Journal of Computer Science 10 (4): 640-646, 2014

ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.640.646 Published Onliné4) @014 (http://www.thescipub.com/jcs.toc)

A FRAMEWORK TO MAGNITUDE THE PERFORMANCE
AND BEHAVIOR OF WEB SERVICES USING ONTOLOGY

N. Danapaquiame, E. llavarasan and Neeraj Kumar

Department of Computer Science and Engineering,
Pondicherry Engineering College, Pondicherry-6050idia

Received 2013-06-26; Revised 2013-07-25; Accepte8-2@121
ABSTRACT

A web service is a software interface that dessrébeollection of operations that can be accesgedthe
network through standardized XML messaging. Webvises in different domains are diverse in
implementation techniques thus requiring us to naeetde range of test requirements. Testing ses\écel
service centric system poses new challenges tindesipproaches. Several web services testing were
developed to address these new challenges. Witastilhg, the web service is likely to suffer fromrious
issues in terms of speed, scalability and stabilitythis study, a generalized ontology model isduso
measure the non-functional testable parametersiraihthe dependencies between them. The web seraree
got from the service providers and various testrgeing executed over these services. Web sarstiag is
performed to ensure that their functionality isgtordance with the Service Level Agreement (SIMgtrics
for each dependency will be formulated and invottedng every test and thus the test results whictiain
all the results about each service will be gendrasing Web Application Performance Tool (WAPT).

Keywords: SLA, WAPT and Ontology

1. INTRODUCTION ontology. Input-output testing is used to chedké output
data types and output data values of the web seavie in

Internet is a world wide web which is the main seur accordance with the XML and WSDL files of the web
for the web services. A web service is a system ofservice. Dependency testing under functionalityirtgsis
communication between two electronic devices oter t performed by creating an ontology model and gettirey
web (internet). Millions of web services are puldid parsed output in C#.net. Under the non-functioestirig,
across the internet which can be made use of,diogoio ~ each of the web services are monitored using pedioce
the requirements of the consumers. These serviigist m testing tools and the results are tabulated. Arlogy
be available as WSDL files or sometimes the sesvice model is created for non-functional testing conipgf a
might be available directly. The growing popularity few testable QOS parameters. The dependencies dretwe
web services can be ascribed to a movement toward§ese parameters are mapped onto the ontology hend t
Service-Oriented Architecture (SOA). deviations of the service performance are computdihal

In our proposed framework, the web services to betest report consisting of test and analysis reswilisbe
tested are handed over to the WSTM who is a thirtyp given back to the test requestor, based on whickane
for testing. As per the SLA profile, the servicengsomers ~ decide to consume the service or not.
provide the test requirements to the WSTM. The WSTM

has access to the service registry, WSDL Set, QOS 2. RELATED WORKS
repository, OWL Set and Audit Log to perform the
functionality and non-functional testing of the wssyvices. Hong and Zhang (2012); Yusoft al. (2010);

Under functionality testing, input-output test and Kannammalet al. (2006); Rathore and Suman (2011);
dependency tests are performed using XML DOM andPalanikkumar and Kousalya (2012); Vasanthi and

Corresponding Author: N. Danapaquiame, Department of Computer ScienceEagtheering, Pondicherry Engineering College,
Pondicherry-605014, India Tel: 9629124512

% Science Publications 640 JCS

N. Danapaquiame et al. / Journal of Computer Scié0dd): 640-646, 2014

Wahidabanu (2012)Salva (2011) and Nabiollakét al. In dependency testing, an ontology model is created
(2011) presents a archetype execution of the framein for their entire system and the dependencies betwee
semantic WS and exhibits the feasibility of therfeavork them are mapped using an ontology mapping engine.
by running examples of building a testing tool atest The entity Level, operational level and attribueydl
service, embryonic a service for test executiors\WS and ~ dependencies are tested using the OwIDotNetApi.
composing contemporary test services for more Under the non-functional testing, an ontology model
complicated testing chores. Experimental evaluatiothe is created comprising of a few testable QoS pararset
context has also demonstrated its scalability. which are present in the QoS repository. The variou
But our system performs all levels of testing using relationships between the QoS parameters are fideiti
ontology based on the Protégé tool ontograf can beUsing Tools such as WAPT, application manager, the
generated based on the parameters using ontogtaf to QoS parameters are measured for each service aredi st
for future reference. A few metrics are defined and
3. PROPOSED SYSTEM calculations are performed for each service which w
help in identifying the deviations in the system

The study benevolences a prototype implementationPerformance under various conditions. _
of the framework in semantic WS and demonstrates th A final test report consisting of test and analysis
feasibility of the framework by running examples of results will be given back to the test requestor.
building a testing tool as a test service, develgpa . .
service for test executions of a WS and composingg'l' Functhnal Tes“f‘g
existing test services for more complicated testagks. 3-1-1. Architecture Diagram
Experimental evaluation of the framework has also web services with incorrect responses can lead to
demonstrated its scalability. problems. Web service functional testing ensurasttie

In our framework, there exist three major roles wep service is functionally correct.
namely service provider, service consumer and Web Automated web service functional testing involves
Service Test Manager (WSTM). The service provider carrying set of tasks automatically and comparing t
gives its entire WS to the WSTM for testing. As g result of same with the expected output and ability
SLA Profile, the service consumers provide the testrepeat same set of tasks multiple times with daffer
requirements to the WSTM. The WS TM has access todata input and same level of accuracy. Implementing
the service registry, WSDL set, QoS repository, OWL functional test for web service early in the saites
Set and Audit Log to perform the functionality amoi- development cycle speeds up development improves
functional testing of the web services. guality and reduces risks towards the end of thdecy

Under functionality testing, there is an I/O testia We propose a framework to test the functionalitythef
dependency test. For I/O testing, the input angpwut web service. Under functional testing, there ar® tw
data types and values are retrieved from the WSl a phases namely: Input-Output testing and dependency
XML files of the respective web services and tedtmd testing. The architecture diagram for the testihgveb
their correctness. services is shown in tHeg. 1.

Service provider

SLA profile

| Functional | Non-fi¥nctional

S
L
O test l | Dependency test I_

A QOS repository

I Ontology mapping engine
Ontology QOS model

Test report (—I QOS evaluation engine QOS metric analyzer
S

Service consumer WS test manger

| Data types

Fig 1. Architecture diagram

///// Science Publications 641 JCS

N. Danapaquiame et al. / Journal of Computer Scié0dd): 640-646, 2014

The services are given by the service consumeitand domain. For example in the airline domain if a pers
is send to WS test Manager. WS Test Manager islelivi books a ticket and if he wants to book a hotel themran
into functional and non-functional testing. Further book the hotel only if he has a valid ticket numbéow
functional testing is divided into /O test and while booking the hotel the ticket number of thisvice
Dependency Test. I/O test performs the input, tigia is dependent with the ticket number of the airkeevice
and values from the services. Test report is gée@dra is shown in theFig. 4. So such kinds of dependencies
with the help of I/O test and ontology mapping, QOS can be explored using the ontology model. It create
evaluation and QOS metric analyzer. WS test manageOWL file and for retrieving contents form the OWilef
communicates with the service provider and SLAifof the OWL parser is used.

Service provider will interact with the service gy,)) .,
WSDL set, OWL set and Audit Log. Dependency testing 4-2- Ontology Creation Using Protegé

performs entity, operatioand attribute. Protégé is software used to create ontologiesaigows
domains. The main class is thing for the entire aiom
4. INPUT OUTPUT TESTING Under the main class the sub classes can be incliide

Figure 2 shows the input output testing of the web ontologies are created one for the main domairetfopn

services is done to check whether the web sendce idep_endenpy testing and the other is for the noutitma_l
working properly according to its functionality.ri the testing Whlgh contains the testable parameteraksodheir
WSDL file of each of the web services is taken.Ttiee ~ dependencies are shown. Once the ontology has been
XML files of the corresponding web services can be Created an ontograf is generated which is the matto
taken by running the web service and those files representation of the corresponding ontologies.

;tored ina separate XML repqsitory. Now to perfainm ~ 4.3. Non Functional Testing

input output testing the service name and the servi

location is retrieved from the WSDL files of each o For non-functional testing, generalized ontology
services. Since the WSDL files are in tree forntat t Model for all the testable quality of service paesens
contents can't be retrieved in an ordinary manméey and measure parameters such as average respoese tim
can retrieve using XML DOM and the retrieved bandwidth, processing time, throughput, succedstsl
contents are now stored in the database. Then tising and failed hits has been used. So far there exasteis
service name the XML files of the corresponding Which only measure each parameter individually.eHer
service is opened from the XML repository. Formsthi the parameters are measured individually and aieb f
file the data type of the output and the outpuueais the inter-dependencies between them. Various tools
been retrieved using XML DOM and stored in the like WAPT, Application Manager and Soap Sonar has
database. Now we can check whether the service ideen used to measure the parameters at several
working properly by checking whether the outputadat instances using which the deviations in the pertorce
type is correct and whether the output value isetkect ~ Of the system can be determined.

expected output value. We can also check whether th More web services have been created accordingly to
value lies between the threshold of the servicmair ~ our domain and functionality testing (input and paut

This can be shown in theg. 2 testing) has been performed accordingly for eacthef
) web services created. An ontology model has been
4.1. Dependency Testing created for the whole system specifying the various

For checking the dependencies, we create respectivéelationships between the entities, attributes and
ontology for our domain using Protégé 4.1. Using Operations using Protégé. The dependencies betiieen
OwlDotNetApi, we retrieve the sub-classes, various entities, attributes and operations havenbe
relationships, entities, instances, disjoint classsd identified and have been mapped onto the ontology
sibling classes present in the particular owl fitarsing ~ model. For Example, ticket booking operation under
of the OWL file is performed to identify the varwu airline entity and hotel booking operation undeteho
dependencies between the entities, operations laad t entity have a ticket number as a joint attributeing .net
attributes. The main idea behind finding the string builder class, the dependency relationsliips
dependencies of the web service is to explore thebeen extracted present in the ontology model asifsme
dependencies between each of the services andggivin above and displayed them, which constitutes the
clear idea about the usage of those services in thelependency testing througfg. 5.

///4 Science Publications 642 JCS

N. Danapaquiame et al. / Journal of Computer Scié0dd): 640-646, 2014

1M1 Gt Emaifrom Goagle X f

Untitled Page .

C [} locathost

~ W =8

HOME ABOUT US CONTACT Us
|ID servicename semvicelocation
| addightsere hapilocabostdd
S booksere bk
= o caost 3061
16 hotelseric 49061 :

Fig. 2. Input output testing

WAPT 80 Unregiatered verion will expire in 30 days, 0 hours T
View Action

- T - O 2
g.é. X BB en & & U &6
New Open Save SeveResuls | Rec Verify Test | Run Test Settings | Help
A Geting Started Peformance | pandwidth | Errors | custom
& R Profies >
& Scenanio 7 Actoft chart Resample: MIN () Max
€ Test volume
¥ Log and Report Settings
) Results 'y
&) summary Repont 1
0.085 /
il Performance Data i |\
) Response Time |
(81 Bandwidth Usage .00 7 \
i Errocs Report / |
@ Summary Graphs 0.035 ’ ‘I
& () ADDFUGHT y \ : |
iy pageL: hitp//localhost49189/ airy 0.0% '.\ , \
hitp ecathort 49189, g \ P |
B 3 i L /i \ 1
&y page_3: hitp:/NocalhostA9189/ airg o \ .‘
8 Logs \ |
\ |
002 \ \
¥ |
7 |
0015 f :
/
/
.01 /
/
{
0.005 -
0.000
0:00:00 0:00:04 0:00:08 O00:12 00036 00020 0:00:24 0:00:28 000N 0:00:36 000D 0:0048 GO0 00RO 0:01:00
* Avg responde tme, sel 18 Sesmons per second ‘A
L. Avg respore tme with page slements, sec || |+ Poges per sexond
. i v 1| 191 1e dvg processng tme, sec " His per secand
- ivg domrioad time, sec 2 Actveusers.
E =
Flo E® View fessoner Toos Fetocior Wew e
<[> | [v (i v semarticoves crarrtalges o Wit o -l m[
| imie Orécogy | Entbea | Ciasss | Otisct Properties | Dat Properties | ckvibinis | 'OMViE || DLUGIRY | Greosear
i s tuswcny: Tieket ot ErE | | B o]
] =] | T
v ®Tning 5 i T i = s
¥ ®airine i = i || 5. | & CIGEE w2
©add_Fignt
© Cancel_Ticket T
©Fare_and_Tariff . Pibewe. 2
©Schedule B Pay et
Ticket_Booking /
v ®Bank
P ay_for_ Alrticket [upa scrasun
®Pay_tor_Hotelroem Q Wi
v ®Hotel " % S =
R — W e
@ Update_Schedule
[nomsoong J(@ome Je | [T
sncal_Ticket s
e \

[8]
[] e | (St

reazoner ¥/

Fig. 4. Ontograf for dependency testing
% Science Publications

643

JCS

N. Danapaquiame et al. / Journal of Computer Scié0dd): 640-646, 2014

Untitled Page

= =

=

+

localhost/owlproject

bl

[8h Most Visited Getting Started | | Suggested Sites || Web Slice Gallery B3 Bookmarks

Class
Class
Class
Class
Class
Class
Class

Amount_of Data_Receieved” subClassOf nonfunctional_testable_parameters”
Average_ResponseTime” subClassOf nonfunctional_testable_parameters”

Bandwidth” subClassOf nonfunctional_testable_parameters”

Failed Hits" subClassOf nonfinctional testable parameters”

Latency” subClassOf nonfunctional testable parameters”

Processing Time” subClassOf nonfunctional testable parameters”

Successful_Hits" subClassOf nonfunctional_testable_parameters”

Class Throughput” subClassOf nonfunctional_testable parameters”

Class Amount_of Data_Sent” subClassOf nonfunctional testable_parameters”

Throughput decreaseswithincreasein” someValhesFrom Latency” equivalentClass
Throughput increseswithincreasein” someValiesFrom Bandwidth" equivalentClass
Throughput increaseswithdecreasein” someValesFrom Average ResponseTime” equivalentClass
Amount_Of Data_Sent increseswithincreasein” someValiesFrom Bandwidth” equivalentClass

Fig. 5. Parsed output of the dependency testing of nootifumal parameters

Under non-functional testing has been performed forfor web service creation and also XML DOM for pagsi
all the web services created using WAPT testind. too WSDL and XML files. For monitoring these web seedc

Each of the web services has been tested undeyusari
instances by varying the monitoring period and ssdve
instance values of the tests performed are stamed i
database and the test results are displayed usomida
view. Based on the test results obtained the oslisliips
between the non functional parameters specifieeutint
ontology have been identified. These relationsliipge

been mapped into the ontology model created for non

functional testing. The Response time of the webices

is shown ifFig. 3 is specified under SLA agreement is
taken into consideration and is compared with respo
times of several instances for each web service Th
Deviation in the response time for each instancehef
web services is calculated and projected to theicger

WAPT and Application Manager Tools have been used.
5.1. Web Service Creation

The first module of our framework is to create web
services and test their functionality. The variousb
services were created using visual studio. Somthef
web services created is:

« User Registration service, Adding Flight service,
Ticket Booking service, Fare Calculation service
Hotel Booking service, Bank service, Cancel Ticket
service, Update Flight Schedule service

5.2. Input-Output Testing

consumer based on which he can decide whether t®.2.1. Response Time Graph Using WAPT

purchase the corresponding web service or not. Th
Latency, Bandwidth and Throughput of the web sewic
are also calculated in the same manner and a# tlessilts
are projected to the service consumers for referenc

5. EXPERIMENTAL RESULTS FOR
CASE STUDY

The work is to provide the results of functionadl aron-
functional testing of the requested web servicésdalient.
This can be brought about by creating a website mélke
use of Visual Studio 2008 for this purpose. Thiglgtneed
to have a database comprising of the values oédest
functional and non functional parameters such agcse
name service location, output data type and outplute,
response time, processing time, amount of data t#at
bytes received, successful hits and failed hitssforeral
instances of different web services invoked by edéht
users. For this purpose we again make use of vssudio

///// Science Publications 644

e5.2.1.1. Ontograf for Dependency Testing

The aboveFig. 5 projects the parsed output comprising
of the various dependencies existing between theusa
non-functional parameters considered for our domain

The above figure shows the final output which shows
the overall performance of the web service which is
projected to the client:

Latency = Response Time-Processing Time

LT = RT-PT

Bandwidth = Amount of data sent/Number of users

BW = ADT/Ui

Throughput = Number of users/(Average Response
time+Processing Time)

Tpt = No.Ui/ (AVRT+PT)

Robustness = Number of error messages/Total
number request messages

RB = No.ErrMsgs/Tot. RegMsg

JCS

N. Danapaquiame et al. / Journal of Computer Scié0dd): 640-646, 2014

e [L+ N
€ @ locathost19149/2 2 | |- oo 2l 0

RESEIRNW.A

AARELINNE

HOME ABOUTUS

Latency

Service Name :
[Test Instances -
Response Time is approximately | 85.7142857142857

300375

Bandwidth :© 509 kbits per second
[Throughput @ 563330281680141 per second
Successibility : 8228 %

Robustness. ;849

Schedule
Testinstance3 ~
9% of the SLA respnse time

seconds

sLa% | [Calc Latency | | Calc Bandwidth | Cale Thioughput | | CalcSuccessibility | | Calc Robusiness

50PM |
07-Apr-13

~RE a0

Fig. 6. Performance measure of the requested web service

Successibility = Number of response messages/numbemeasured for each web service and the deviatiotiseof
of request messages system’s performance under various conditions have

Su = No.Resmsg/no.reqmsg been found. An Ontology model is also created fom-n
Availability = 1-(Downtime/Measurement Time) functional testing which helps us to identify the
Av = 1-(Dt-Mt) dependencies between the evaluated parameterdlyFina
. . the test and analysis results are given to thewnoas
Figure 6 shows the calculation of the Latency, based on which they can decide to purchase that web

Bandwidth, Throughout, Robustness, Successibility

and Availability
6. CONCLUSION framewor_k for functional and _non-funct_lonal _testmg
web services. We have taken into consideration tidy

The internet is a vast area where millions of web testable QoS parameters such as response time, erro
services are available according to the consumerstate, amount of data sent per second, amount @f dat
requirements. The shift towards Service-Oriented received per second, average processing time,chaten
Architecture (SOA) can be held responsible for eker- bandwidth, successful hits and the like. Few otésting
increasing popularity of these web services. Theeea lot types have not been explored much. As a future
of challenges while testing web services especialie enhancement to our work testing types such asssigre
integrating web services which are owned by difiere testing, stress testing and recovery testing migdt
vendors. Several strategies have proposed tohesveéb performed over the web services which could produce
services. But each of them has drawbacks of thir o better analysis of their performance thus making it

Thus we have prOpOSEd a teSting framework WhiChpreponderant for the consumer’s perusaL
acts as an intermediary or a third party testewvéen the
service provider and the service consumer. Funation 7. REFERENCES
testing comprising of input output testing and
dependency testing using ontology has been perfbrme Hong, Z. and Y. Zhang, 2012. Collaborative testiig
which shows the behavior of the web services. Under web services. IEEE Tran. Services Comput., 5: 116-
non-functional testing, the values of QOS paransedee 130. DOI: 10.1109/TSC.2010.54

service or try out any other web service.
Our work makes use of ontology based testing

///4 Science Publications 645 JCS

N. Danapaquiame et al. / Journal of Computer Scié0dd): 640-646, 2014

Kannammal, A., V. Ramachandran and N.Ch.S.N.Rathore, M. and U. Suman, 2011. A quality of sezvic
lyengar, 2006. An enhanced secure and scalable broker based process model for dynamic web
model for enterprise applications using automated service composition. J. Comput. Sci., 7: 1267-1274.

monitoring. J. Comput. Sci., 2: 589-594. DOI: DOI: 10.3844/jcssp.2011.1267.1274
10.3844/jcssp.2006.589.594 Salva, S., 2011. An approach for testing web servi
Nabiollahi, A., R.A. Alias and S. Sahibuddin, 2011. compositions when internal messages are

Involvement of service knowledge management unobservable. Int. J. EIecEtu_s. Manage., 9: 334-345.
system in integration of ITIL v3 and enterprise Vasanthr, R. and R.S.D. Wahidabanu, 201_2. Adaptarble
architecture. Am. J. Econ. Bus. Admin., 3: 165- service component interface framework in pervasive
170. DOI: 10.3844/ajebasp.2011.165.170 compang. 4/.3635 Czoonlguéég 856‘35’ 8. 859-863.

Palanikkumar, D. and G. Kousalya, 2012. An e 1CSSP. S

. o : Yusof, M.M., M. Omar and Z. Shukur, 2010. A
evolutionary algorithmic approach based optimal

web service selection for composition with quality disruption-tolerant model for building a mobile
; . application using web service. J. Comput. Sci., 6:
of service. J. Comput. Sci., 8: 573-578. bp g b

' 1430-1437. DOI: 10.3844/jcssp.2010.1430.1437
DOI: 10.3844/jcssp.2012.573.578

///// Science Publications 646 JCS

