

© 2015 Inali Wisniewski Soares, Luciane Telinski Wiedermann Agner, Paulo Cézar Stadzisz and Jean Marcelo Simão. This

open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Application of Platform Models in Model Driven Engineering

of Embedded Software

1
Inali Wisniewski Soares,

1
Luciane Telinski Wiedermann Agner,

2
Paulo Cézar Stadzisz and

2
Jean Marcelo Simão

1Department of Computer Science,

Mid-West State University (UNICENTRO), Guarapuava, Paraná, Brazil
2Graduate School of Electrical Engineering and Computer Science,

Federal University of Technology Paraná (UTFPR), Curitiba, Paraná, Brazil

Article history

Received: 22-06-2015
Revised: 12-12-2015
Accepted: 31-12-2015

Corresponding Author:
Inali Wisniewski Soares
Department of Computer
Science, Mid-West State
University (UNICENTRO),
Guarapuava, Paraná, Brazil
Email: inali@unicentro.br

Abstract: This paper presents two UML 2.0 profiles for

designing embedded software based on Real-Time Operating Systems

(RTOS). The first profile, named Application Modeling Profile (AMP),

defines the necessary elements for the application modeling. The second

one, named swxRTOS, defines a set of stereotypes to describe platform

models and the mapping between application and platform. These profiles

are used for the development of Application and Platform separately from

the model transformations in the context of the Model Driven

Engineering (MDE) approach.

Keywords: Model Driven Engineering, Profile UML, Platform Model,

Embedded Software

Introduction

Model Driven Engineering (MDE) is an approach for

software development that focuses on the creation of

software models. In the MDE context, each software

artifact is considered a model or a model element (Kent,

2002). Thus, MDE emphasizes the role of models as the

primary development artifacts by providing a set of

guidelines for the definition of models as well as the

transformations between them.

The term “platform” refers to any set of hardware or

software mechanisms that enable the execution of

software applications (Selic, 2005). Throughout this

paper, however, the term “platform” denotes Real-Time

Operating Systems (RTOS) and their respective

hardware platforms of embedded systems, based on

specific processors required for their execution.

Particularly, the Platform Model (PM) provides a set

of technical concepts that represents services of a

platform (Truyen, 2006). Model Transformation is

defined as the conversion of a model higher level to a

model of the lowest level of abstraction, considering a

set of rules well defined (Dube and Dixit, 2012).

In most MDE development approaches, however, the

PM is implicitly employed in the model transformations

(Lecomte et al., 2011). As the features associated with

the platform are not separated from the model

transformation features, for each selected platform

there must be a specific model transformation

(Wagelaar and Jonckers, 2005). This means that model

transformations are constructed specifically for a given

platform and must be reconstructed in the case another

platform is envisioned.
Although embedded systems are currently found

everywhere, they are considered as complicated and

requiring complex artifacts. Actually, for each new

embedded product more additional functionality is

usually demanded and more complex software

components are added to the system. The complexity of

embedded software systems thus emphasizes the need

for high-level development approaches such as MDE.

Unfortunately, the support provided by MDE to the

development of embedded software, mainly RTOS-

based software, is still limited (Kukkala et al., 2005).

MDE primarily focuses on middleware target platforms

such as EJB, Web Services, NET and CORBA for ordinary

Operating Systems (OS). Although such platforms are

applied to ordinary OS, they allow applications to be

projected independently nonetheless (Truyen, 2006).

However, a typical embedded software comprises

some features like concurrency, real-time processing and

limited resources. Such requirements are commonly

supported by an RTOS, whereas the use of middleware

is more unlikely to meet them (Maeng et al., 2006). As a

result, many embedded applications are designed and

implemented to run directly upon the RTOS.

Inali Wisniewski Soares et al. / Journal of Computer Sciences 2015, 11 (12): 1075.1081

DOI: 10.3844/jcssp.2015.1075.1081

1076

Furthermore, the OMG has defined the Unified

Modeling Language (UML) (UML, 2011) as the

standard language for representing software

development models (Truyen, 2006). Indeed, the

UML core still particularly lacks key artifacts for

accurately describing PMs of RTOS execution

platforms. The development of embedded software

requires the reduction of the gap between hardware

and software designs given that the use of MDE is

even more advantageous due to the wide variety of

platforms in the domain of embedded systems.

This paper aims to contribute to the enhancement

of quality and productivity in the RTOS-based

embedded software design process, mainly focusing

on proposal of two UML profiles: Application

Modeling Profile (AMP)-defines the necessary

elements for creating the PIM; and swxRTOS-defines

a set of stereotypes to describe the PM and the

mapping between PIM and PM.

This paper is organized as follows. Section 2

introduces some related work. Section 3 describes the

UML profiles. Section 4 presents an example of the

exemplification if the AMP profile and the swxRTOS

profile. Section 5 concludes this paper.

Related Work

Most model-driven approaches for embedded

software have focused on improving specific platform

models (Karsai et al., 2008; Jeon et al., 2009). Platforms

are thus not described as input models for the

development of model transformations, but indeed

platform parameters blend in with transformation rules.

As a result, there are few studies related to the

development of embedded software using explicit platform

models in the MDA context (Sendall and Kozaczynski,

2003; Kolovos et al., 2008; Renaux et al., 2010).

Kukkala proposed a model-driven methodology to

describe applications and platforms. This methodology

allows the description of platform structures and also

binds applications and platforms. However, this work

does not take into account the RTOS as a platform

(Kukkala et al., 2008).
Selic describes a general UML profile for platform

modeling and deployment of relationships between
platforms and applications (Selic, 2005). This model
enables a systematic approach to set platform aspects.
However, this profile does not provide specific
artifacts to model RTOS execution resources. In
addition, it does not provide artifacts to produce a
code that can be easily interfaced with a platform
based on an RTOS.

The UML profile Modeling and Analysis of Real-

Time and Embedded systems (MARTE) (MARTE,

2008) provides a dedicated sub-profile for the

development of Real-Time Embedded Systems, called

Software Resource Modeling (SRM), which permits the

description of the RTOS services. Nevertheless, RTOS-

specific modeling requires the adaptation of the

MARTE profile to the modeling conventions of the

RTOS considered. In the example presented in this

study, the RTOS X Real-Time Kernel (Renaux et al.,

2010) and the ARM7 processors are employed as a

platform. Thus, the modeling will not be easily

executed and most importantly, it will not be

sufficient to all elements of such platform.

Proposed UML Profiles

UML allows the creation of new languages for

different purposes. For example, extension mechanisms

are provided in order to adapt UML 2.0 to different

applications and platform domains. The adaptations are

defined by using stereotypes, tagged values and

constraints, which are grouped in a profile (UML, 2011).

Stereotype is a kind of class that extends classes

through extensions. Just like a class, a stereotype may

have properties, which may be referred to as tag

definitions. When a stereotype is applied to a model

element, the property values may be referred to as tagged

values. A constraint can be attached to any model

element to refine its semantics. A constraint can be

defined by means of an informal explanation in natural

language and/or by means of Object Constraint

Language (OCL) (Warmer and Kleppe, 2003)

expressions. The OCL is a formal language for the

analysis and design of software systems. It is the subset

of the UML standard that allows software developers to

write constraints and queries over object models.

AMP Profile Overview

The Platform Independent Model (PIM) must

achieve a sufficient level of platform-independence,

enabling its transformation into Platform Specific

Models (PSMs), according to the selected platform.

This paper thus proposes the employment of the

Application Modeling Profile (AMP) in the creation

of the PIM, given that it allows software engineers to

design this model regardless of the detailed

knowledge on the selected platform.

The AMP profile specifies two stereotypes, which are

extensions of the “UML operation” metaclass:

• <<rtDDoperation>> stereotype: Represents the

service operations of RTOS device drivers (e.g.,

display-or keyboard-related services)

• <<rtSWoperation>> stereotype: Represents the

service operations of RTOS kernel (e.g., thread-or

interrupt-related services)

Inali Wisniewski Soares et al. / Journal of Computer Sciences 2015, 11 (12): 1075.1081

DOI: 10.3844/jcssp.2015.1075.1081

1077

Consequently, the PIM model will include elements

from the AMP profile, which abstractly defines RTOS

services. The main purpose of using this profile resides

in annotating services in the PIM without any reference

to a specific platform. Finally, the PIM (based on a

selected platform) is transformed into a PSM in the

context of the MDA approach by means of a model

transformation process.

swxRTOS Profile Overview

The swxRTOS profile is an adaptation of the UML

metamodel responsible for the creation of Platform

Models. This profile aims to facilitate “platform

independence” in the development of embedded

software. Also, it defines a set of stereotypes in order to

abstractly describe the services provided by the RTOS-

based platform as well as their respective hardware

platforms of embedded systems and the specific

processors required for their execution.

The X Real-Time Kernel is an example of RTOS,

presented in this study as a target software platform.

This kernel can be employed in different platforms,

identified according to the microprocessor used:

eLPC-Main 2122, eLPC48, eLPC64, eLPC 144,

eAT55 (eSysTech, 2007).

A sample of some PMs based on the swxRTOS

profile is pointed out as follows: (1) PM for X Real-

Time Kernel in NXP ARM7 processors and (2) PM for

X Real-Time Kernel in Atmel ARM7 processors.

The swxRTOS profile (Fig. 1) is composed of the

following sub-profiles:

• swxCoreRTOS: Represents the basic concepts the

high-level constructs needed to support both

concurrency and interactions

• swxTimeRTOS: Identifies the set of time-related

concepts and semantics

• ddxRTOS: Represents the concepts related to the

physical microcontroller peripherals used in RTOS

X Real-Time Kernel

The templates illustrated in Table 1 are used to

detail the swxCore RTOS, swxTime RTOS and

ddxRTOS sub-profiles, respectively. Such templates

are based on the UML 2.0 specification (UML, 2011)

and on (Rosado et al., 2011). It is important to point out

that in those templates only some of the elements of the

sub-profiles are described. These templates allow us to

describe the abstract syntax of the elements of these

profiles in natural language. The model elements are

described below:

• Stereotype: Name of the stereotype

• Description: Indicates the purpose and significance

of using stereotypes

• Anotation: Corresponds to an icon associated to the

stereotype, its graphic notation

• Tagged values: Are used to define different

properties of the RTOS X Real-Time Kernel

platform models and their respective hardware

platforms describes the properties of the stereotype,

i.e., their attributes and operations

• Name: Name of the tagged value

• Description: Descreve of the tagged value

• Type: Type of the attribute or operation

• Constraints: Correspond to a set of limitations with

regard to the stereotypes and their relation with

other stereotypes and with UML elements. Some

examples of constraints are presented in a textual

form and defined by means of OCL expressions

Fig. 1. Profiles for the creation of platform models

Inali Wisniewski Soares et al. / Journal of Computer Sciences 2015, 11 (12): 1075.1081

DOI: 10.3844/jcssp.2015.1075.1081

1078

Table 1. Elements of the profiles of the platform models

 swxCore RTOS profile
 --
Stereotype Description Anotation

swxCore Concepts regarding the software description in concurrent execution contexts.
 Extension of the class meta-class.
Tagged values
Name Description Type
pointer Reply Msg Pointer at the memory address Pointer
startAddressMsg Start address of the outgoing message Integer
thread ID Thread Identifier Integer
thead Name Thread name String
thread Priority Thread priority String
activateScheduler Scheduler activation Operation
activateThread Thread creation Operation
Send Put Msg Send asynchronous messages Operation
Sleep Thread for Suspend the thread for a definite time Operation
Constraints: The thread Name (tagged value) must have a unique name
Context swxCore-inv: self. thread Name select (is Stereotyped (‘swxCore’))

 ->forAll (s | s.thread Name = self. Thread Name implies s = self)

The thread Priority (tagged value) cannot be empty.
Context swxCore - inv: self. thread Priority select (is Stereotyped (‘swxCore’))

 ->for All (s|s.thread Priority = self. Thread Priority->not Empty())

Interaction point Establishes the link between the application and the platform.
 Extension of the dependency meta-class.
Tagged values
Name Description Type
operationSource Name of the source class operation defined in the PIM. String
operationTarget Name of the target class operation defined in the swxRTOS profile. String
swxTimeRTOS Profile
Stereotype Description Anotation

swxTime Concepts regarding time values. Extension of the class meta-class.
Tagged values
Name Description Type
Nanosec Store time related values in nanoseconds Integer
Time Store time related values. Integer
ddxRTOS Profile
Stereotype Description Anotation

ddxKeyboard Concepts related of a keyboard
Tagged values
iniKBD Initializes the keyboard Operation
registerRec Register a thread that will receive the key Operation

Exemplification of UML Profile

In order to demonstrate the use of the AMP profile

and the swxRTOS profile, an example of an alarm

system is considered (Fig. 2). The purpose of this system

is the simulation of an alarm and its basic functions such

as alarm activation/deactivation and hardware device

drivers control (keyboard, display and leds). The

package named Alarm Application represents step 1,

depicting the PIM model of this application and the use

of the AMP profile. The AMP is used in order to

abstractly capture concerns related to RTOS X Real-

Time Kernel services. In this context, the “CCtrlMain”

class represents the main class of the alarm system. It is

composed of: “Init Thread Alarm” operation-responsible

for creating and controlling the alarm thread; “Start”

operation-starts up the RTOS, using the

<<rtSwoperation>> stereotype of the AMP Profile to

represent a software service; “Start Devices” operation-

starts an RTOS device driver, using the <<rtD

Doperation>> stereotype of the AMP Profile to

represent a device driver service. In addition, the

“CAlarm” is also a class of the alarm system, being

responsible for controlling the main alarm functions.

Inali Wisniewski Soares et al. / Journal of Computer Sciences 2015, 11 (12): 1075.1081

DOI: 10.3844/jcssp.2015.1075.1081

1079

Fig. 2. Example of the Profiles for the creation of the Application and the Platform Models

In the example, only two operations are described:

“Start”operation-starts the alarm thread, using the

<<rtSwoperation>> stereotype of the AMP Profile to

represent an RTOS software service; and “Activate”

operation-activates the alarm.

Step1, illustrated in Fig. 2, shows the link between

the PIM and the platform. In order to perform such link,

the <<InteractionPoint>> stereotype was defined.

This stereotype is an extension of the UML

Dependency metaclass, defined in the swxRTOS profile.

Inali Wisniewski Soares et al. / Journal of Computer Sciences 2015, 11 (12): 1075.1081

DOI: 10.3844/jcssp.2015.1075.1081

1080

The <<InteractionPoint>> stereotype specifies the

operation of the source class indicated in the PIM and

the operation related to the target class indicated in the

swxRTOS profile. For an application to access a

platform service through an Operation Source, it must be

bound to a corresponding Operation Target. In this

example, the “Start” operation of the “CCtrlMain” class is

linked to the “Activate Thread” meta-property of the

swxCore class of the swxRTOS profile. The “Start”

operation is tagged as Operation Source and the “Activate

Thread” meta-property is tagged as Operation Target.

Step 2 is exemplified by the use of the swxRTOS

profile and by the following packages: PM RTOS X

(1.0)-ARM7 Atmel and PM RTOS X (2.0)-ARM7 NXP.

These PMs differ in the RTOS version as well as in the

associated hardware. A reduced form of the swxRTOS

profile (Fig. 2) is used to represent an abstraction layer

of the RTOS X Real-Time Kernel in a generic way,

besides depicting two sub-profiles: swxCore RTOS and

ddxRTOS. The first sub-profile represents the

<<swxCore>> stereotype, responsible for the software

description in concurrent execution contexts. In its turn,

the second sub-profile represents the <<ddxKeyboard>>

stereotype and the general concepts of a keyboard. For

instance, the swxCore RTOS sub-profile includes the

<<swxCore>> stereotype, which in its turn is composed

of meta-properties such as: Thread Priority-indicates the

thread priority; Activate Thread-creates a thread; and

thread Name-indicates a thread name.

The application of the swxCore stereotype in the X

class of the PM RTOS X (1.0)-ARM 7 Atmel allows the

addition of semantics to the model elements of the X

class. That is possible due to tagged values, as illustrated

in the note associated with the X class in Fig. 2.

Likewise, it is possible to notice that the Create

operation in the X class represents the creation of a

thread, while the name attribute represents the name of a

thread and both the init Priority and the thread Priority

attributes represent the priority of a thread.
Step 3, illustrated in Fig. 2 depicts the PIM and PM

models attached as input parameters in the model
transformation. Two PMs are illustrated so as to point
out the differences between them and to show the
practicability in their use, although only one of them is
selected for the Model Transformation (MT) (step 3).
The MT is succinctly illustrated in Fig. 2, aiming to
represent the principle of the MT.

MT is a fundamental theme in MDE. Transformation

between models can be defined as the translation of a

model from a higher abstraction level to a lower

abstraction level, based on a set of clearly defined rules

(Sendall and Kozaczynski, 2003). The independence

between transformation rules and platform features was

achieved by means of PMs explicitly defined, enabling

the creation of transformations that are reusable in

several platforms. The MT defines the use of specific

services of the RTOS, replacing the meta-properties

defined in the swxRTOS profile with the properties

defined in the PM. For example, considering that the PM

RTOS X (1.0) ARM7 Atmel was selected as input PM of

the model transformations, it is observed that the

“Activate Thread”, “thread Name” and “thread Priority”

meta-properties defined in the “swxCore” class of the

swxCore RTOS profile are replaced with the “Create”,

“name” and “prio” properties defined in the “X” class of

the PM RTOS X (1.0) ARM7 Atmel. Replacements also

occur for the other properties described in the classes of

this PM. The result of the MT is the generation of a

package named PSM-RTOS X (1.0) ARM7 Atmel

Alarm Application.

Conclusion

Today, one of the main problems found in tools that
support MDE is the fact that little attention is paid to
questions related to the platform features in the software
development trajectory. As a result, MDE tools are
limited to certain platforms and PIM-into-PSM model
transformation processes.

In order to achieve efficient, easily adaptable model
transformation processes, the specification of
independent platform features is necessary. Concerning
RTOS-based embedded software development, the
benefits in using this approach become even more
evident due to both the inherent complexity of this kind
of software and the existence of a wide variety of
applicable platforms.

In this way, the main contributions of this paper are the
two new UML 2.0 profiles proposed. The AMP profile
enables the system to mark the PIM, indicating the RTOS
services used. In addition, the swxRTOS profile was
defined to be applied to the construction of PMs in
different versions of the X Real-Time Kernel and in
different associated hardware. This profile also performs
the link between the application and the platform.

In future works, usage pattern description and
behavioral modeling may be applied to the swxRTOS
profile so as to obtain an accurate description of the
execution platform.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and no ethical issues involved.

Inali Wisniewski Soares et al. / Journal of Computer Sciences 2015, 11 (12): 1075.1081

DOI: 10.3844/jcssp.2015.1075.1081

1081

References

Dube, M.R. and S.K. Dixit, 2012. Modeling theories and

model transformation scenario for complex system

development. Int. J. Comput. Applic., 38: 11-18.

DOI: 10.5120/4618-6847

eSysTech, 2007. Embedded systems technology.

eSysTech.

Jeon, S., J. Hong, I. Song and D. Bae, 2009. Developing

platform specific model for MPSoC architecture

from UML-based embedded software models. J.

Syst. Software, 82: 1695-1709.

 DOI: 10.1016/j.jss.2009.04.043

Karsai, G., S. Neema and D. Sharp, 2008. Model-driven

architecture for embedded software: A synopsis and

an example. Sci. Comput. Programm., 73: 26-38.

DOI: 10.1016/j.scico.2008.05.006

Kent, S., 2002. Model driven engineering. Proceedings

of the 3rd International Conference on Integrated

Formal Methods, May 15-18, Turku, Finland, pp:

286-298. DOI: 10.1007/3-540-47884-1_16

Kolovos, D.S, R.F. Paige and F. Polack, 2008. The

Epsilon transformation language. Proceedings of the

International Conference on Model Transformation,

Zurich, Switzerland, Jul. 1-2, Zürich, Switzerland,

pp: 46-60. DOI: 10.1007/978-3-540-69927-9_4

Kukkala, P., J. Riihimaki, M. Hamalainen and K.

Kronlof, 2005. UML 2.0 profile for embedded

system design. Proceedings of the Automation and

Test in Europe Conference, Mar. 7-11, IEEE Xplore

Press, pp: 710-715. DOI: 10.1109/DATE.2005.321

Lecomte, S., S. Guillouard, C. Moy, P. Leray and P.

Soulard, 2011. A co-design methodology based on

model driven architecture for real time embedded

systems. Math. Comput. Modell., 53: 471-484.

 DOI: 10.1016/j.mcm.2010.03.035

Maeng, J., J.H. Kim and M. Ryu, 2006. An RTOS API

translator for model-driven embedded software

development. Proceedings of the 12th IEEE

International Conference on Embedded and Real-Time

Computing Systems and Applications, Aug. 16-18,
IEEE Xplore Press, Sydney, Qld., pp: 363-367.

 DOI: 10.1109/RTCSA.2006.15

MARTE, 2008. A UML profile for MARTE: Modeling

and Analysis of Real-Time Embedded systems,

Beta 2 (convenience document without change

bars). OMG Adopted Specification.

UML, 2011. OMG Unified Modeling Language (OMG

UML), !Infrastructure, V2.1.2. Unified Modeling

Language.

Renaux, D.P.B., R.E. Góes and R.R. Linhares, 2010.

Performance characterization of real-time operating

systems for systems-on-silicon. Proceedings of the

12th Brazilian Workshop on Real-Time and

Embedded Systems (RES’ 10), Gramado, Brazil.

Rosado, D.G., E. Fernández-Medina and J. López, 2011.

Towards a UML extension of reusable secure use

cases for mobile grid systems. IEICE Trans. Inform.

Syst., E94-D: 243-254.

 DOI: 10.1587/transinf.E94.D.243

Selic, B., 2005. On software platforms, their modeling

with UML 2 and platform-independent design.

Proceedings of the of the 8th IEEE International

Symposium on Object-Oriented Real-Time

Distributed Computing, May 18-20, IEEE Xplore

Press, pp: 15-21. DOI: 10.1109/ISORC.2005.40

Sendall, S. and W. Kozaczynski, 2003. Model

transformation: The heart and soul of model-driven

software development. IEEE Software, 20: 42-45.

DOI: 10.1109/MS.2003.1231150

Truyen, F., 2006. The fast guide to model driven

architecture-the basics of model driven

architecture. Cephas Consulting Corp.
Wagelaar, D. and V. Jonckers, 2005. Explicit platform

models for MDA. Proceedings of the ACM/IEEE

8th International Conference on Model Driven

Engineering Languages and Systems, Oct. 2-7,

Montego Bay, Jamaica, pp: 367-381.

 DOI: 10.1007/11557432_27

Warmer, J.B. and A.G. Kleppe, 2003. The Object

Constraint Language: Getting Your Models Ready

for MDA. 2nd Edn., Addison-Wesley Professional,
Boston, ISBN-10: 0321179366, pp: 206.

