weaknesses. J. Comput. Sci., 10: 23-33.

 DOI: 10.3844/jcssp.2014.23.33

Albaroodi, H., S. Manickam and M.F. Aboalmaaly,

2014b. Security model for the OpenStack object

storage: A review. Proceedings of the 1st

International Engineering Conference on

Developments in Civil and Computer Engineering

Applications, (IEC’ 14), Erbil, Iraq

Baset, S.A., C. Tang, B.C. Tak and L. Wang, 2013.

Dissecting open source cloud evolution: An

OpenStack case study. Proceedings of the 5th

USENIX Workshop on Hot Topics in Cloud

Computing, Jun. 25-26, USENIX, San Jose, CA.

Cigoj, P. and T. Klobučar, 2012. Cloud security and

OpenStack. Proceedings of the 1st International

Conference on Cloud Assisted Services, Oct. 22-25,

Bled, Slovenia, pp: 20-27.

Cooper, J.D., 2013. Analysis of security in cloud

platforms using OpenStack as case study. PhD.

Thesis, University of Agder.

Chou, T.S., 2013. Security threats on cloud computing

vulnerabilities. Int. J. Comput. Sci. Inform.

Technol., 5: 79-88. DOI: 10.5121/ijcsit.2013.5306

Dai Yuefa, W.B., G. Yaqiang, Z. Quan and T. Chaojing,

2009. Data security model for cloud computing.

Proceedings of the International Workshop on

Information Security and Application, Nov. 21-22,

Qingdao, China, pp: 141-444.

Hala, A.A., S. Manickam, M.F. Aboalmaaly and H.

Palakarnim, 2013. A pilot study on Open Source

Cloud Computing (OSCC) awareness in the

Universiti Sains Malaysia education sector. IJACT,

5: 1264-1273. DOI: 10.4156/ijact.vol5.issue9.149

Khan, R.H., J. Ylitalo and A.S. Ahmed, 2011. OpenID

authentication as a service in OpenStack.

Proceedings of the 7th International Conference on

Information Assurance and Security, Dec. 5-8, IEEE

Xplore Press, Melaka, pp: 372-377.

 DOI: 10.1109/ISIAS.2011.6122782

Gellman, R., 2012. Privacy in the clouds: Risks to

privacy and confidentiality from cloud computing.

Proceedings of the World Privacy Forum, (WPF’

12), CiteULike.

Gansen, Z., R. Chunming, L. Jin, Z. Feng and T. Yong,

2010. Trusted data sharing over untrusted cloud

storage providers. Proceedings of the 2nd

International Conference on Cloud Computing

Technology and Science, Nov. 30-Dec. 3, IEEE

Xplore Press, Indianapolis, pp: 97-103.

 DOI: 10.1109/CloudCom.2010.36

Kim, J.M., H.Y. Jeong, I. Cho, S.M. Kang and J.H. Park,

2013. A secure smart-work service model based

OpenStack for cloud computing. Cluster Comput.,

17: 691-702.

 DOI: 10.1007/s10586-013-0251-1

Okuhara, M., T. Shiozaki and T. Suzuki, 2010. Security

architecture for cloud computing. FUJITSU Sci.

Tech. J., 46: 397-402.

Ponnuramu, V. and L. Tamilselvan, 2012. Data integrity

proof and secure computation in cloud computing. J.

Comput. Sci., 8: 1987-1995.

 DOI: 10.3844/jcssp.2012.1987.1995

Popovic, K. and Z. Hocenski, 2010. Cloud computing

security issues and challenges. Proceedings of the

33rd International Convention (MIPRO), May 24-28,

IEEE Xplore Press, Opatija, Croatia, pp: 344-349.

Rodriguez-Martinez, M., J. Seguel and M. Greer, 2010.

Open source cloud computing tools: A case study

with a weather application. Proceedings of the 3rd

International Conference on Cloud Computing, Jul.

5-10, IEEE Xplore Press, Miami, FL, pp: 443-449.

DOI: 10.1109/CLOUD.2010.81

Venkatesa, K.V. and S. Palaniswami, 2012. A Dynamic

Resource Allocation Method for Parallel Data

Processing in Cloud Computing. J. Comput. Sci., 8:

780-788. DOI: 10.3844/jcssp.2012.780.788

