

© 2015 P. Jaganathan and T. Karthikeyan. This open access article is distributed under a Creative Commons Attribution (CC-

BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Highly Efficient Architecture for Scalable Focused Crawling

Using Incremental Parallel Web Crawler

1
P. Jaganathan and

2
T. Karthikeyan

1Department of Computer Application, PSNA College of Engineering and Technology, Dindigul, India

2Department of Research and Development Centre, Bharathiar University, Coimbatore, India

Article history

Received: 09-02-2014

Revised: 17-02-2014

Accepted: 04-08-2014

Corresponding Author:

P. Jaganathan

Department of Computer

Application, PSNA College of

Engineering and Technology,

Dindigul, India

Email: sudharsan@axiip.com

Abstract: With the growing industrial impact over the recent years in

computer science, data mining has established itself as one of the most

important disciplines. In the fast growing Web and in an appropriate

amount of time, locating the resources that are precise and relevant is a

huge challenge for the all-purpose single process crawlers, which makes

the enhanced and the convincing algorithm in demand. Gradually Large

scale search engines frequently update their index and in a timely

behavior which are not capable to present such information. In this study

a scalable focused crawling is proposed with an incremental parallel Web

crawler, the Web pages can be crawled concurrently that are relevant to

multiple pre-defined topics. Furthermore, to solve the issue of URL

distribution, a compound decision model based on multi-objective

decision making method is introduced, which will consider multiple

factors synthetically such as load balance and relevance, the update

frequency issue can be solved by the local repository decision. The result

shows that our proposed system will efficiently produce high quality,

relevance and freshness with significantly low memory requirement.

Keywords: Focused Crawler, Incremental Web Crawler, URL Distribution

Issue, Load Balance, Relevance

Introduction

A program that retrieves and stores Web pages

from the Web is called as a Web crawler.

Unprecedented scaling challenges for all-purpose

single-process crawlers’ plays the major role in the growth

of World Wide Web as said by (Chakrabarti et al., 1999;

Kumar et al., 2013). To finish the downloading pages

in a reasonable amount of time, a new hypertext

resource discovery system is used which is called as a

focused crawler, which selectively seek out pages and

the set of topics which are relevant pre-defined.

Another new crawler called parallel crawler is proposed

which crawl the multiple processes in parallel as said

by (Balamurugan et al., 2012) Due to the high dynamic

nature of Web documents, to acquire useful

information and to integrate data, local repository

freshness should be maintained, this makes the web

pages to crawl consistently. There is a significant waste

of time and space, whenever we make full crawling as

said by qiang (Zhu, 2007; Mannar Mannan et al.,

2014). To overcome this incremental crawler was

proposed, instead of crawling all web pages, it

selectively and incrementally updates the local

repository. From this it is clear that the crawler should

have the certain objectives.

The Web pages crawled should have high quality,

high relevance and high freshness. To achieve these

objectives in this study we proposed an optimized novel

architecture for the incremental parallel crawler based on

focused crawling as said by (Cho and Garcia-Molina,

2002). The major contribution of this study is

summarized as follows: First, an optimized novel

architecture based on focused crawling for incremental

parallel crawler is proposed, which helps to crawl the

Web pages that are relevant to multiple pre-defined

topics concurrently. Then the solution is found in

incremental parallel crawler for core issues like URL

distribution and the update frequency as said by

(Shkapenyuk and Suel, 2002; Avraam and

Anagnostopoulos, 2011) and to compute the URL

priority, a novel approach is proposed to selectively fetch

higher quality relevant information, in which old and

new URLs are differently treated. Then in the proposed

architecture, they implemented the second level master,

P. Jaganathan and T. Karthikeyan / Journal of Computer Science 2015, 11 (1): 120.126

DOI: 10.3844/jcssp.2015.120.126

121

which will avoid the overlapping issues and also reduces

the cost of communication and space largely.

Focused Crawlers over General Crawlers

General Crawler is used mainly for search engines,

whose ultimate aim is to meet out the general demand of

common users by increasing the web resource coverage

rate as said by (Dey et al., 2010; Sun et al., 2008). The

problem exists in general crawlers are as follows:

• A large amount of useful information is downloaded

by general crawler, at the time of maximizing web

resource coverage rate

• Web pages written in JavaScript are of huge

numbers, by tag matching it is impossible to extract

new URLs, since these link URLS are generated by

JavaScript

• Most general crawler does not support attribute

search, it support only keyword search

Focused Crawler can solve the problems faced in the

general crawlers, relevant to the subject it selects the link

URL and useless information is filtered. Even after

filtering most useless link pages, still useless information

remains in huge numbers. Further, crawlers retrieve

pages at rapid speed to keep the search engine indices

up-to date. Thus the single search engine of crawling

behaviour causes 60GB of daily load to the web. To

enhance the coverage and to reduce the bandwidth usage,

Parallel and distributed crawling was purposed. This

system supports load distribution and localization, but

not for declining the load.

URL Distribution Challenges

One of the most important issues in parallel crawlers

is URL distribution. URL-hash-based or host-name-

hash-based are the most earliest distributed crawlers, in

which the computation process is easy and the loading

balance is guaranteed due to the randomness of the hash.

The distributed crawler ignores the URLs’ relevance and

thereby it leads to the URLs belonging to the same topics

which are being distributed to the different crawlers.

URLs with the same domain name are distributed to the

same crawlers or the crawlers in the same group.

However, traditional suffix naming conventions are not

followed by every URL or domain name. Due to a

number of websites or documents aren’t distributed

uniformly, which leads to unbalance load. In our

proposed URL distributed model, multiple factors are

considered including the load balance, relevance’s and

so on. Due to the more dynamic nature of the Web, the

web pages downloaded by crawlers will be obsolete

quick. It is imperative for crawlers to decide on which

the crawling policy that keeps the local Repository as

up-to-date as possible. In Directory-Based downloading

policy (DB), identifies that if a sampled Web page has

been updated, all Web pages in the directory of sampled

Web pages will be crawled, in each download cycle the

crawler uniformly re-downloads Web pages at random

(Rand) manner. The existing Web pages are divided into

clusters in Cluster Level Sampling algorithm (CLS), then

for each cluster the re-crawling frequency decision is

depends upon the sample set of Web pages.
A variety of algorithms are proposed for building

focused crawlers to maintain the quality of web
documents fetched and for keeping the crawling scope
within desired domain, New URLs obtained during the
crawling process are used to update the learned model at
certain periods. (UNB) The Link Structure based
Focused Crawler (LSFC) is proposed; it uses the page
relevance and link the scoring for irrelevant pages. All
the above works are referred to the crawlers for full
crawling. A novel ranking model is introduced in our
proposed incremental crawler architecture, where all the
different factors are considered for new URL and old URL
and thereby make ordering as more reasonable one.

Scalable Focused Crawling using

Incremental Parallel Web Crawler

A novel architecture of the incremental parallel

crawler based on focused crawling is proposed to

overcome the drawbacks said by (Vellingiri and Pandian,

2011; Wu and Lai, 2010; Tyagi and Gupta, 2010) and

relevant web pages are crawled concurrently which are

relevant to multiple pre-defined topics. In our proposed

architecture, we added a second level master, in the same

topic it masters the crawlers and thereby overlapping

issues are avoided, which largely reduces the space and

the cost of communication. In the incremental crawl, N

time full-crawl is implemented, which has some features.

First, all the old and new URLs are sent to the
ranking model by URL dispatcher. Each new URL is
verified from the repository before computing the
priority, to know whether the URL dispatcher has been
already downloaded or not. If the URL is already
downloaded, then the retrieved URL is discarded when
found the corresponding document in the repository.
Second, according to the URL distribution algorithm, the
seed URL selected by URL distributors is sorted from
the queue which assigns it to client crawler. This process
continues until the sorted URL becomes empty.

Third, under the control of a second level master,
web pages are fetched by each client crawler. Fourth,
after the document is downloaded, to extract it, client
crawler passes it to the embedded URLs which send to
new URL queue. Concurrently corresponding URLs
and the crawled web documents in the repository are
stored by client crawlers. Then according to the
update frequency decision model, the old URLs queue
can be acquired as shown in Fig. 1.

P. Jaganathan and T. Karthikeyan / Journal of Computer Science 2015, 11 (1): 120.126

DOI: 10.3844/jcssp.2015.120.126

122

Fig. 1. Scalable Architecture for Incremental Parallel Web Crawler

Ranking Model

It is imperative to prioritize the crawling links, in

order to fetch relevant higher quality information

selectively and to compute the score of each URL the

multi-objective decision making method is also used.

Different factors are considered to make the order

reasonable for new and old URL. The Following factors

are considered for old URLs:

• Finding Web page and the pre-defined topic

relevance

• In the recent K times, Average number of new

URLs gets extracted

• The data source quality containing the URL

• In the forward link count it considers the number of

present URLs in the web page

• In the backlink count, the local repository URLs are

pointing to this URL

Following factors are considered for new URLs:

• It contains relevance between pre-defined topics and

parental pages and also it considers relevance

between URL anchor texts and predefined topics

and relevance between URL hyperlinks and pre-

defined topics

• URL potential ability

• The URL has the quality of the data source

• The page rank value

Crawling Process

The Crawling process consists of New ordered

Queues, Scheduler, Site ordering module, URL

Collector, URL Queues/Known URLs, Link Extractor,

Multithreaded Downloader, Link analyzer. Based on

the customized web page rank, the set of URLs to be

downloaded which is supplied by the scheduler. In the

latest ordered queues the URLs are saved. The set of

URLs based on customized page rank Saved by Latest

ordered Queues. The customized page rank of the web

page is given by site ordering module. The set of

already known URLs is called Known URLs. They are

treated as seed URLs. From URL collector, the

Multithread Downloader takes a URL and downloads

the related WebPages to store it in the local

repository. By opening the connections to different

servers the Downloader component fetches files from

the web. The URL collector maintains the web URL

from the downloaded web pages. Link Extractor is

used to extract the URL from the downloaded web

pages. Link analyzer is used to verify the extracted

web URLs by the link extractor.

The URLs gets rejected if they found similarity in

the URL and for further processing it won’t be

forwarded. To save downloading pages it requires

little memory space while executing web crawling

process. Local repository is owned by each crawling

process. In the repository the downloaded pages are

saved by the web crawling process and the crawling

P. Jaganathan and T. Karthikeyan / Journal of Computer Science 2015, 11 (1): 120.126

DOI: 10.3844/jcssp.2015.120.126

123

process is running in the storage area of the machine.

To make refinement decision the Ranking Module

constantly scans the local database and the known

URLs. The local repository is filtered by the Ranking

Module. The less important web page will be rejected

by the Ranking Module from the local repository to

make the space for the new web pages. The set of

URLs in the local collection is called locally collected

URLs. The local repository is maintained fresh by the

Updated Module, web pages are selected by crawlers to

increase the freshness and this result is called as an

update decision.

Distributed URL Model

For choosing an optimal crawler for a given URL,

comprehensive URL distribution model was made, in

which multiple factors are taken into consideration.

Generally, assume that the factors are f1, f2 …ft and

their corresponding evaluated value for a crawler are

g1, g2…gt (0…GI…1) and their weights of the factors

are w1, w2 ….wet and by the formula then the

evaluated value can be computed. Finally according to

the total evaluated value the rank of the crawlers are

estimated and then select the optimal crawler.

Factors Selection

For a given URL the optimal crawler will be selected

according to the following factors:

• CPU: The basic frequency is taken into

consideration here

• Hard disk Capacity and memory Capacity

• Loading rate: Loading rate is defined as the ratio of

the number of crawl tasks to memory capacity

• Network bandwidth: Most commonly it is expressed

in terms of bits per second (bps)

• Network distance: The network distance is known as

latency. It is defined as the specific amount of time

it takes for a single block of data to travel from its

originating source to a network compute

• Relevance of the URL: We make a difference

between a new URL and an old URL and its detailed

formula is described

• Potential ability of URL: From the given URL it has

an ability to crawl new URLs

Weights and Evaluation

The method of taking many conflicting objectives

into consideration scientifically and reasonably and

then makes a decision is called Multi-objective

decision making method. The issues of URL

distribution Factors considered are in contradiction

with each other. The factors cannot be measured in a

uniform standard, in which the incommensurability of

the multi objective decision making method is used.

One of multi-objective decision making methods is an

Analytic Hierarchy Process (AHP), which is used for

calculating the weights and evaluating values.

Evaluation Metrics

In the proposed incremental parallel crawler the user

gets required information within an acceptable time, its

ultimate aim is to bring high quality, high relevance and

high freshness. The performance of the proposed

architecture can be evaluated using two metrics.

Efficiency

The time taken to complete the fixed number of
tasks and the maximum number of tasks completed in
unit time are used to measure the efficiency, by
assuming the number of tasks as N and time needed to
complete all the tasks as T.

Efficiency = N/T

Freshness

The number of up-to-date Web pages in the local
repository is the freshness, in a set of web pages. The up-
to-date means that the locally stored image of the page
and its counterpart at the source are exactly same:

1 _ _
(;)

0


= 


iif p isup to dateat time
F U t

otherwise

The freshness of the entire local copy at time t is:

1
(;) (;)

∈

= ∑
pi U

F U t F pi t
U

Results

We carried out extensive experiments on a large

dataset to evaluate the architecture of the incremental

parallel crawler based on focused crawling and the

various parameter settings were proposed. In this

section, the performance of proposed architecture will be

evaluated from the Aspects of Efficiency and Freshness.

Experiments for Efficiency

To evaluate the efficiency comparative testing

technique is used. In this our architecture is considered

with simple single crawler and parallel. Over 10,000

URLs are crawled in each test and the time consumption

P. Jaganathan and T. Karthikeyan / Journal of Computer Science 2015, 11 (1): 120.126

DOI: 10.3844/jcssp.2015.120.126

124

also calculated. The performance of the parallel crawler

is higher when comparing single crawler. With the

increase of the crawl tasks, our parallel system has a big

advantage over DSP.

Experiments for Freshness

Before applying UFG based re-crawling algorithm,

an important question to be answered is the

availability of units in the data set and the value of K.

Before evaluating architecture freshness we should

estimate the value of k. For different number of units

‘k’ value of freshness is shown in Fig. 2. K gets

increased when the value of freshness goes up.

Freshness increases at a much slower rate when k

passes 40. This shows that k does not have a

significant impact on freshness when k>40.

Discussion

Normally the channel data rate should be twice the

bandwidth. The channel data rate will be 8 KBPS, if

there a 4 KHz of channel without noise. Existing

crawlers takes 100 seconds to transmit data, but our

proposed crawler takes only 60 sec for without

compression and with compression it takes only 21

seconds. Bandwidth meter pro is used to measure the

bandwidth consumption. Existing crawler consumes 130

KHz of bandwidth, while our proposed crawler

consumes only 110 KHz as shown in Fig. 3. Hence by

reducing the network traffic, our proposed crawler

preserves the bandwidth.

The bar chart in Fig. 4. Shows that, out of 100 pages

on the average, only 60 (19+41) pages have been changed.

Fig. 2. Corresponding freshness for various values of K

Fig. 3. Bandwidth comparison

P. Jaganathan and T. Karthikeyan / Journal of Computer Science 2015, 11 (1): 120.126

DOI: 10.3844/jcssp.2015.120.126

125

Fig. 4. Incremental parallel web crawling

Conclusion

For many applications in the web sources high

quality and high freshness are necessary. The other

crawling method will bring out significant waste of time

to maintain the data. The rapid growth of the web makes

it as a challenge to traverse all URLs and it’s difficult to

refresh, changes of 40% pages daily, since its URL is

very large. In this study, a novel incremental parallel

Web crawler for focused crawler is proposed and also

this study has presented a novel Parallel Domain

Focused Crawler for reduction in load on the network.

Furthermore, the model of URL distribution is

based on the method of multi-objective decision

making and by introducing the update frequency

graph, it update the frequency of the local repository

detection model. To start downloading, the crawling

process will migrate to the host or server. The

crawling process will migrate to the host or server to

start downloading. Incremental crawling will increase

the quality of downloaded pages by keeping the local

database fresh. The experimental results show that our

proposed architecture can efficiently yield high

quality, relevance and freshness.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Avraam, I. and I. Anagnostopoulos, 2011. A Comparison

over Focused Web Crawling Strategies. Proceedings

of the 15th Panhellenic Conference on Informatics,

Sept.30 -Oct. 2, IEEE Xplore Press, Kastonia, pp:

245-249. DOI: 10.1109/PCI.2011.53

Balamurugan, M., J. Bhuvana and S.C. Pandian, 2012.

Privacy preserved collaborative secure multiparty

data mining. J. Comput. Sci., 8: 872-878.

 DOI: 10.3844/jcssp.2012.872.878

Chakrabarti, S., M.V.D. Berg and B. Dom, 1999.

Focused crawling: A new approach to topic-specific

web resource discovery. Proceedings of the 8th

International World Wide Web Conference, (WWC’

99), Elsevier North-Holland, New York, pp: 1623-

1640. DOI: 10.1016/S1389-1286(99)00052-3

Cho, J. and H. Garcia-Molina, 2002. Parallel crawlers.

Proceedings of the 11th international conference on

World Wide Web, May 07-11, Honolulu, HI, ACM,

New York, pp: 124-135.

 DOI: 10.1145/511446.511464

Dey, M.K., H.M.S. Chowdhury, D. Shamanta and
K.E.U. Ahmed, 2010. Focused web crawling: A
framework for crawling of country based financial
data. Proceedings of the 2nd IEEE International
Conference on Information and Financial
Engineering, Sept. 17-19, IEEE Xplore Press,
Chongqing, pp: 409-412.

 DOI: 10.1109/ICIFE.2010.5609387

Kumar, M.V., G.T. Arasu and V. Palanisamy, 2013.

Analysis of intelligent data mining for information

extraction using java agent development

environment platform. J. Comput. Sci., 9: 1451-

1455. DOI: 10.3844/jcssp.2013.1451.1455

Mannar Mannan, J., M. Sundarambal and S. Raghul,

2014. Selection of ontology for web service

description language to ontology web language

conversion. J. Comput. Sci., 10: 45-53.

 DOI: 10.3844/jcssp.2013.45.53

P. Jaganathan and T. Karthikeyan / Journal of Computer Science 2015, 11 (1): 120.126

DOI: 10.3844/jcssp.2015.120.126

126

Shkapenyuk, V. and T. Suel, 2002. Design and

implementation of a high-performance distributed

Web Crawler Proceedings of the 18th

International Conference on Data Engineering,

(CDE’ 02), IEEE Computer Society, ACM,

Washington, pp: 357-368.

Sun, Y., P. Jin and L. Yue, 2008. A Framework of a

Hybrid Focused Web Crawler. Proceedings of the

2nd International Conference on Future Generation

Communication and Networking Symposia, Dec.

13-15, IEEE Xplore Press, Sanya, pp: 50-53.

 DOI: 10.1109/FGCNS.2008.73

Tyagi, N. and D. Gupta, 2010. A novel architecture for

domain specific parallel crawler. Indian J. Comput.

Sci. Eng., 1: 44-53.

Vellingiri, J. and S.C. Pandian, 2011. A novel technique

for web log mining with better data cleaning and

transaction identification. J. Comput. Sci., 7:

pp.683-689. DOI: 10.3844/jcssp.2011.683.689

Wu, M. and J. Lai, 2010. The research and

implementation of parallel web crawler in cluster.

Proceedings of the International Conference on

Computational and Information Sciences, Dec. 17-

19, IEEE Xplore Press, Chengdu, pp: 704-708.

 DOI: 10.1109/ICCIS.2010.175

Zhu, Q., 2007. An Algorithm OFC for the Focused Web

Crawler. Proceedings of the International

Conference on Machine Learning and Cybernetics,

Aug. 19-22, IEEE Xplore Press, Hong Kong,

4059-4063. DOI: 10.1109/ICMLC.2007.4370856

