Journal of Computer Science 10 (12): 2469-2480, 201

ISSN: 1549-3636

© 2014 M. Diopet al., This open access article is distributed undéreative Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/jcssp.2014.2469.2480 Published Onlih€l?) 2014 (http://www.thescipub.com/jcs.toc)

A VISION-BASED TRAVELLED DISTANCE ESTIMATION
ALGORITHM IN AN INDOOR ENVIRONMENT USING A
MOBILE ROBOT

Mamadou Diop, °Chot Hun Lim, *Tien Sze Lim and*Lee-Yeng Ong

L2Faculty of Engineering and Technology, Multimediaikérsity, Melaka, Malaysia
“Faculty of Information Science and Technology, Muédia University, Melaka, Malaysia

Received 2014-07-24; Revised 2014-08-14; Accepted-D9127
ABSTRACT

Autonomous navigation for a mobile robot still rémsmas a challenging area to be explored. In an
indoor environment, while GPS is unavailable anceglhencoder suffer from error accumulation due
to wheel slips, vision-based travelled distancénestion can be considered as an alternative approac
for more accurate measurements. This study presenésv algorithm to estimate travelled distance of
the mobile robot in an indoor environment. Usinglavnward looking camera, features points are
detected from the floor texture and tracked witle thucas-Kanade optical flow technique. The
measurement accuracy of this algorithm will be pubugh several experiments on real scenarios
which involve comparing the proposed techniquesning the algorithm on different type of indoor
surface at different speed and different trajeetri
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1. INTRODUCTION indoor environment) and position errors in order of
meters. Whereas low-cost IMUs, they suffers frororsr
In autonomous navigation, the accuracy of robotaccumulation over time and they are very sensitive
travelled distance measurement is required in otder magnetic interferences (especially in an indoor
reach a target. Ground-based mobile robots oftenenvironment) and low speed motions (Chhaniyiral.,
encounter wheel slips while moving over extremeaiar ~ 2008; Songt al., 2008).
surfaces (such as gravel, grass, sand) (8balg, 2007). Over the past decade, visual odometry has become a
Since the travelled distance of the mobile robot is promising option to estimate robot velocity. Usstgreo
measured based on the number of round produceldeby t cameras on a rough terrain, (Chilian and Hirschenpll
wheels, theirs slips tend to generate errors tmat a 2009) developed a visual odometry algorithm able to
accumulated during time and end up in providingngro estimate travelled distance with an estimation reofo
positioning and localization. To overcome this &ssu less 1.4% within 8.4 meter average distance.
alternative approaches have been proposed to neeasu(Konolige et al., 2011) developed a more precise
the slips and compensate accordingly with the #&ctualocalization visual system, in rough outdoor terraible
measurement for a more accurate positioning. to estimate 9 km of trajectory with less than 0.b%
Traditionally, Global Positioning System (GPS) and error. Stereo cameras can help to recover motidh wi
Inertial Measurement Unit (IMU) have been used to good accuracy but their use comes with some
measure vehicles’ speed and their trajectory. Hewev considerable limitations. Accuracy using stereohhjig
GPS suffers from low update rates, signal lossesuli  depends on inter-camera calibration, which can dre h
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to realize and the baseline (distance between @mner large distance (linear and non-linear), over défer
which defines the depth range within which, the speeds and different types of indoor surfaces.
observed features or object has to be in orderetoag

correct estimation. Plus, the use of stereo camalsas 2. SYSTEM DESCRIPTION

reduces the field of view because only featuresliban ) o

the intersection of the field of view of two camerean  2-1. Algorithm Description

be used. Compared to a monocular camera, stereo This algorithm makes use of existing features, in
cameras present higher computational cost and morgn image, as principal information to estimate
complex component setting and synchronization travelled distance. Given a live or recorded video,
(Zhanget al., 2014). Using a downward looking single features are detected from each captured frame
camera, (Chhaniyart al., 2008; Songt al., 2007) have  (image). Those features identify small windows of
developed velocity estimation techniques based onpixels (regions) which are evaluated in terms dirth
optical flow. Their experimental studies, usingeattrig traceability (Shi and Tomasi, 1994; Chhaniyataal.,
moving at a velocity not more than 50 mm/sec duang 2008; Songet al., 2010). The traceability of the features
maximum time of 8 seconds, are able to provide depends on the uniqueness of their regions’ teximc
measurements of velocity and travelled distancen wit their intensity (Fraundorfer and Scaramuzza, 2002ce
estimation errors less than 1.5%. Sostgal. (2008) traceable features are selected, optical flowesl tis track
further improved and extended his techniques to 2-Dthem in between frames.

by estimating both linear and angular slip. Optical flow or image velocity can be defined as th
Experimental studies using a mobile robot showed'elative motion of features, edges objects, susfaoe
velocity estimation errors less than 1% with 0.65 image intensity patterns from one scene to another.
meters distance range. A recent monocular system,Several optical flow techniques have been developed
proposed by (Zhangt al., 2014), is able to recover OVer t_hese last de_cades (Campbedll., 2004). Based on
motion (with non-holonomic constraint in 3DOF ©xPeriments realized by (Barraa al., 1994), the one

rotation and 1DOF translation) with a mean relative tr]{‘:]‘t stz_;m?h Ollj_t to bﬁ mocrle relﬁlblg and robust tihen
error of 0.83% over 5 km of overall driving distanc others 1S the Lucas-nanade method.

However, recent research regarding visual odometryf ;l'hIS 3|gt0rl';hm IS ﬂ;ﬁ rgagtlmgr:_mpledmintatlon b1é9t94
for travelled distance and wheel slip measurement eature detection method by (Shi and Tomasi, ).

appeared to be implemented, mostly, on Outdoortogether with iterative Lucas-Kanade method with

environments. Usually, features points detecteabiidoor ]E)yr?m|dsb tzy (Boug.uet, ¢ .2001)' to dtractl_< dtlslt;ggtlve
environments are far enough to be traced afteifisignt eatures between pairs of Images and estimateligeve

time interval (computation time) (Konoliget al., 2011; distance I(:ig. 1). The_traV(_eIIed distance estimation is
Zhang et al., 2014). Moreover, ground textures of reahzgd by |m.plement|ng either one .Of the two jorsq
outdoor type of terrain are coarse enough to dédege technigues using the downward-looking camera.
number of salient features _(Chhaniya&nal., 2008; 2.2 Camera Model and Calibration

Song et al., 2007; 2008). Visual odometry, using a . )

single camera, has been well implemented in outdoor TWo types of information are needed, from the
type of environment (real or simulated). Instead, i camera specifications, to estimate travelled dcstaifhe

feasibility in an indoor environment (where it iore ~ Field Of View (FOV) and the image resolution in giix
needed) is yet to be exp|0red in a |arger Sca|e(he|ght and Wldth). The field of view is the extedftthe

(distance range) with different type of surfaces observable scene that is seen through a cameis.alt
(usually smooth, flat) and texture. value expressed in degrees and can have the same or
This study presents two methods for estimating different value on the height (y-axis) or widthdxis) of
travelled distance estimation using vision. Theelleped ~ the image, depending on the type of camera. Wiéh th
algorithm, combined with a calibrated single camerachosen image resolution of the camera, the FOV is
oriented to the floor, uses the displacements afufe obtained either from the camera specification or by
points matched with optical flow techniques, taraate performing a calibration. The camera calibration, t
the travelled distance of a mobile robot. The robess  obtain the field of view, makes use of a protracir
and accuracy of this algorithm is evaluated throughmotorized rotator or the compass attached to theeca
several experiments using a mobile robot, travglbm As illustrated inFig. 2, it is performed by identifying one
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object, edge or point from one extremity of the

ZxAI'
captured scene, then rotate the camera until theesa TD= = s (4)
feature is located to the opposite extremity fras i
initial position. Once the vertical FOV for a spkci
resolution is obtained, the camera is mounted to a ZXAFysztan(FOV xlxlj
mobile robot to track features and estimate traeell TD = 180 2 (5)

distance based on their displacement. H

2.3. Travelled Distance Estimation Techniques _ L _
2.3.2. Travelled Distance Estimation using a

In this study, two techniques in estimating thedied Downward-Tilting Camera to the Ground

distance of a mobile robot are proposed. Each efeh

techniques makes use of a camera with prescribigtithe With  downward-tiiting camera to the ground,

with respect to ground field of view. These techiiyy  estimating the travelled distance of a mobile robot

involve the camera being positioned either downward requires informationKig. 6) including the vertical field

facing to the ground where (z-axis) is perpendictdghe ~ Of view (FOV based on y-axis in degree) and theeram

ground, or downward tilting to the ground where the height £) from the ground.

image baseline (x, y = height of the image) of Fi@&V is As illustrated inFig. 6, the height of the camera (2)

perpendicular to the grounBig. 3 and 4. is perpendicular to the Height of the image (H) are

i ) ) ] intersecting at the point(on the baseline of the image).

2.3.1. Travelled Distance Estimation Using a Given a pairs of identic feature$j( /<), the travelled

Downward-Facing Camera to the Ground  distance TD of mobile robot | between successive

With downward-facing camera to the ground, the IMages is formulated in Equation 6:

travelled distance estimate will require informatio
(Fig. 5) including the vertical Field Of ViewOV in
(FOV based on y-axis in degree), the height of the
image resolutiorH (in pixel), the height of the camera \here, ||/ || represents the distance between the goint
to the groundZ (in centimeter) and the camera focal and /¢ and ||/, || represents the distance between the

D=1 = 7 | (6)

lengthF (in pixel). From theFQV, the focal Length F is
formulated in Equation 1:
Hx

2

tan(FOV xlx}j
180 2

F= (1)

Given pairs of identic featureg, /c), between a
previous image f) and a current imagec) the
magnitudedl, (in Pixel) of the features’ displacement
based on the y-axis is formulated in Equation 2:

(2)

ar,=r.,,-r,,

By correlation with the magnitude of pairs of feati
from the image, the travelled distant® of a mobile
robot in between images is formulated in Equation 3:

Ary _TD
F o7 3)
////4 Science Publications 2471

pointl and/p.
The distance llf || and ||/, || are calculated using
respectively Equation 7 and 8:

17, = 2xtan{ 756, | (7)
/s
nr, ||:Z><tan(ﬁxepJ (8)

where,Z is the distance of the camera to the grouds

the angletCr cand§, is the angletC /¢ (Fig. 6).

The angleg, and g, are calculated using Equation
9 and 10:

Iy xFOV

g, =—=~ - Fov 9)
Iy x FOV
g,=—2Y"_—" _Fov (10)
H
Jcs
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where, FOV is the field of view of the camera (also downward-facing camera) are compared with the
the angldCo) andH is the height of the imager, distance measurement and robot wheel encoder. The
and I, are the magnitudes (in pixel) dfp and I'c mobile robot travelled five times on a cement floor

features, from the poirt, based on the y-axis in the within 1 meter distance at 50 millimeters per s&ton
image Fig. 6). They are calculated, using the The results obtained from this experiment are shown

coordinate ofl(x,y), 7p(xy) and I'c(xy) points in the N Fig. 9 and 10 _
image, on Equation 11 and 12: Based on the results shown Kig. 9 and 1Q
travelled distance obtained from proposed techréque
o= - (11) appears to be more accurate than the wheel odometry
Yoy e In 5 runs, the downward-facing camera technique
generates 0.76% of errors and the downward-tilting
Moy =y =1, (12) camera technique generates 1.46% of errors within 1
meter distance. In the meantime the wheel odometry
Wherel, = H = the height of the image. generate 7.27 and 7.74% for respectively the
downward-tilting and the downward-facing camera
3. EXPERIMENTAL STUDIES technique. Since the travelled distance values,
generated by the downward facing camera technique,
3.1. Experimental Setup happen to be closer to real travelled distance

measurement, this technique is going to be usetth@n

In this section, the travelled distance algorittsnput _
next parts of our experiments.

under several experiments in order to test its sboimss

and accuracy. The experiments are conducted in a4, Comparison of the Speeds and Terrain

indoor environment with two different types of saagés: Types for Travelled Distance Estimation
Tiled-type floor and cement type flod¥i§. 7 and §.

The equipment used for the experiments consisted In this experiment, different speeds on different
of the PIONEER P3-AT from Adept Mobile Robot indoor terrain types are compared. The mobile robot
along with a logitech camera HD ¢920 and a laptop o travelled 3 times an approximate distance of 2 and
top of it. The camera is mounted on a Height Z = 20 meters at 50 and 100 millimeters per second spaed,
cm to the ground, capturing image at 30 frames pertjed and cement-type floor. The results of this
SeCOI’]d W|th a reSO|uti0n Of 32940 (W|dth X he|ght) experiment are d|sp|ayed ﬁ]g 11to 13
and a FOV of 52°. The algorithm is developed on paseq on the results obtained from this experimient,

;"Sualtrﬁ:h; W'tr:l %P%U(;'V I|braryt._ Thte_z data prov'ddetddappears that travelled distances, estimated orled fti
rom the travetle IStance estimation are upaatedq,,. s closer to the real measurement compaoeithe

after every captured image (within 3 millisecondsjl ones obtained on cement floor. At a speed of 50

displayed on a Graphical User Interface (GUI) — .~ .
P : millimeters per second, the algorithm generatesremp
developed in visual basic. )
_ to 0.47 and 0.64% when the robot travelled respelgti
3.2. Results and Analysis around 2 and 3 meters on a tiled floor; agains? h6d

The experiments consist of putting the algorithm to 1.98% for respectively around 2 and 3 meters tregtel

run under two different indoor surface texturesthwi distance on a cgment floor. Ata ;peed of 100 méters
different speed, different trajectory and distaribeey ~ Per sécond, & higher error scale is observed dntppes
will be divided in 3 phases, through which the befst of surface. Thus the visual odometry generatesme[rp_

at the most convenient speed will be chosen tooun ~around 2 and 3 meters on a tiled floor; agains#é9 and
a larger scale trajectory. 16.29% for respectively around 2 and 3 meters tede

) ) distance on a cement floor. Since the travellethdie
3.3. Comparison of the Travelled Distance estimation algorithm seems to be more accuratelexh t

Estimation Techniques floor, when the robot is travelling at 50 millimeteper

In the first experiment, the travelled distance second, this setup will be used to perform to next
estimation  techniques  (downward-tilting  and experiment which involves linear and angular magion
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A-downward-tilting camera B-downward-facing camera

Fig. 7. Hardware setup on a cement-type floor

Fig. 8. Hardware setup on a tiled-type floor
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Fig. 9. Graph: Travelled distance estimation with a dowrdatditing camera on cement floor
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Fig. 10.Graph: Travelled distance estimation with a dowrdaalting camera on cement floor

Cement Floar Tiled Floor
Real Visual Pitiica Real Visual —
measurement | Odometry {cm) measurement|Odometry (cm}
{cm) (em) {em) {cm)
189.5 19153 | 2.03 188.5 189.39 | 0.89
200em 190.1 188.67 | 1.43 188.3 188.16 | 0.14
speed 188.2 18993 | 1.73 188.7 188.7 0
S0mm/s 281 285.19 419 275 276.38 | 1.38
300cm 282 277.74 | 4.26 2823 282.38 | 0.08
282.5 28811 | 5.61 279.6 277.81 | 1.79
194 165.94 | 28.06 194 190.61 | 3.39
200cm 197 162.53 | 34.47 191 188.62 | 2.38
speed 193 159.79 | 33.21 193.1 191.8 1.3
100mm/s 285 2452 39.8 283.7 289.13 | 5.43
300em 280.5 246.56 | 33.94 290 283.84 | 6.16
281 235.22 | 45.78 280 27416 | 5.84

Fig. 11.Table: Travelled distance estimation with a dowrtwilting camera on cement floor
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Tiled Floor
Real Visual Ertors
measurement| Odometry Trajectory
(cm)
(cm) (em)
304.8 4.8
300 300.14 0.14 L‘
296.32 3.68
S d 404.75 4,75
poe 400 393.93 6.07
50mm/s
399,82 0.18
1224.83 24.83
1200 1217.28 17.28
1211.44 11.44

Fig. 15.Table: Results of the travelled distance estinmtising different type of trajectories

1400
1200 p—At—e

1000 f
+-Tiled floor real measurement

800
-#-Tiled floor visual odometry
600

Centimeter

Tiled floor error
400 _»

200

0 ! \ i A A )
Speed 50 mm/s

Fig. 16.Graph: Travelled distance estimation using différgypes of trajectories

3.5. Comparison of the Estimated Travelled distance involving 2 rotations of 90 degrees. At 4

Distance with Different Trajectories meters distance with 4 rotations of 90 degrees, the
robot generates 1.51%. For the last trajectory with
distance of 12 meters and 4 rotations, a 2.06% of
errors are generated.

In this experiment, the travelled distance estiorati
algorithm is put under larger distance. Travellatg50
millimeter per second speed, the robot will rurindes 3

different trajectories that involve linear motioassd 90° 4. RESULTS AND DISCUSSION
degrees rotations as shownHig. 14 Results from this
experiment are shown Fig. 15 and 16 The experiments realized in papers were able

In this final experiment the mobile the algorithm highlight the strengths and some weaknesses of the
generates 1.6% of errors when it travel a 3 meterstravelled distance estimation algorithm. Based lursé
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experiments, it can be concluded that a good of the 5. CONCLUSION
travelled distance measurement highly depend on the
camera setup, the features to track and the rqleatds This study presented a new vision-based travelled

By camera setup, it means to set the cameradistance estimation algorithm in an indoor envirenin
accurately according to the chosen technique,using the mobile robot. This algorithm is able to
calibrate it and estimate its height to ground with measurement the distance travelled by the robainin
precision. The difference in errors generated betwe indoor environment using features identified onftber.
the proposed techniques (experiment from the sectio The experiments performed in this study, prove this
3.2.1) can be tight with the camera setting. Indeed algorithm to be accurate and robust on smooth tgfes
making the camera attached parallel to the floorsurfaces (with uniform texture) which are categedias
(downward-facing technique) robot happens to beextreme since there are not much of traceable riesitu
easier and more convenient to be implemented withBecause of the better accuracy that the algorithm
the available equipment (mobile robot, camera). provides over the robot wheel encoder in some
Making the camera tilting (with downward-tilting situations, it can be considered as an alternafiypgoach
technique), while the base of the view is perpemidic ~ for motion sensing technology, which is low costlan
to the floor, can be quite difficult to implememt this perform in real time. In further studies, this aligfum
situation; and a small inclination of the camerdath could be tried out with outdoor type of surfacescsi
techniques, from their right disposition, could more edges and shapes could be observed. Moreover,

generate errors that are accumulating over time. combined other motion sensing devices or algorithms
This developed algorithm, also, highly rely on capable to estimate orientations (specially yawtion),
features to track. Those features, in this condéxype,  this algorithm could estimate and generate fulhpi@ar

are identified around observable edges on floorthis trajectory) taken by a ground-based mobile robmifits
algorithm, up to 100 good features can be seleatell jnjtial to its current position.

tracked between images. From the magnitude value of

each features, the average of the most common isnes 6. ACKNOWLEDGEMENT
consider to right magnitude to calculate the trmdel
distance. Therefore the more features there aréhen Authors would like to thank all CRSST (Center of

more accurate will be the measurement. That expleEn  Remote Sensing and Surveillance Technology) members
better accurate measurement obtained on a tileat flo for their support through the realisation of thisjpct.
(experiment performed in section 3.2.2) since & hmeore
observable edges and traceable features, compdhe to 7. ADDITIONAL INFORMATION
cement floor which is uniformFg. 7 and §.

Another factor that impacts the travelled distance 7.1. Funding Information
measurement is the speed of the mobile robot. pheds
of the robot usually shows the limitations of the
implemented camera. Depending on the camera, highe
motion speeds generate blurrier image frame, which7 2. Author’s Contributions
caused feature losses and tracking errors. Thaidwou ) ) )
explain higher errors scale, when the robot tradekt From the algorithm design to this paper draft
100 millimeters per second, on the experiment pevéal Mamadou Diop: However, S|g_n|f|canf[ co_ntr|but|ons
in section 3.2.2. The measurement errors at sueadsp Were brought all the way through its realization by
become more important on cement floor than a tiled ~Chot Hun Lim: Emphasizing on the algorithm
because features identified on the cement havavarlo IMmplementation and data acquisition.
gradient (less visible), therefore more sensitie t  1ien Sze Lim: Emphasizing on algorithm the paper
blurred, compare to the ones on a tiled floor. writing and reviews. o . _

Beside weaknesses of this algorithm, based on the Lee-Yeng Ong:Emphasizing on the algorithm design
camera limitations, it cannot perform well on some and development.
extreme lighting situations on a uniform type afdi, 7.3. Ethics
where lighting environment is high until reflecting the o
floor and over shadow observable edges, or toouliotiV This article is original and contains unpublished
no edges can be observed. material. The corresponding author confirms thawél
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the other authors have read and approved the m@utusc Shi, J. and C. Tomasi, 1994. Good features to track
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