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ABSTRACT 

Autonomous navigation for a mobile robot still remains as a challenging area to be explored. In an 
indoor environment, while GPS is unavailable and wheel encoder suffer from error accumulation due 
to wheel slips, vision-based travelled distance estimation can be considered as an alternative approach 
for more accurate measurements. This study presents a new algorithm to estimate travelled distance of 
the mobile robot in an indoor environment. Using a downward looking camera, features points are 
detected from the floor texture and tracked with the Lucas-Kanade optical flow technique. The 
measurement accuracy of this algorithm will be put through several experiments on real scenarios 
which involve comparing the proposed techniques, running the algorithm on different type of indoor 
surface at different speed and different trajectories. 
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1. INTRODUCTION 

In autonomous navigation, the accuracy of robot 
travelled distance measurement is required in order to 
reach a target. Ground-based mobile robots often 
encounter wheel slips while moving over extreme terrain 
surfaces (such as gravel, grass, sand) (Song et al., 2007). 
Since the travelled distance of the mobile robot is 
measured based on the number of round produced by the 
wheels, theirs slips tend to generate errors that are 
accumulated during time and end up in providing wrong 
positioning and localization. To overcome this issue, 
alternative approaches have been proposed to measure 
the slips and compensate accordingly with the actual 
measurement for a more accurate positioning. 

Traditionally, Global Positioning System (GPS) and 
Inertial Measurement Unit (IMU) have been used to 
measure vehicles’ speed and their trajectory. However, 
GPS suffers from low update rates, signal losses (in an 

indoor environment) and position errors in order of 
meters. Whereas low-cost IMUs, they suffers from errors 
accumulation over time and they are very sensitive to 
magnetic interferences (especially in an indoor 
environment) and low speed motions (Chhaniyara et al., 
2008; Song et al., 2008). 

Over the past decade, visual odometry has become a 
promising option to estimate robot velocity. Using stereo 
cameras on a rough terrain, (Chilian and Hirschmuller, 
2009) developed a visual odometry algorithm able to 
estimate travelled distance with an estimation error of 
less 1.4% within 8.4 meter average distance. 
(Konolige et al., 2011) developed a more precise 
localization visual system, in rough outdoor terrain, able 
to estimate 9 km of trajectory with less than 0.1% of 
error. Stereo cameras can help to recover motion with 
good accuracy but their use comes with some 
considerable limitations. Accuracy using stereo highly 
depends on inter-camera calibration, which can be hard 
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to realize and the baseline (distance between cameras) 
which defines the depth range within which, the 
observed features or object has to be in order to get a 
correct estimation. Plus, the use of stereo cameras also 
reduces the field of view because only features that lie in 
the intersection of the field of view of two cameras can 
be used. Compared to a monocular camera, stereo 
cameras present higher computational cost and more 
complex component setting and synchronization 
(Zhang et al., 2014). Using a downward looking single 
camera, (Chhaniyara et al., 2008; Song et al., 2007) have 
developed velocity estimation techniques based on 
optical flow. Their experimental studies, using a test rig 
moving at a velocity not more than 50 mm/sec during a 
maximum time of 8 seconds, are able to provide 
measurements of velocity and travelled distance with 
estimation errors less than 1.5%. Song et al. (2008) 
further improved and extended his techniques to 2-D 
by estimating both linear and angular slip. 
Experimental studies using a mobile robot showed 
velocity estimation errors less than 1% with 0.65 
meters distance range. A recent monocular system, 
proposed by (Zhang et al., 2014), is able to recover 
motion (with non-holonomic constraint in 3DOF 
rotation and 1DOF translation) with a mean relative 
error of 0.83% over 5 km of overall driving distance. 

However, recent research regarding visual odometry 
for travelled distance and wheel slip measurement 
appeared to be implemented, mostly, on outdoor 
environments. Usually, features points detected in outdoor 
environments are far enough to be traced after significant 
time interval (computation time) (Konolige et al., 2011; 
Zhang et al., 2014). Moreover, ground textures of 
outdoor type of terrain are coarse enough to detect large 
number of salient features (Chhaniyara et al., 2008; 
Song et al., 2007; 2008). Visual odometry, using a 
single camera, has been well implemented in outdoor 
type of environment (real or simulated). Instead, its 
feasibility in an indoor environment (where it is more 
needed) is yet to be explored in a larger scale 
(distance range) with different type of surfaces 
(usually smooth, flat) and texture.  

This study presents two methods for estimating  
travelled distance estimation using vision. The developed 
algorithm, combined with a calibrated single camera 
oriented to the floor, uses the displacements of feature 
points matched with optical flow techniques, to estimate 
the travelled distance of a mobile robot. The robustness 
and accuracy of this algorithm is evaluated through 
several experiments using a mobile robot, travelling on 

large distance (linear and non-linear), over different 
speeds and different types of indoor surfaces. 

2. SYSTEM DESCRIPTION 

2.1. Algorithm Description 

This algorithm makes use of existing features, in 
an image, as principal information to estimate 
travelled distance. Given a live or recorded video, 
features are detected from each captured frame 
(image). Those features identify small windows of 
pixels (regions) which are evaluated in terms of their 
traceability (Shi and Tomasi, 1994; Chhaniyara et al., 
2008; Song et al., 2010). The traceability of the features 
depends on the uniqueness of their regions’ texture and 
their intensity (Fraundorfer and Scaramuzza, 2012). Once 
traceable features are selected, optical flow is used to track 
them in between frames. 

Optical flow or image velocity can be defined as the 
relative motion of features, edges objects, surfaces or 
image intensity patterns from one scene to another. 
Several optical flow techniques have been developed 
over these last decades (Campbell et al., 2004). Based on 
experiments realized by (Barron et al., 1994), the one 
that stand out to be more reliable and robust than the 
others is the Lucas-Kanade method. 

This algorithm is the real-time implementation of the 
feature detection method by (Shi and Tomasi, 1994), 
together with iterative Lucas-Kanade method with 
pyramids by (Bouguet, 2001), to track distinctive 
features between pairs of images and estimate travelled 
distance (Fig. 1). The travelled distance estimation is 
realized by implementing either one of the two proposed 
techniques using the downward-looking camera. 

2.2. Camera Model and Calibration 

Two types of information are needed, from the 
camera specifications, to estimate travelled distance: The 
Field Of View (FOV) and the image resolution in pixel 
(height and width). The field of view is the extent of the 
observable scene that is seen through a camera. It is a 
value expressed in degrees and can have the same or 
different value on the height (y-axis) or width (x-axis) of 
the image, depending on the type of camera. With the 
chosen image resolution of the camera, the FOV is 
obtained either from the camera specification or by 
performing a calibration. The camera calibration, to 
obtain the field of view, makes use of a protractor, a 
motorized rotator or the compass attached to the camera. 
As illustrated in Fig. 2, it is performed by identifying one 
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object, edge or point from one extremity of the 
captured scene, then rotate the camera until the same 
feature is located to the opposite extremity from its 
initial position. Once the vertical FOV for a specific 
resolution is obtained, the camera is mounted to a 
mobile robot to track features and estimate travelled 
distance based on their displacement. 

2.3. Travelled Distance Estimation Techniques 

In this study, two techniques in estimating the travelled 
distance of a mobile robot are proposed. Each of these 
techniques makes use of a camera with prescribed height 
with respect to ground field of view. These techniques 
involve the camera being positioned either downward-
facing to the ground where (z-axis) is perpendicular to the 
ground, or downward tilting to the ground where the 
image baseline (x, y = height of the image) of the FOV is 
perpendicular to the ground (Fig. 3 and 4). 

2.3.1. Travelled Distance Estimation Using a 
Downward-Facing Camera to the Ground 

With downward-facing camera to the ground, the 
travelled distance estimate will require information 
(Fig. 5) including the vertical Field Of View FOV in 
(FOV based on y-axis in degree), the height of the 
image resolution H (in pixel), the height of the camera 
to the ground Z (in centimeter) and the camera focal 
length F (in pixel). From the FOV, the focal Length F is 
formulated in Equation 1: 
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Given pairs of identic features (Γp, Γc), between a 

previous image (p) and a current image (c), the 
magnitude ∆Γy (in Pixel) of the features’ displacement 
based on the y-axis is formulated in Equation 2: 
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By correlation with the magnitude of pairs of features 

from the image, the travelled distance TD of a mobile 
robot in between images is formulated in Equation 3 to 5: 
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2.3.2. Travelled Distance Estimation using a 
Downward-Tilting Camera to the Ground 

With downward-tilting camera to the ground, 
estimating the travelled distance of a mobile robot 
requires information (Fig. 6) including the vertical field 
of view (FOV based on y-axis in degree) and the camera 
height (Z) from the ground. 

As illustrated in Fig. 6, the height of the camera (Z) 
is perpendicular to the Height of the image (H) are 
intersecting at the point I (on the baseline of the image). 
Given a pairs of identic features (Γp, Γc), the travelled 
distance TD of mobile robot I between successive 
images is formulated in Equation 6: 
 

|| || || ||c pTD IΓ IΓ= −  (6) 

 
where, ||IΓc || represents the distance between the point I 
and Γc and ||IΓp || represents the distance between the 
point I and Γp.  

The distance ||IΓc || and ||IΓp || are calculated using 
respectively Equation 7 and 8: 
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where, Z is the distance of the camera to the ground, θc is 

the angle � cICΓ and θp is the angle � cICΓ (Fig. 6).  
The angle θc and θp are calculated using Equation 

9 and 10: 
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Fig. 1. Algorithm flowchart 
 

 
 

Fig. 2. Vertical field of view calibration 
 

 
 

Fig. 3. Downward-facing to the ground 
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Fig. 4. Downward-tilting to the ground 
 

 
 

Fig. 5. Geometrical representation of a downward-facing camera to the ground 
 

 
 

Fig. 6. Geometrical representation of a downward-tilting camera to the ground 
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where, FOV is the field of view of the camera (also 

the angle�ICO ) and H is the height of the image. IΓp 
and IΓc are the magnitudes (in pixel) of Γp and Γc 
features, from the point I, based on the y-axis in the 
image (Fig. 6). They are calculated, using the 
coordinate of I(x,y), Γp(x,y) and Γc(x,y) points in the 
image, on Equation 11 and 12: 
 

. .c y y c yI IΓ Γ= −  (11) 

 

. .p y y p yIΓ Γ= −  (12) 

 
Where Iy = H = the height of the image. 

3. EXPERIMENTAL STUDIES 

3.1. Experimental Setup 

In this section, the travelled distance algorithm is put 
under several experiments in order to test its robustness 
and accuracy. The experiments are conducted in an 
indoor environment with two different types of surfaces: 
Tiled-type floor and cement type floor (Fig. 7 and 8). 

The equipment used for the experiments consisted 
of the PIONEER P3-AT from Adept Mobile Robot 
along with a logitech camera HD c920 and a laptop on 
top of it. The camera is mounted on a Height Z = 20 
cm to the ground, capturing image at 30 frames per 
second with a resolution of 320×240 (width × height) 
and a FOV of 52°. The algorithm is developed on 
visual C++ with OpenCV library. The data provided 
from the travelled distance estimation are updated 
after every captured image (within 3 milliseconds) and 
displayed on a Graphical User Interface (GUI) 
developed in visual basic.  

3.2. Results and Analysis 

The experiments consist of putting the algorithm to 
run under two different indoor surface textures, with 
different speed, different trajectory and distance. They 
will be divided in 3 phases, through which the best of 
the proposed techniques, performing on the best floor 
at the most convenient speed will be chosen to run on 
a larger scale trajectory. 

3.3. Comparison of the Travelled Distance 
Estimation Techniques 

In the first experiment, the travelled distance 
estimation techniques (downward-tilting and 

downward-facing camera) are compared with the 
distance measurement and robot wheel encoder. The 
mobile robot travelled five times on a cement floor, 
within 1 meter distance at 50 millimeters per second. 
The results obtained from this experiment are shown 
in Fig. 9 and 10. 

Based on the results shown in Fig. 9 and 10, 
travelled distance obtained from proposed techniques 
appears to be more accurate than the wheel odometry. 
In 5 runs, the downward-facing camera technique 
generates 0.76% of errors and the downward-tilting 
camera technique generates 1.46% of errors within 1 
meter distance. In the meantime the wheel odometry 
generate 7.27 and 7.74% for respectively the 
downward-tilting and the downward-facing camera 
technique. Since the travelled distance values, 
generated by the downward facing camera technique, 
happen to be closer to real travelled distance 
measurement, this technique is going to be used on the 
next parts of our experiments. 

3.4. Comparison of the Speeds and Terrain 
Types for Travelled Distance Estimation 

In this experiment, different speeds on different 
indoor terrain types are compared. The mobile robot 
travelled 3 times an approximate distance of 2 and 3 
meters at 50 and 100 millimeters per second speed, on 
tiled and cement-type floor. The results of this 
experiment are displayed in Fig. 11 to 13. 

Based on the results obtained from this experiment, it 
appears that travelled distances, estimated on a tiled 
floor, is closer to the real measurement compared to the 
ones obtained on cement floor. At a speed of 50 
millimeters per second, the algorithm generates errors up 
to 0.47 and 0.64% when the robot travelled respectively 
around 2 and 3 meters on a tiled floor; against 1.07 and 
1.98% for respectively around 2 and 3 meters travelled 
distance on a cement floor. At a speed of 100 millimeters 
per second, a higher error scale is observed on both types 
of surface. Thus the visual odometry generates errors up 
to 1.74 and 2.12% when the robot travelled respectively 
around 2 and 3 meters on a tiled floor; against 17.49 and 
16.29% for respectively around 2 and 3 meters travelled 
distance on a cement floor. Since the travelled distance 
estimation algorithm seems to be more accurate on tiled 
floor, when the robot is travelling at 50 millimeters per 
second, this setup will be used to perform to next 
experiment which involves linear and angular motions. 
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Fig. 7. Hardware setup on a cement-type floor 

 

 
 

Fig. 8. Hardware setup on a tiled-type floor 
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Fig. 9. Graph: Travelled distance estimation with a downward-tilting camera on cement floor 
 

 
 

Fig. 10. Graph: Travelled distance estimation with a downward-tilting camera on cement floor 
 

 
 

Fig. 11. Table: Travelled distance estimation with a downward-tilting camera on cement floor 
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Fig. 12. Graph: Speed effect travelled distance estimation using a downward-facing camera on a tiled floor 
 

 
 

Fig. 13. Graph: Speed effect on the travelled distance estimation using a downward-facing camera on cement floor 
 

 
 

Fig. 14. Types of trajectories 
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Fig. 15. Table: Results of the travelled distance estimation using different type of trajectories 

 

 
 

Fig. 16. Graph: Travelled distance estimation using different types of trajectories 
 
3.5. Comparison of the Estimated Travelled 

Distance with Different Trajectories 

In this experiment, the travelled distance estimation 
algorithm is put under larger distance. Travelling at 50 
millimeter per second speed, the robot will run 3 times 3 
different trajectories that involve linear motions and 90° 
degrees rotations as shown in Fig. 14. Results from this 
experiment are shown in Fig. 15 and 16.  

In this final experiment the mobile the algorithm 
generates 1.6% of errors when it travel a 3 meters 

distance involving 2 rotations of 90 degrees. At 4 
meters distance with 4 rotations of 90 degrees, the 
robot generates 1.51%. For the last trajectory with a 
distance of 12 meters and 4 rotations, a 2.06% of 
errors are generated. 

4. RESULTS AND DISCUSSION 

The experiments realized in papers were able 
highlight the strengths and some weaknesses of the 
travelled distance estimation algorithm. Based on those 
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experiments, it can be concluded that a good of the 
travelled distance measurement highly depend on the 
camera setup, the features to track and the robot speed. 

By camera setup, it means to set the camera 
accurately according to the chosen technique, 
calibrate it and estimate its height to ground with 
precision. The difference in errors generated between 
the proposed techniques (experiment from the section 
3.2.1) can be tight with the camera setting. Indeed, 
making the camera attached parallel to the floor 
(downward-facing technique) robot happens to be 
easier and more convenient to be implemented with 
the available equipment (mobile robot, camera). 
Making the camera tilting (with downward-tilting 
technique), while the base of the view is perpendicular 
to the floor, can be quite difficult to implement in this 
situation; and a small inclination of the camera in both 
techniques, from their right disposition, could 
generate errors that are accumulating over time. 

This developed algorithm, also, highly rely on 
features to track. Those features, in this context of type, 
are identified around observable edges on floor. In this 
algorithm, up to 100 good features can be selected and 
tracked between images. From the magnitude value of 
each features, the average of the most common ones is 
consider to right magnitude to calculate the travelled 
distance. Therefore the more features there are on the 
more accurate will be the measurement. That explain the 
better accurate measurement obtained on a tiled floor 
(experiment performed in section 3.2.2) since it has more 
observable edges and traceable features, compare to the 
cement floor which is uniform (Fig. 7 and 8). 

Another factor that impacts the travelled distance 
measurement is the speed of the mobile robot. The speed 
of the robot usually shows the limitations of the 
implemented camera. Depending on the camera, higher 
motion speeds generate blurrier image frame, which 
caused feature losses and tracking errors. That would 
explain higher errors scale, when the robot travelled at 
100 millimeters per second, on the experiment performed 
in section 3.2.2. The measurement errors at such speed 
become more important on cement floor than a tiled 
because features identified on the cement have a lower 
gradient (less visible), therefore more sensitive to 
blurred, compare to the ones on a tiled floor.  

Beside weaknesses of this algorithm, based on the 
camera limitations, it cannot perform well on some 
extreme lighting situations on a uniform type of floor, 
where lighting environment is high until reflecting on the 
floor and over shadow observable edges, or too low until 
no edges can be observed. 

5. CONCLUSION 

This study presented a new vision-based travelled 
distance estimation algorithm in an indoor environment 
using the mobile robot. This algorithm is able to 
measurement the distance travelled by the robot in an 
indoor environment using features identified on the floor. 
The experiments performed in this study, prove this 
algorithm to be accurate and robust on smooth types of 
surfaces (with uniform texture) which are categorized as 
extreme since there are not much of traceable features. 
Because of the better accuracy that the algorithm 
provides over the robot wheel encoder in some 
situations, it can be considered as an alternative approach 
for motion sensing technology, which is low cost and 
perform in real time. In further studies, this algorithm 
could be tried out with outdoor type of surfaces since 
more edges and shapes could be observed. Moreover, 
combined other motion sensing devices or algorithms 
capable to estimate orientations (specially yaw rotation), 
this algorithm could estimate and generate full path (or 
trajectory) taken by a ground-based mobile robot from its 
initial to its current position. 
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