
Journal of Computer Science 10 (12): 2408-2414, 2014
ISSN: 1549-3636
© 2014 A. Khanjani et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/jcssp.2014.2408.2414 Published Online 10 (12) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Atieh Khanjani, Department of Software Engineering and Information System Faculty of Computer
Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia

2408 Science Publications

JCS

FEATURE-BASED ANALYSIS INTO THE TREND OF
SOFTWARE TECHNOLOGIES FROM TRADITIONAL TO

SERVICE ORIENTED ARCHITECTURE AND SAAS CLOUD

Atieh Khanjani, Wan Nurhayati Wan Ab. Rahman and
Abdul Azim Abd Ghani

Department of Software Engineering and Information System,

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia

Received 2014-04-04; Revised 2014-05-06; Accepted 2014-07-25

ABSTRACT

There are issues of confusion between the concepts of Service Oriented Architecture (SOA) and Software
as a Service (SaaS) which affect on the benefits they offer like cost reduction and agility. To solve this
problem, the paper aims to explore the concepts of SaaS and SOA in order to give better understanding of
these two technologies. Since SaaS cloud is getting more popular day by day and many companies are
shifting to apply SaaS solutions, this motivates us to make a clear understanding of the concepts of SaaS
delivery model and SOA architecture. Therefore, in this research we have reviewed the concepts and
features of both SaaS cloud and SOA and then compared them with the traditional on-premise software.

Keywords: SOA, SaaS, Software, on-Premise, on-Demand, Business, Cloud Computing, Service Oriented

1. INTRODUCTION

The origin of computing resource sharing back to
1960’s when the idea of “computation should be
organized as a public utility” has been proposed by John
McCarthy in 1961. The idea in fact, addressed the
concept of cloud computing-a shared resource of
computing power. Anyway, while the idea has been
around for some time, the web-based technology
required to support Software as a Service (SaaS)
matured heading into the early 2000 when Sales
force company started offering SaaS services like
Customer Relationship Management (CRM).

SaaS became a commonly accepted business model
after the first SaaS Conference to be offered by
SDForum in 2005. According to IBM and Microsoft
definition of SaaS as two major SaaS providers in
2007, SaaS functionality is delivered by a subscription
model over the Internet that customer rents a total

solution remotely delivered. SaaS is impacting
software industry and increasingly popular to the
users for its simple deployment. SaaS allows
providers to serve and support a lot of users only
through a single version of product with pay as you go
licensing model (Chou and Chou, 2008). A survey on
more than 1000 enterprise software decision makers has
been performed in June 2010, by Forrester. The results
showed that SaaS combined with buyers’desire for
solutions that allow them to save costs, deploy quickly and
avoid long-term lock-in, is definitely continuing to gain
in popularity (AFST, 2014).

Forrester’s research also shows that the global SaaS
market is expected to surpass US$130 billion by 2020
from US$21.2 billion in 2011 (Collier, 2012).
Furthermore, more than 20% of all distribution and
manufacturing software was SaaS-based in 2012. This
number is expected to grow to 45% within the next 10
years given what companies say they would be willing to

Atieh Khanjani et al. / Journal of Computer Science 10 (12): 2408.2414, 2014

2409 Science Publications

JCS

consider. In contrast, traditional on-premise deployments
are far less utilized than they were in the past; a few
years ago the percentage of use was in the 90%, while
today it stands at just 50% (Burgess, 2013).

With more applications being delivered via the
cloud, there is set to be an explosion of SaaS
providers. According to Martin Thompson, 2014 is the
year that enterprises begin to claw back control from
overbearing software publishers and sloppy licensing and
audit practice (CW, 2014). Moreover, according to
Gartner research SaaS will grow $22.1bn in market
place for 2015 (McLellan, 2013). The revenue of SaaS
subscription model is projected to be a quarter of the
total new software revenue by 2016, which is a jump
from the current 5 to 15% of the total spending in
software during the same year (e-Core, 2009).

The rest of paper is organized as follows; section
two explains SaaS versus on-premise traditional
software. Section three, elaborates service oriented
architecture. In section four, we have described the
differences and similarities of SOA and SaaS. Section
five explains the results and discussion of the paper
and finally we have concluded our work in section six.

2. SAAS VERSUS ON-PREMISE
TRADITIONAL SOFTWARE

Traditional on-premise software model in which the
software is purchased under a lisence for installation on
personal computers known as software as a product
(TechTarget, 2010). It can be expensive to run so that
only large companies may well be able to afford such
issues and not smaller businesses which don’t have the
necessary skills or resources to perform such systems
effectively. Therefore, SaaS model came to overcome
the problems of running systems due to they are
running by the suppliers’ side at the hosted data centers
without having any requirement for software or
hardware on user side. For running a SaaS software we
need only a good internet connection and a web
browser like Google Chrome, Firefox, Internet Explorer
or Safari (Jaffe, 2013). Figure 1 indicates the
representation of SaaS as a utility.

SaaS as the best-known and commonly heard
branch of cloud computing aims to provide on demand
and plug-in platform like using public utility like
electricity. The other technologies which before SaaS
were used like ‘Application Service Provider’ (ASP)
are single tenant, more like on-premise (in terms of
licensing and architecture) and hosted multiple client-
server applications, while SaaS provide a 'multi-

tenant' model in which subscribers access the same
code base, with their data and any customizations kept
separate. Because ASPs are originally constructed as
single-tenant applications, their ability to share
processes and data with other applications was
restricted, so they may offer a few economic
advantages rather than their locally installed
counterparts (Al-Sahhar, 2009).

Moreover, SaaS is a centralized, configurable,
scalable and multi-tenant system which uses meta-data
to provide support for different customers with
different requirements at the same time. SaaS is
changing the way in which people construct, sell,
purchase and utilize the software that’s why it has
significant impact on software industry. On the
technical side, the SaaS provider deploying patches and
upgrades to the application transparently and
delivering access to end users over the Internet
through a browser or smart-client application.
Providers might even provide tools that allow users to
change the workflow, data schema and other aspects
of the application’s operation for their use. Figure 2
indicates a sample SaaS architecture.

In fact, SaaS redefines the software deployment
model from packaged applications to a dynamic
Internet based service relationship which effect on
relationship and value proposition between software
vendors and both service user and provider. Table 1
illustrates the differences between on-demand and on-
premise software paradigm. The relationship between
customer and provider in SaaS is ongoing and much
higher than traditional one as the provider offer
continuous relevant improvements in the services and
features as well. As mentioned before, SaaS is
maintained and supported by providers which let the
companies relieve a significant amount of time and
money spent on technical support. In addition, SaaS
providers roll out software updates with new features
on a frequent monthly basis as part of a license
agreement. Therefore, SaaS usually does not need
additional fees for software updates and users can
always have the access to the newest version of
software with latest features and capabilities.

Meanwhile, upfront costs are considered as a definite
drawback of traditional software paradigm as software
purchases require a commitment for the entire solution,
making first-year costs two to three times more than a
SaaS solution. In addition, upgrades or hardware
purchases may also be necessary which adds to the costs
of ownership. Furthermore, traditional software needs

Atieh Khanjani et al. / Journal of Computer Science 10 (12): 2408.2414, 2014

2410 Science Publications

JCS

new buy-in when new versions are released. Using
traditional software is necessary to have several versions
behind the system upgrades because each upgrade may
expose a new bug or database issue, or even make the

system down totally. In SaaS solutions if a problem
occurs for a customer and then fixed by provider, the
problem automatically has been fixed for every one
without any upgrade fee (Alsahhar, 2009).

Fig. 1. On-demand SaaS (Derek, 2011)

Fig. 2. Sample SaaS Architecture (Bedin and Moinuddin, 2007)

Table1. On-demand Vs. on-premise
Parameters On-demand On-premise
Development Short, continues cycle Longer cycle, big bang
Delivery Hosted Installed
Licensing Subscription (inclusive) Perpetual license and maintenance
Allocation Expensed Capitalized
Cost Pay as you go Upfront capital costs for hardware, software licensing, lab space
Additional cost Configuration Installation, maintenance, customization and upgrades
Updates Shorter and frequent Larger, less frequent /new buy in
Profits Ongoing Initial sale
Hardware Software and hardware provided by provider side Customer needs to provide hardware and platform himself to run app
Platform Single platform (Bedin and Moinuddin, 2007) Multi version
Data sharing Easy Hard or almost impossible
Life style Internet-based subscription Install, upgrade and maintain
Tenancy Multi-tenant (Alsahhar, 2009) Single tenant
Customer-vendor relationship Frequently One or a few times for upgrade only (Claybrook, 2012)
Scalability Adjust SaaS subscription additional in-house server (hardware) and software licensee

Atieh Khanjani et al. / Journal of Computer Science 10 (12): 2408.2414, 2014

2411 Science Publications

JCS

Compare to traditional software paradigm there are
some advantages mentioned for SaaS as follow:

• Easier administration
• Compatibility (having the same version for all users)
• Automatic updates and patch management
• Lower cost
• Better load control techniques
• Easier collaboration
• Quickly deploy
• Global accessibility
• High availability
• High accessibility (access from everywhere through

the Internet)
• Reduce power consumption through resource

sharing (SaaS, 2010; Santosh, 2014; Merker, 2009)

However, there are also some disadvantages for SaaS
as follow:

• New and maybe immature
• Security and customizability concerns
• Need a good connection and network (Santosh, 2014)

Even though SaaS might be new and immature yet
but it is soon going to open its place in the industry
according to the mentioned researches. However,
there are some security concerns for SaaS and since
the security is one of the most important issues for
customers SaaS vendors employ some of the highest
security measures available for their solutions
including high encryption, authentication and access
features. Moreover, many providers provide flexibility
for the users to maintain their own data base server
with seamless integration to the SaaS solution.
Furthermore, some institution do not trust SaaS
provider with their full control over the data and
consider it as a risk since the institution loses control.

In terms of customization of SaaS even though at the
first days of emerging SaaS customization was limited.
However, users has now ability to customize the user
interface to change the appearance of the program, as
well as modify specific areas, such as data fields, to
alter what data looks like. By growing the SaaS
markets and getting more matured, providers are
investing more in the development to provide more
customization and flexibility that companies are
accustomed to with on-premise software.

In addition, SaaS depends on a good internet
connection and if not a good connection or when

disconnected there is a problem for using the service.
However, on-premise software also is subject to
electrical outages, hardware failures and a range of other
risks. But some SaaS vendors put this opportunity to use
the functionality in an offline way to help the user
keep working in case there is no Internet. Once a solid
connection is available again, all the data is synced to
the system. At last but not least today, nearly every
type of core business function from human resources
to enterprise resource planning services is available
via SaaS (Derek, 2011).

3. SERVICE-ORIENTED
ARCHITECTURE (SOA)

 From object oriented in 1980s and component-
based development models in 1990s, we came to
service orientation model now, which keeps the
component-based advantages such as self-description,
dynamic discovery, loading and encapsulation.
However, in service orientation we have a big change
in terms of invoking the objects and passing methods
for messages among services. This provides
interoperability and adaptability benefits, as these
autonomous messages can be sent from one service to
the others without considering how the service
handles those messages as they are intelligent enough
to self-govern the part of their own logic.

 Service orientation provides an evolutionary
approach to building distributed software that
facilitates loosely coupled integration with its inherent
scalability and resilience. In fact, Service Oriented
Architecture (SOA) presents solutions as services in
an architectural model. Services in SOA form a group
of independent functions which are more related to the
service interface rather than relating to each other. The
service in SOA can run on different operating systems,
write in any programming languages (java, C#) and
various locations (Rahmansyah and Gaol, 2013).

By having these services, SOA’s purpose is to be
very productive, efficient and agile, surpassing the
other existing technology solutions. There are certain
standard and common features that are maintained by the
services, but they have the ability to be extended and
evolved independently. It’s possible to combine services so
that other services can be created. Only service descriptions
make services away of the other services, so that means that
they should be thought of as loosely-coupled (AI, 2014).
SOA provides support for realizing the advantages of
computing and principles that are service-oriented. In
SOA architecture, the client switches to another tasks
while is waiting for the answer but in traditional client-

Atieh Khanjani et al. / Journal of Computer Science 10 (12): 2408.2414, 2014

2412 Science Publications

JCS

server architectures the client should wait idly for its
turn to be served (Bedin and Moinuddin, 2007).

4. SAAS AND SOA

 The idea of using SaaS, first popped up in the late
1990s in order to allow sharing end user licenses in a
way that reduced cost and also shifted infrastructure
demands from the company. In the other words, SaaS
is able to rent the software usage hosted by a third
party instead of buying additional hardware or
software to support (Farhat, 2013).

 Every service in the cloud including SaaS services is
provided to the customers through web services only.
Therefore, web services plays a vital role in cloud
computing (Nadanam, 2012). In fact, web services are
one of the core technological concepts in cloud
computing which is rapidly taking shape and growing
even though the revolution of cloud may take a decade to
fully unfold. Web services make the communication
between applications easier so that a software client like
web browser can access several applications over one
network (Marston et al., 2011).

 Web services are self-describing and modular
components that can be advertised, published, located and
discovered through the Internet by using such a
standards and protocols as Simple Object Access Protocol
(SOAP), Universal Description Discovery and Integration
(UDDI) and Web Service Description Language (WSDL).
WSDL is a simple XML document which contains a set of
machine-readable description of a web service (like
operations, messages, protocols for binding these
messages and also a network endpoint specification).

 A discovery mechanism that helps customer to
discover their desire web service is a global and public
registry of web services, called UDDI. It is aimed to
collect information about the business services in a
structured approach and applied for both publishing and
discovering the information through provider and client.
The information can be classified and found by the using
standards taxonomy. Moreover, UDDI provides a

schema to define the rules for communicating with the
registry by provider and users. SOAP is a sending
message protocol to communicate between the
applications through the Internet. SOAP is an
independent platform- language communication protocol
based on XML and using HTTP which can be run on
different operating systems (Windows, Linux) with
various technologies and programming languages. Since
SOAP is not built with programming languages (like
Java, C#) and it is only combination of XML and HTTP,
so the simplicity of that is one of the advantages to
choose it compared to the similar solutions.

 Access to services over the Internet has relied on the
interaction between a web server and a browser through
HTTP protocol. The programmatic way to access to the
services over the Internet, called Web services
(Khanjani and Wan ab. Rahman, 2013). Web services
make the realization of SOA applications possible
(Al-Baltah et al., 2014). SOA is a design style to build
SaaS application using web services. SOA as an
architecture can be implemented by web service. The
other technologies that can use SOA are corba, REST
and (Jabr and Al-omari, 2010; Sabasti et al., 2013).

 SOA provides a tool to deploy and quickly re-configure
as business conditions change the applications and
databases owned by a company. Recently, major
software providers, deliver products with a SOA
design and implementation. SaaS provides a readily
accessible means to out-source the applications and
databases of a business. According to (Natoli, 2008) for
using the benefits which both technologies offer, it is
better to incorporate them since it makes sense to in-
source as well as out-source some aspects of the business
including IT. It is not necessary that SaaS rely on SOA
but if the SaaS functionalities use SOA architecture and
deploy the SOA, then, the benefits of leveraging these
services in business will be huge. Building SaaS on top
of the SOA is preferable and makes the application
easier to scale. (Nassif and Capretz, 2013).

Table 2 indicates a summary of similarities and
differences between SOA and SaaS.

Table 2. Similarities and differences of SOA and SaaS
Similarities Differences
 --
 SaaS SOA
Both reduce costs Software delivery model Software design model
Provide more agility Tactical Strategic
Consider as IT solution How doftware deliver How software structure
Both provide service Provides business service Provides small isolated processes as a service
 Offer service to user Offer service to other applications

Atieh Khanjani et al. / Journal of Computer Science 10 (12): 2408.2414, 2014

2413 Science Publications

JCS

5. RESULTS AND DISCUSSION

The first question arise when thinking about SOA
and SaaS is that, can we compare these two
technologies with each other?

The results of the research indicate that SOA is a
manufacturing model which deals with designing and
building software by applying the service oriented
principles, while SaaS is a model for sales and
distribution of software applications. In simpler terms,
SaaS is a means of delivering software as services over
the Internet to its subscribers, while SOA is an
architectural model in which the smallest unit of logic is
a service. So, SOA (an architectural strategy) and SaaS
(a business model) cannot be directly compared.
However, to get the maximum benefits of cost reduction
and agility, it is highly recommended that enterprises
integrate SOA and SaaS together (Indika, 2011).

One of the resemblances between SOA and SaaS is
that both technologies make important effects on cost
reductions to better serve existing markets. Online
retailers like Amazon.com are filling a huge demand that
traditional retailers cannot serve cost-effectively. SaaS
customers usually visit, subscribe, pay, customize and
use the service all without provider intervention
(Bedin and Moinuddin, 2007).

According to (Mohana and Thangaraj 2013), SaaS
offers reliable access to software applications to the
end users over the Internet without direct investment
in infrastructure and software. SaaS is designed to be
run for thousands of different customers on a single
code while traditional software solution was to be run
an individual company in a dedicated instantiation of
the software. SaaS can be seen as for “business” of
SOA (Santosh, 2014). In fact SOA and SaaS cloud are
converging but SOA is an underlying architecture
pattern to build the software on it; while SaaS is kind
of service delivery model that we use.

SOA in fact decomposes the assets of IT and make
them back up as a set of services and then these
services can be configured and even reconfigured to
business solutions through using processes as the
configuration layers (Rahmansyah and Gaol, 2013).
The most important reasons we use SOA is agility and
reuse. Besides, with emerging cloud computing
services can be now outside or inside the enterprise.
Since most of the cloud services are used by APIs or
services, so cloud is always service-oriented and need
data integration which is a core component of SOA

and SOA needs data integration strategy but data
integration does not require SOA. In fact data
integration is a plan or enabling technology for SOA
like an engine for a car. So the relationships between
them are getting clear now. Data integration is the
core mechanism of cloud as well or can become even
more important.

SOA and SaaS complement each other. If we
consider SOA as a building foundation of architecture,
then SaaS (in over all cloud computing) is a set of
architectural options that data and processing may
reside, when it matches the requirements of the
architecture (Linthicum, 2010).

6. CONCLUSION

The people who works with SOA concepts when
they come to the SaaS cloud, they misunderstand the
concepts (SaaS, 2009). According to (Tang, 2011)
compare to object oriented design which was based on
reusability for function and SOA architecture based on
reusability for business, SaaS is based on the
reusability for service. SaaS is supported by SOA.
SaaS is software delivery model while SOA is
software construction model. This study has been
reviewed the concepts of SaaS an SOA and also
compared them in de tails with traditional software.
Future researches may focus more on the
characteristics of the services used in SaaS and SOA,
their quality of service and also comparison between
other new technologies based on the services.

7. ACKNOWLEDGEMENT

We kindly appreciate Associate Professor Dr. Abu
Bakar Md. Sultan and Professor Dr Hamidah Ibrahim, the
Deputy Dean of Research and Graduate Studies and the top
management of Faculty of Computer and Information
Technology, Universiti Putra Malaysia for paying the fee.

8. ADDITIONAL INFORMATION

8.1. Funding Information

We have used the faculty's money/budget for this
research and it is not by the grant.

8.2. Author’s Contributions

The main author roughly contributed to the

Atieh Khanjani et al. / Journal of Computer Science 10 (12): 2408.2414, 2014

2414 Science Publications

JCS

preparation, writing, editing, development and
publishing of the manuscript and co-authors contributed
to the development by giving comments/suggestions and
publishing the manuscript.

Atieh Khanjani: Writing the draft, editing and
correcting.

Wan Nurhayati Wan Ab. Rahman: Result and
discussion, comparing SOA and SaaS.

AbdulAzim Abd. Ghani: Title, Abstract, Comparing
SaaS and On-premise.

8.3. Ethics

We do not encounter any ethical issue and we have
properly reference by citing relevant papers.

9. REFERENCES

Alsahhar, O., 2009. Device Test engineer at AIRCOM
international. Telecommunications, University of
Texas.

AFST, 2014. SaaS Applications: Security and
Interoperability. AFS Technologies.

AI, 2014. SOA Vs. SaaS-what’s the difference?
Apprenda Inc.

Al-Baltah, I.A., A.A. Abdul Ghani, W.N.W.A.
Rahman and R. Atan, 2014. Semantic conflicts
detection of heterogeneous messages of web
services: Challenges and solution. J. Comput.
Sci., 10: 1428-1439. DOI:
10.3844/jcssp.2014.1428.1439

Bedin, W. and M. Moinuddin, 2007. An overview of
software as a service in retail.

Burgess, R., 2013. Why the manufacturing industry is
shifting to SaaS cloud hosting.

Chou, D.C. and A.Y. Chou, 2008. Software as a
Service (SaaS) as an outsourcing model: An
economic analysis.

Claybrook, B., 2012. On-premises Vs. SaaS: Making
the choice.

Collier, M., 2012. SaaS enablement.
CW, 2014. Predictions 2014: How CIOs plan to spend

their 2014 IT budget. Computer Weekly.
Derek, S., 2011. What is SaaS? 10 frequently asked

questions about software as a service. Software
Advice™, Inc.

e-Core, 2009. Cloud and SaaS solutions. e-Core.
Farhat, T., 2013. Software-as-a-Service (SaaS) as-a-

secure-service. Slideshare.
Indika, 2011. Difference between SaaS and SOA.

Difference Between.com.

Jabr, M.A. and H.K. Al-omari, 2010. E-learning
management system using service oriented
architecture. J. Comput. Sci., 6: 285-295. DOI:
10.3844/jcssp.2010.285.295.

Jaffe, L., 2013. SaaS-Software as a Service, 1-4.
Khanjani, A. and W.N.W.A. Rahman, 2013. Concepts

and derivatives of web services. J. Comput. Eng.,
12: 74-78.

Linthicum, D., 2010. Understanding the intersection
between SOA, data integration and cloud computing.

Marston, S., Z. Li, S. Bandyopadhyay, J. Zhang and
A. Ghalsasi, 2011. Cloud computing-the business
perspective. Decision Supp. Syst., 51: 176-189.
DOI: 10.1016/j.dss.2010.12.006.

McLellan, C., 2013. Saas-pros-cons-and-leading-
vendors. Oracle Service Cloud.

Merker, L., 2009. Considering enterprise software as a
service? University Business.

Mohana, R.S. and P. Thangaraj, 2013. Machine
learning approaches in improving service level
agreement-based admission control for a
software-as-a-service provider in cloud. J.
Comput. Sci., 9: 283-1294. DOI:
10.3844/jcssp.2013.1283.1294.

Nadanam, P. and R. Rajmohan, 2012. QoS evaluation
for web services in cloud computing. Proceedings
of the 3rd International Conference on Computing
Communication and Networking Technologies,
26-28, IEEE Xplore Press, Coimbatore, pp: 1-8.
DOI: 10.1109/ICCCNT.2012.6395991.

Nassif, A.B. and M.A.M. Capretz, 2013. Offering saas
as SOA services. Innovat. Adv. Comput. Inform.,
Syst. Sci. Eng., 152: 405-414. DOI: 10.1007/978-
1-4614-3535-8

Natoli, J., 2008. SOA and SaaS, What’s the
difference? Intel.

Rahmansyah, R. and F. Gaol, 2013. Service oriented
architecture governance implementation in a
software development project as an enterprise
solutions. J. Comput. Sci., 9: 1638-1647. DOI:
10.3844/jcssp.2013.1638.1647.

SaaS, 2009. SaaS: The future of flexible software model.
Sabasti, I., Siluvai, P. Jawahar, V.and Kumar, S.2013. A

framework for simple object access protocol
messages to detect expansion attacks for secure
webservice. J. Comput. Sci., 9: 308-313. DOI:
10.3844/jcssp.2013.308.313.

Santosh, T., 2014. Software as a service.
Tang, G., 2011. The SAAS architectures and design on the

five layers driving model. Manage. Eng., 2: 61-65.
TechTarget, 2010. Software as a Service (SaaS).

TechTarget.

