
Journal of Computer Science 10 (9): 1628-1641, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1628.1641 Published Online 10 (9) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Latrache, A., LIIAN Laboratory, Sidi Mohamed BenAbdellah University, Fez, Morocco

1628
Science Publications

JCS

A MOBILE AGENT BASED APPROACH FOR
AUTOMATING “DISCOVER-COMPOSE” PROCESS

OF SEMANTIC WEB SERVICES

Latrache, A., E. Nfaoui and J. Boumhidi

LIIAN Laboratory, Sidi Mohamed BenAbdellah University, Fez, Morocco

Received 2013-11-15; Received 2014-03-08; Accepted 2014-04-14

ABSTRACT

Nowadays, the focus is not only on how to exchange data between companies but also on how to
exchange services between them or between companies-customers in order to minimize IT charges and
increase their profit. Thus, web services are an adequate solution for the e-business thanks to their
interoperability and reusability. The combination of web services and semantic technology, which are
called Semantic Web Services (SWS), allows their discovery-composition-invocation process to be
automatically performed by programs or intelligent agents. However, this process is still a challenging
task that includes several issues such as the complexity of finding and composing distributed SWS. In
this study we present a mobile agent based approach to discover and compose SWS in a distributed
environment and extend some algorithms related to this field. The article reports examples and
experimental results in order to illustrate as well as to assess the benefits of the proposed approach.

Keywords: Semantic Web Services, Semantic Web Services Discovery, Semantic Web Services

Composition, Ontology, Mobile Agent, JADE

1. INTRODUCTION

A web service is a computer program for
communication and data exchange between
heterogeneous applications and systems in distributed
environments i.e., a set of functionalities exposed on
the internet or an intranet (either by or for
applications). The main benefit of this vision is the
facility of the application maintenance and
interoperability to change a component (service) to
replace it with another easily. Moreover, web services
reduce the complexity of an application because the
developer can focus on the service regardless to the
rest of the application. There are two major classes of
web services, the first type is named REST-compliant
web services, in which a set of web services
functionality is presented as a set of URI accessible
via http protocol while in the second type, on which
we will focus in our study, web services are presented

as a set of remotely executable services on the basis of
SOAP and WSDL standards. Thus, a complete
description of the web service-by the means of the
WSDL document as discussed by Chinnici et al.
(2007)-leads to the effectiveness of the web service
discovery and invocation process while the WSDL does not
have the capacity to specify the meaning and semantic
constraints of data involved in web services because it is
based only on a syntactic description. This brings up the
vision of semantic web services and semantic web service
discovery which make use of the semantic web
technologies to enrich the semantics of service descriptions.

Adding semantics to the web service descriptions
remains as one of the promising axis in the semantic
web area. Several alternatives have been proposed in
the literature such as DAML-S by Ankolekar et al.
(2002), WSMO by Bruijn et al. (2004), WSDL-S by
Akkiraju et al. (2005) Martin et al. (2007) have
proposed OWL-S which provide a set of sub ontology

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1629 Science Publications

JCS

that one can use to describe the service, for example
to describe what does the service do we can use a
subontology called (profile.owl) and to describe how
does the service work we can use a subontology called
(process.owl) while the third subontology called
(grounding.owl) can be used to describe how is the
service invoked. Also, the OWL-S introduces one final
subontology called (service.owl) to describe how these
three pieces work together to completely describe a
web service. Adding semantics to web services have
several advantages, on the one hand, an explicit
semantic description of their functionality understood
by software agents as well as by human user’s andon
the other hand, a correct interpretation of information
sent and received as discussed by Mannan et al. (2014).

Nowadays, web services aren’t published in
centralized registry such as Universal Description
Discovery and Integration (UDDI) but in different
hosting sites, the web service providers publish their
services in their own web sites or in a private portals as
discussed by Yu (2007). For that, web services discovery
process becomes a challenging activity which aims at
providing suitable tools to discover and invoke these
services. Under these conditions, finding an appropriate
web service may lead to several problems such as
inaccuracy in the discovery and the incompleteness of
the description may appear in the evaluation of the
similarity mechanism for the discovery, which is called
matching. Enrich the web service by semantic
information has been studied in web service discovery to
overcome these issues and improve the accuracy of the
service discovery task. Another key in the semantic web
services field is that they can be composed into more
complex processes in order to achieve a given business
goal. This is an important feature, since it allows atomic
services to be combined in a flexible way to complete
complex tasks. Thus, it can minimize the integration
costs within the enterprise or allow developers to reuse
existing services rather than developing new ones.

In this study, we propose a mobile agent based
approach to discover and compose semantic web
services in a distributed environment. Mobile agents-
software programs with the feature of autonomy, social
ability, learning and most importantly, mobility-
represent a suitable technology to exploit autonomously
the semantics of web services in order to supply
consumers’ applications. This study is organized as
follows. Section 2 discusses some related works to the
discovery and composition process of semantic web
services. Section 3 describes our proposed approach
and the related algorithms. Section 4 illustrates a
concrete example to demonstrate the viability of our

approach while the last section outlines the
conclusions and future works.

2. BACKGROUND REVIEW

2.1. Background Review of Web Services
Discovery Process

Due to the increasing number of web services over
the web, the service requesters need a convenient tool
to search the appropriate web service that meets their
needs and expectations. This issue has motivated
researchers to propose several mechanisms to select the
appropriate and relevant web services for a service
requester on the basis of the service descriptions and
service requester’s needs, i.e., improving the quality of
the web service discovery process to improve the
satisfaction of the web service requesters.

Several approaches have been proposed in literature
to enable web service discovery. We classified these
approaches from three perspectives as follows:

Semantic or syntactic based research perspective: The
web service discovery mechanism depends on the web
service description i.e., if this description is based just on
syntactic description (WSDL document) or on semantic
one (WSDL-S, OWL-S…).

Centralized or distributed architecture perspective:
Web service centralized architecture means that the web
Service descriptions are stored in a central repository
such as UDDI or web portals while the distributed
architecture means that these descriptions are stored in
different hosting sites.

Functional or no-functional perspective: No-
functional properties or also named Quality of Service
(QoS) properties aim to satisfy expectations of service
requesters such as how the selected web service is
similar to the request or what is the time needed to find
the appropriate web service.

A summary of some relevant approaches according to
the previous perspectives is illustrated in Table 1.

Yu (2007) highlighted another key in web services
discovery, especially in semantic matching algorithms, it is
the degree of matching between two concepts on the basis
of their semantic description. These degrees are classified
into four classes, namely (Exact matching, Plug-in
matching, Subsume matching and Fail matching).

The proposed techniques used for semantic web
services discovery-as shown in Table 1 don’t assure all
web services’ requests especially when the requested
service is a composite service, this issue remains as one of
the main motivations of the semantic web services
composition. A summary of the proposed techniques to
overcome this issue is illustrated in the following section.

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1630 Science Publications

JCS

Table 1. Summary of web services ‘discovery approaches

The approach SD? NFC? CA? Limits and advantages
User-centric design for Semantic Yes Yes Yes It’s a semantic discovery engine to allow efficient mathematical
discovery of mathematical web web service registration and discovery. The weak point in this
Sheeba et al. (2014) approach services is that it requires the use of specific registration.
Using semantic information for Yes Yes No It’s a web service discovery process in both business registries
distributed web service discovery. and private sites. The advantage of this approach is the use of
Canturk and Senkul (2011) distributed and domain-specific crawling that improves the QoS.
CoWS: An internet-enriched Yes Yes No it’s a novel web services search engine that it’s not limited to the
and quality- aware web services information in UDDI repositories or WSDL but it enriches web
Search engine Li et al. (2011). services information using the information captured from the
 internet.
Discovering semantic web services Yes No Yes It’s a graph-based method for matching not just atomic services
via advanced matching. but also composite OWL-S services.
Cuzzocrea and Fisichella (2011).
Discovering Semantic Web services Yes No Yes Intelligent agents represent the main advantage of this approach
using SPARQL and intelligent in the other side, the main limitation is: It requires a specific
agents. Sbodio et al. (2010) description of web services.
WSExpress: A QoS aware search No Yes Yes A powerful search engine that provides three searching styles,
engine for web services which can adapt to the scenario of finding an appropriate
Zhang et al. (2010) Web service.
A QoS-aware model for No Yes Yes The main advantage of this approach is the use of a middleware
discovery. Ye et al. (2009) (UDDI) web service called a broker for the service discovery.
QOS-aware web service discovery Yes Yes No The main advantage of this approach is the use of functional and
in P2P network. Xilu et al. (2009) no-functional requirements in the discovery process
A recommender system for web Yes No No It’s based on Peer-to-Peer (P2P) networks to structuring web
services discovery registry services into groups, as result the web service discovery will
environment. Sellami et al. (2009) increase fault tolerance and search efficiency but there is a
 lack of information security over the peers.
Discovering web services in search No No Yes The proposed Web Service Crawler Engine(WSCE) for The
engines Masri and Mahmoud (UBR) UDDI Business Registry(UBR) gives a significant result in the
(2008) verification and validation test.
Reputation-enhanced QoS-based No Yes Yes it’s a hybrid approach that uses several(UDDI) components
web services Xu et al. (2007) for the service discovery.
SD: Semantic Description, NFC: No-Functional Criteria, CA: Centralized Architecture

2.2. Background Review of Web Services

Composition Process

The main expectations of combining web services
and semantic web technologies are to automate the
following processes:

• Automatic discovery and invocation of web

services: This phase aims at finding and invoking
the desired web services automatically on the basis
of the service requester’s needs and the semantic
description of the web services

• Automatic composition of web services: Web
service requesters often require the use of several
web services to achieve their requests; this phase
aims at composing the necessary services to
achieve these requests

• Automatic monitoring of the web service execution:
This phase aims at verifying if the requested
services are executed successfully and correctly

In the previous sections, we discussed the process of
creating, publishing and discovering a web service. Thus,
in the current section we will focus on the proposed
mechanisms which are related to the web services
composition field. These mechanisms can be classified
into two categories namely static composition techniques
and dynamic composition techniques.

The static composition techniques are based on
business process. They can be divided into two
categories; the first one is the orchestration in which a
sequence of web services is executed according to a
predefined template through orchestrations scripts as
stated by (Albrechne et al., 2009); the second category
is the choreography which is more collaborative.
According to (Yeung, 2011; Hwang et al., 2011; Kuo,
2012), Choreography does not depend on a central
orchestrator. Each web service involved in the
choreography has to know exactly when to become
active and with whom to interact in contrast to the
orchestration techniques.

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1631 Science Publications

JCS

The dynamic composition techniques for web
services are an aggregation of web services in order to
solve a specific goal submitted by a user taking into
account their preferences. Several approaches have
been proposed to achieve this goal; the first solution is
to generate a dynamic workflow on the basis of
choreography or orchestration techniques as shown by
Martinez et al. (2005) but this solution still has
several limitations: It’s not totally automatic and it
requires the user intervention. This issue remains a
need for intelligent approaches to automate web service
composition, using intelligent mechanisms can solve this
issue such as the artificial intelligence, (Bertoli et al.,
2010) proposed an approach based on IA planning to
automatically composing services. Also, using
intelligent agents can solve this issue such as
presented by Liu et al. (2006). Ouassila and Zizette
(2011) proposed to combine these two mechanisms,
i.e., intelligent agent and IA planning to ensure an
efficient composition of services.

Several other technologies are proposed to enable
the web services composition such as neural network by
(Maamar et al., 2005), petri net by (Zhu and Du, 2010)
and genetic algorithm by (Liu et al., 2010). However,
all these approaches take into account just the user’s
requirements and neglect the service providers needs
i.e., in increasing the profitability for the business
providers, this point is highlighted by (Sandhya and
Lakshmi, 2013). When it comes to a specific domain of
application, there is no better or worse approach, as each
one has its limitation. That’s why until now there is no
standard to automate web services composition.

The web services field has a great success in the web
that’s why researchers have proposed several approaches
to increase the scope of use of this technology, the
semantic web and the distributed environments are the
better candidate to achieve this goal. Crasso et al. (2011)
have proposed a platform for building prolog-based
agents on the semantic web but this approach is limited
just to the SWAM enabled sites, so it still the need of
mechanism to discover the web services in other hosting
sites. Yu (2007) proposed architecture to discover
semantic web services in different hosting sites due to
the use of a web crawler but he neglected the composite
services. Thus, we identify a need of an approach (see
section 3) that supports:

• Automatic discovery of semantic web services

indifferent hosting sites
• Automatic composition of semantic web services

There is also a need for an approach that does not
enforce the providers or the consumers of the semantic
web services to use any specific techniques or
annotations to publish or discover these services which is
the case in the private central registry or in the approach
proposed by Crasso et al. (2011). The web service
providers can publish their services in their web sites and
the consumers can easily invoke a search engine to
discover these services, these are the main motivations of
the proposed architecture in the following section.

3. PROPOSED ARCHITECTURE AND
ALGORITHMS

3.1. Mobile Agent Architecture for Discovering
and Composing SWS

This architecture is based on mobile agents to
discover the requested SWS in different hosting sites
and the graphs to achieve the composition process.
The main components of this architecture are
illustrated in Fig. 1.

User interface provides a set of features that can
help the user to better express his request. This
interface-as shown in Fig. 3-has several fields: The web
service’s name in which the user enters the desired
value. Then, he selects the requested inputs and outputs
on the basis of predefined domain ontology. Also, the
user can give a little description of the desired service.
After gathering user requirements, an OWL-S request is
automatically generated.

Manager agent analyzes the owl-s request that
contains the semantic description of the user request.
This agent has the following roles:

• Decide if an index of the requested service is in the

local repository or if he can compose the requested
service on the basis of the local repository services

• If the requested service is not found in the local
repository, the manager agent should send the
request to the pool of mobile agents to search for the
requested service in different sites, the number of
involved agents depends on the complexity of the
user request

• Update the data included in the repository

Local repository contains a set of useful information
related to the collected web services such as the semantic
description, the provider site link, These information
aren’t stored arbitrarily but according to a graph
representation. Each graph node represents a web service
and it’s linked to another node (i.e., Web service) if the

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1632 Science Publications

JCS

outputs of the first one matches the inputs of the
second one. The manager agent uses this representation
to facilitate the composition process of the web services.

Several web services providers prefer to publish
their services directly on their hosting sites, for that
there is a need for a tool to discover and invoke these
services. Our solution to overcome this issue is the
use of mobile agents to collect the desired semantic
web services descriptions.

Mobile agents collect the semantic web services that
fulfill the manger agent request; this is done by visiting
the web and finding the hosting web sites that contain
SWS. The use of mobile agent instead of using a web
crawler is recommended by Kumari and Rajput (2012), it
has several advantages as follows:

• The use of several mobile agents increases the
crawling speed

• It minimizes the network overhead
• It can adapt dynamically while solving a critical

problem. This feature provides robust and fault
tolerance capability. Other features such as mobility,
social ability and learning allow the use of mobile
agent in different domains like intelligent product as
presented by (Boulaalam et al., 2013)

3.2. Proposed Algorithm to Discover and
Compose SWS in a Distributed Environment

Figure 2 shows an UML activity-diagram that
describes our proposed algorithm. Firstly, the user selects
the inputs, outputs and the category of the desired web
service; according to these criteria an OWL_S file is
generated. Then the manager agent looking in the local
repository, on the basis of this file, if there is any index of
a web service that satisfies the user request, if not the
manager agent sends the request to the mobile agents in
order to visit different sites and search for the requested
services. Finally, these agents send the discovery process
result list (i.e., a set of web services) to the manager agent
which decides if there is an atomic service that satisfies
the user request; if not, he looks if there is any possible
composition on the basis of these selected services. At this
step, if the manager agent notices that there is a need of a
novel web service to accomplish the composition process;
a new discovery process is started, to never have an
indeterminate loop at this step; the number of attempts is
fixed by the user in the early stage.

3.3. Semantic Web Services Discovery in the
Proposed Algorithm

The first main phase in this algorithm is invoking
mobile agents to search the requested web service in

different web sites. This phase can be divided into two
sub-phases, the first one is crawling the web to find
semantic web services while the second aims to select-
based on the founded semantic web services-services
that satisfy the user request.

3.4. Intelligent Crawler for the Semantic Web
Services

If an index of the required SWS does not exist in the
local repository, the next step in the proposed algorithm
aims to discover the location of the required SWS by
browsing different web sites using mobile agents. In
this study we propose a focused web crawler-by
adapting the crawler proposed by (Batzios et al.,
2008)-to collect the SWS.The proposed crawler
selects a random link from the URLs queue; then for
each valid link i.e., a link which doesn’t exist in
robots.txt and it is not an image or PDF document, the
crawler verifies if it contains SWS that may satisfy the
user’s request. The main steps of the proposed
algorithm are summarized as follows:

Inputs: (starting URL in queue, user’ request)
Begin:
 While (URLs queue is not empty){
 Get first URL from queue
 If (the actual link is valid)
 Visiting the actual link
 If (the OWL_S descriptions exist)
 For each SWS
 {Invoke the matchmaking algorithm
 If the SWS is a candidate to satisfy the

user request
 Store an index of the selected SWS
 }
 Else
 Extract links from the actual page
 Add linked URLs in queue
 }
End;

There are not many semantic web service descriptions
on the internet for collection and most pages the crawler
visits would have nothing to do with semantic web
services. Therefore, precious time and system resources
could be wasted. A possible solution to this problem is to
come up with a better set of seed URLs. For instance, we
can use Swoogle, Sindice or other semantic search engine
to discover the documents that use the OWL-S upper
ontology; the results returned by this engine are then used
as an initial set of seed URLs.

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1633 Science Publications

JCS

Fig. 1. Mobile agent architecture for discovering and composing SWS

3.5. Matchmaking Algorithm

The second role of mobile agents is to verify if the
founded SWS is a candidate to satisfy the user
request, by invoking a matchmaking algorithm. The
main key concept in any matching algorithm is the
concept of degree of match; it describes the degree of
matching between two concepts. More precisely, the
matching between two concepts is not syntactic, but it
is based on the relation between these concepts in
their OWL ontologies. A matching algorithm normally
recognizes the following four degrees of matching
between two concepts:

• Exact matching: Two concepts exactly match
each other if they are the same concepts; i.e., if
concept A subsumes concept B and concept B
subsumes concept A

• Plug-in matching: If concept A subsumes concept
B, then concept A is a set that includes concept B;
in other words, concept A could be plugged in
place of concept B

• Subsume matching: This is similar to the afore
mentioned situation, except that the request’s
concept subsumes the advertised concept. In this
case, the service may not satisfy the needs of the
request, but it is still a possible candidate

• Fail matching: In this case, there is no exact
matching andthere is no subsumption relationship,

either. In other words, the two concepts are
unrelated and a failed match is returned

The matchmaking algorithm used in our approach

is based on Berdjouh and Okba (2009); the main
function in this algorithm is to verify if a concept E1
subsume a concept E2. This function is used to verify
the matchmaking degree between inputs and outputs of
the selected services. A prototype of this function is
summarized as follows:

FUNCTION Englobe (E1: Concept, E2: Concept):
Booléen
VARIABLES ActualNode: The actual node
 Parents: A set of previous nodes to E2
 A: Represents the ontology (tree form)
BEGIN
 Parents←∅
 If E2 = racine(A) then
 Parents←∅
 else
 ActualNode←Previous(E2)
 Parents←Previous(E2)
 While(ActualNode<>Racine(A)) do
 ActualNode←Previous(ActualNode)
 Parents←Parents+ActualNode
 End while
 end if
 Englobe← (E1∈ Parents)
END;

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1634 Science Publications

JCS

Fig. 2. Proposed algorithm to discover and compose SWS in a distributed environment.

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1635 Science Publications

JCS

Fig. 3. The user interface of our application to discover and compose SWS

Fig. 4. A part of the OWL-S request

Then a score is assigned for each mode of
matching: Exact (score = 3), Plugin (score = 2),
Subsume (score = 1), Fail (score = 0), the following
Equation generalizes the comparison between the
concept of the service offer CO (Offer) and CD
(Demand) corresponding to the query concept:

()

D O

i i
D O

D O
i i

i i D O

i i

3 if C C

2 if C CMatch ,C C
1 if C C
0 else

 =

 ⊂=
 ⊃



Suppose we have m concepts in the description of the

service offering and m corresponding concepts in the

description of the application, the similarity or the
overall match between the demand (request) D and O
supply can be derived by taking the sum score of the pair
of concepts, so the requested service is the one that have
the highest score of match:

() ()m D O
i ii 1

Similarity D, O Match c ,c
=

=∑

For example, a user looks for a web service which

has as inputs “apartment “and “region” and a single
output that is “price”. Let’s suppose that there are three
web services S1, S2 and S3 published on the web.
Functional parameters (inputs, outputs) are:

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1636 Science Publications

JCS

• S1 has two inputs “building” and “region” and a

single output “price
• S2 has two inputs “region” and “apartment” and a

single output “price
• S3 has two inputs “product” and “provider” and a

single output “price

To select which SWS-between S1, S2 and S3-that

better satisfy the user request, we calculate the matching
degree between their inputs and outputs on the basis of
their ontologies, a fragment of the used ontology in our
example is illustratted in Fig. 6.

In our example, the first step aims to calculate the
inputs matching degree between desired SWS and the
offered SWSs as follows:

S1:

• Apartment→building, mode = Plug-in, score = 2,
Total = 2

• Apartment→region, mode = Fail, score = 0, Total
= 2

• Region→building, mode = Fail, score = 0, Total = 2
• Region→Region, mode = Exact, score = 3, Total =

5

Inputs’ total score for S1= 5

S2:

• Apartment→Region, mode = Fail, score = 0, Total =
0

• Apartment→apartment, mode = Exact, score = 3,
Total = 3

• Region→region, mode = Exact, score = 3, Total =6
• Region→apartment, mode = Fail, score = 0, Total

= 6
Inputs’ total score for S1 = 6

S3:

• Apartment→product, mode = Fail, score = 0, Total
= 0

• Apartment→provider, mode = Fail, score = 0,
Total = 0

• Region→product, mode = Fail, score = 0, Total = 0
• Region→provider, mode = Fail, score = 0, Total = 0

The second step aims to calculate the outputs

matching degree between desired SWS and the offered
SWSs as follows:

S1: price→price, mode = Exact, score = 3, Total =3
 Outputs’ total score = 3
S2: price→price, mode = Exact, score = 3, Total =3
 Outputs’ total score = 3
S3: price→price, mode = Exact, score = 3, Total =3
 Outputs’ total score = 3

The last step aims to calculate the global matching
degree between desired SWS and the offered SWSs as
follows:

• S1: Total score (total score of inputs + outputs total

score) = 5 + 3 = 8→ good
• S2: Total score = 6 + 3 = 9, →the best
• S3: Total score = 0 + 3 = 3, →Not good
• So, the S2 is considered the best one that correspond

to the user request

3.6. Semantic Web Services Composition in the
Proposed Algorithm

This phase depends on the result of the previous one,
so two alternatives are possible:

If we find an exact matching of the requested semantic
web service; it means that the user request is fulfilled.

If we find a plug-in or subsume matching; we invoke
an algorithm of SWS composition, the mains steps of
this algorithm are:

• This algorithm has as input the set of the plug-in and

subsume matching of SWS
• The graph construction phase matching inputs and

outputs of services are logically connected in a way
that they form a potential workflow

• Each SWS has a table of service information that
contains four columns namely input, output, canal
and jumps. The canal represents the service names
of the SWS that can be used to get the required
output while the jumps represent the distance (the
number of jumps) between the initial node and the
desired node (that have the required output)

• The global table that contains all information included
in these tables is created by the manager agent

• On the basis of this table, the manager agent seeks if
there is a canal (path in the graph) that has as input
the requested input and as output the requested output

• If the canal exist: The manager agent send the set of
the SWS involved in this canal to the user

• If the canal does not exist: It means that the user
request can’t be fulfilled either by atomic WS or
composite WS

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1637 Science Publications

JCS

3.7. Advantages of the Proposed Approach

When it comes to compare this approach with
other approaches proposed in the literature to discover
and compose distributed semantic web services, the
most successful approach is the one that present the
maximum advantages. Using mobile agents and
graphs in our approach leads to overcome several
lacks and providing several benefits. Thus, the main
advantages of our approach are:

Several functionalities are provided in a convivial
user interface which helps the user to better express
his request. On the basis of this request an OWL-S
document is generated that contains the semantic
description of the requested web service. So, the
obtained document is semantically richer than a
document generated by other search engines which is
based just on a keyword research.

The use of the graph representation to store the
web services information contributed to improve the
response time to a user request and to find an
optimum path for the composite services.

It’s a distributed architecture that enables the
discovering of web services in several hosting sites.
Thus, it’s not limited to the UDDI which has several
limits as discussed by Yu (2007). It’s based on mobile
agents to achieve this goal; the advantages of using
mobile agents are discussed in the previous parts.

It does not enforce the providers or the consumers of
SWS to use a specific annotations or technologies either
than OWL-S, to perform their tasks.

4. EXAMPLE OF SWS APPLICATION IN
E-BUSINESS

Web services are emerging as a promising
technology for e-business; it allows a company to link
its applications with those of its partners, customers and
suppliers via the Internet. Therefore, businesses can
view and use partners’ information as if it were their
own. Not only that but companies also can link their
own applications within the enterprise, even those
coded in different programming languages, to reduce
redundancy and increase efficiency. For example, a
corporation might link inventory programs with
accounting applications so that changes made in one
area automatically affect data in other departments.

The use of semantic web services instead of simple
web services can bring several benefits as explained in
the previous sections. Therefore, we proposed an
approach for using semantic web services in a distributed

environment that can be applied successfully in e-
business domain, an example illustrated this case is
demonstrated in the following section.

4.1. A Case-Study: Real Estate Company

A conventional scenario of purchasing an apartment
in a real estate company includes several steps:.

• The costumer arrives at the real estate company

and expresses his request
• A receiving employee serves the request and

proposes several apartments to the costumer
• The costumer chooses the appropriate apartment

that satisfies its request
• The costumer signs the contract offered by the

notary agency

This is just a simplified scenario of purchasing an
apartment but it shows clearly how this operation is a
time consuming task that involves the coordination of
several component within and outside the company such
as the notary agency. The same scenario (task) can be
carried out using SWS and our approach, in which
companies services must be published in their web sites
as SWS, for example a service that offer a contract for
the costumer and the company can be a SWS published
in the notary agency web site while a service that offers a
list of available apartments to buy in a specific region
can be a SWS published in the estate company web site.
The task of developing or consuming those SWS is
beneficial in term of time consuming and company profit
than in the conventional scenario. For that, we will
develop SWS of purchasing apartment to demonstrate
this result on the basis of our approach.

Before developing the required service we must
verify if there is any similar service or if it can be
composed using several atomic services by fulfilling the
different fields in our application as shown in Fig. 3.

The interface contains several fields such as:

• Web service’ name: The name of the required service

in our case is “purchasing apartment”, it corresponds to
the <profile:serviceName> in the owl-s profile

• Category service: Defines the category of the service
(using ontology or any international categorization
scheme), it corresponds to the <categoryBag> in the
OWL-S profile

• Description: The description of the required web
service, it can be used to get more information about

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1638 Science Publications

JCS

the requested web service and consequently find the
suitable one, it corresponds to the <profile:
Textdescription>in the owl-s profile

• Input Output: Defines successively the input and
output of the required web service on the basis of
predefined ontologies. It corresponds to <profiles:
Hasinput> and <profile: Hasoutput> in the owl-s
process

• Provider name: The name of the provider of the
required web service if it is known <profile:
Contactinformation>

• Site: A web site of the possible provider(s), it serves
as addresses to be visited by the mobile agents to
look for the desired web services

• Discovery type: Contains four options (all, subsume
matching, exact matching, Plug-in matching,
subsume matching), it defines the desired types of
WS discovery techniques

• Composition attempts: During the composition
process, sometimes a need of a new web service(s)
is detected, so the number of attempts represents the
number of these services that must be fixed to never
come with an infinite loop

• Search type: Contains four options namely local
repository, different-web sites, offered-web sites or
all, it defines where the developer wants to search
for the adequate WS

After fulfilling the interface’ fields, an OWL_S file

shown in (Fig. 4) is sent to the manager agent as a
request. Then, the manager agent looks in the local
repository if there is any SWS that corresponds to this
request (by matching semantically the SWS name, the
inputs, the outputs…). In our case, there is no SWS in
the local repository that satisfy directly this request, there
is just a “list appartment” service that has as outputs the
list of candidate apartments addresses with their prices
and as inputs a specific location and having a specific
surface while we search for a purchasing apartment
service that has as inputs (location and surface) and as
output (the purchasing contract).

According to the proposed algorithm (Fig. 2). the
next step is invoking the mobile agents to search for
the requested SWS in different web sites. Then, the
list of this operation is sent to the manager agent
which analyses this list according to the matchmaking
algorithm, the contract_purchasing is selected.

A new web service is detected to accomplish the
composition process, this service has as inputs price

or/and address and has as output an e-payment receipt.
Thus, a new request is sent to the mobile agents to
look for this service. An appropriate service is found
in an e-payment site.

The composition process is done successfully and
we found a set of SWS that satisfy the user request by
combining three different SWS namely list-
appartment (saved in the local repository), e-payment
(offered by epayment site) and contact-purchasing-flat
(offered by a notary agency web site). The result of
these steps- which are carried out automatically- is
illustrated in Fig. 5.

The final step is publishing the qualified SWS in the
hosting estate’ web site for the probable use by external
developers and link this service with a suitable graphic
web interface which can be used by the customers to
accomplish the apartment purchasing’ transaction.

Building an e business application based on SWS and
our approach can bring several benefits to the
companies such as:

• Thanks to their interoperability, WSs can lead to

decrease the company charges especially the
services integration’ costs

• Reusability a characteristic of WS that makes them
suitable for building composite web services. It can
reduce the development tasks ‘charges

4.2. Implementation

The prototype has been implemented using Java
Agent Development Framework (JADE) from
CSELT, Turin, Italy.

JADE is a middle-ware that could be used to develop
agent-based applications in compliance with the FIPA
specifications for inter-operable intelligent multiagent
systems. The SWS dataset was implemented using
OWL_S editor which is an easy-to-use editor for creating
OWL-S services supported by the university of Malta
Department of Computer Science and A.I. This tool is
divided into three main parts Creator, Validator and
Visualizer. Table 2 shows our implementation
environments for the prototype.

Table 2. Implementation environments for the prototype

Implementation environment JADE 4.3.0
Implementing language Java
DBMS Oracle
SWS editor OWL-S editor
Ontology editor Protégé
Operating system Windows 7

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1639 Science Publications

JCS

Fig. 5. The final result of the discovery and composition process

Fig. 6. A fragment of building ontology

5. CONCLUSION

In this study we have presented an architecture to
discover and compose SWS in a distributed
environment, unlike the most of the proposed
architectures in the literature which are based on a
central repository to store the web services. In the

other side, the few approaches that handle this issue
and taking into account the distribution of the web
services require the use of a specific annotations to
describe the web service or to find it (such as UDDI)
while we can’t enforce the web service’ publisher to
use these specific annotations, the only annotation to
consider for him is the standard semantic one.

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1640 Science Publications

JCS

This architecture is based on mobile agents which
are able to migrate within a network to interact with
locally accessible resources and exploit the semantics
of web services to supply consumers’ applications. In
the other hand, the graphs are used to compose several
SWS to perform a user request if it is needed. We have
also enhanced this architecture by adopting some
related algorithms.

This study has highlighted also the interest of using
SWS in several domains especially in e-business domain.
Using SWS allow a company to link its applications with
those of its partners, customers and suppliers via the
internet. Not only that but companies also can link their
own applications within the enterprise to reduce
redundancy and increase efficiency. Therefore, it can
minimize IT charges and increase the company profit.

There are some issues that are subject of future work.
On one hand, the result of the discovery process is to
return all services that are “sufficiently similar” to the
request, this means that there is a lack of an accurate
measure to determine whether a “sufficiently similar”
service is the desired one for the user. To tackle this
issue, we will extend our approach by adding the
nonfunctional parameters in the selection process. Also,
using recommender system’ techniques can be beneficial
at this stage. On the other hand, when the number of
services or ontologies complexity increase, scalability
and interoperability issues are highlighted; this issue will
be taken in consideration in our future work.

6. REFERENCES

Akkiraju, R., J. Farrell and J. Miller, 2005. Web service
semantics-wsdl-s. University of Georgia and ² IBM,

Albrechne, A., P. Fuhrer and J. Pasquier, 2009. Web
services orchestration and composition.

Ankolekar, A., M. Burstein, J.R. Hobbs, O. Lassila and D.
Martin et al., 2002. DAML-S-web service description
for the semantic web. Proceedings of the 1st
International Semantic Web Conference on Semantic
Web, Jun. 9-12, Springer Berlin Heidelberg, Italy, pp:
348-363. DOI: 10.1007/3-540-48005-6-27

Batzios, A., C. Dimou, A.L. Symeonidis and P.A.
Mitkas, 2008. Bio crawler: An intelligent crawler for
the semantic web. Expert Syst. Applic. J., 35: 524-
530. DOI: 10.1016/j.eswa.2007.07.054

Berdjouh, C. and K. Okba, 2009. An agent-based
approach for discovering web services. Proceedings
of the CIIA of CEUR Workshop, (CCW ‘09), pp:
547-547.

Bertoli, P., M. Pistore and P. Traverso, 2010. Automated
composition of web services via planning in
asynchronous domains. Artificial Int. J., 174: 316-361.
DOI: 10.1016/j.artint.2009.12.002

Boulaalam, A., E.H. Nfaoui and O. Beqqali, 2013.
Intelligent product based on mobile agent to
accelerate the new product development process. J.
Comput. Sci., 9: 856-865. DOI:
10.3844/jcssp.2013.856.865

Bruijn, J.D., C. Bussler and J. Domingue, 2004. Web
service modeling ontology. National University of
Ireland, Galway.

Canturk, D. and P. Senkul, 2011. Using semantic
information for distributed web service discovery.
Inter J. Web Sci., 1: 21-35. DOI:
10.1504/IJWS.2011.044080

Chinnici, R., J.J. Moreau, A. Ryman and
S.Weerawarana, 2007. Web Services Description
Language (WSDL) version 2.0 Part 1: Core
language. W3C.

Crasso, M., C. Mateos, A. Zunino and M. Campo, 2011.
SWAM- A logic-based mobile agent programming
language for the semantic web. Int. J. Expert Syst.
Applic., 38: 1723-1737. DOI:
10.1016/j.eswa.2010.07.098

Cuzzocrea, A. and M. Fisichella, 2011. Discovering
semantic web services via advanced graph-based
matching. Proceedings of the IEEE International
Conference, on Systems, Man and Cybernetics,
Oct. 9-12, IEEE Xplre Press, Anchorage, AK, pp:
608-615. DOI : 10.1109/ICSMC.2011.6083778

Hwang, S.Y., W.F. Hsieh and C.H. Lee, 2011.
Verifying web services in a choreography
environment. Proceedings of the IEEE
International Conference, on Service-Oriented
Computing and Applications, Dec. 12-14, IEEE
Xplre Press, Irvine, CA, pp: 1-4, DOI:
10.1109/SOCA.2011.6166254

Kumari, V. and P. Rajput, 2012. Web crawler based on
secure mobile agent. Res. J. Comput. Syst.
Engineer., 3: 419-423.

Kuo, W., 2012. A π-calculus based approach for web
services composition in choreography
environment. MSc Thesis, Department of
Information Management.

Li, M., J. Zhao and L. Wang, 2011. CoWS: An internet-
enriched and quality-aware web services search
engine. Proceedings of the IEEE International
Conference on Web Services, Jul. 4-9, IEEE Xplre
Press, Washington, DC., pp: 419-427. DOI:
10.1109/ICWS.2011.49

Latrache, A. et al. / Journal of Computer Science 10 (9): 1628-1641, 2014

1641 Science Publications

JCS

Liu, S., P. Küngas and M. Matskin, 2006. Agent-Based
Web Service Composition with JADE and JXTA.
Norwegian University of Science and Technology.

Liu, SL., YX. Liu, F. Zhang and G.F. Tang, 2010. Genetic
algorithm for QoS-aware dynamic web services
composition. Proceedings of the International
Conference on Machine Learning and Cybernetics, Jul.
11-14, IEEE Xplre Press, Qingdao, pp: 3246-3251.
DOI: 10.1109/ICMLC.2010.5580691

Maamar, Z., I. Younas and D. Benslimane, 2005. On self-
coordinating web services using similarity and neural
networks. Proceedings of the IEEE International
Conference on e-Technology, e-Commerce and e-
Service, Mar. 29-Apr. 1, IEEE Xplre Press, pp: 171-
176. DOI: 10.1109/EEE.2005.95

Mannan, M.J., M. Sundarambal and S. Raghul, 2014.
Selection of ontology for web service description
language to ontology web language conversion. J.
Comput. Sci., 10: 45-53. DOI:
10.3844/jcssp.2013.45.53

Martin, D., M. burstein, D. Mcdermott, S. Mcilraith and
M. Paolucci et al., 2007, Bringing semantics to
web services with OWL-S. World Wide Web, 10:
243-277. DOI: 10.1007/s11280-007-0033-x

Martinez, A., M. Patino-Martinez and R. Jimenez-Peris,
2005. ZenFlow: A visual web service composition
tool for BPEL4WS. Proceedings of the IEEE
Symposium on Visual Languages and Human-
Centric Comput, Sept. 20-24, IEEE Xplre Press,
pp: 181-188. DOI: 10.1109/VLHCC.2005.74

Ouassila, H. and B. Zizette, 2011. An agent based
architecture (using planning) for dynamic and
semantic web services composition in an EBXML
context. Int. J. Data Base Manage. Sys., 1: 22-22.
DOI: 10.5121/ijdms

Masri, E. and Q.H. Mahmoud, 2008. Discovering web
services in search engines. IEEE Int. Comput., 12:
74-77. DOI: 10.1109/MIC.2008.53

Sandhya, P. and M. Lakshmi, 2013. Strategic
composition of semantic web services using
SLAKY composer. Proceedings of the 2nd
International Conference on Advances in Computing
and Information Technology, Jul. 13-15, Springer
Berlin Heidelberg, Chennai, India, pp: 411-420.
DOI: 10.1007/978-3-642-31600-5_40

Sbodio, M.L., D. Martin and C. Moulin, 2010.
Discovering semantic web services using SPARQL
and intelligent agents. Web Semant. Sci. Services
Agents World Wide Web, 2: 310-328. DOI:
10.1016/j.websem.2010.05.002

Sellami, M., S. Tata and Z. Maamar, 2009. A
recommender system for web services discovery in a
distributed registry environment. Proceedings of the
4rth International Conference on Internet and Web
Applications and Services, May 24-28, IEEE Xplre
Press, Venice/Mestre, pp: 418-423. DOI:
10.1109/ICIW.2009.68

Sheeba, A., A. Chandrasekar and V. Shanthi, 2014.
User-centric design for semantic discovery of
mathematical web services. Am. J. Applied Sci., 11:
639-647. DOI : 10.3844/ajassp.2014.639.647

Xilu, Z., W. Bai and W. Gengyu, 2009. Qos-aware web
service discovery in P2P network. Proceedings of
the 2nd IEEE International Conference on

Broadband Network and Multimedia Technology,

Oct. 18-20, IEEE Xplre Press, Beijing, pp: 650-
654. DOI: 10.1109/ICBNMT.2009.5347830

Xu, Z., P. Martin, W. Powley and F. Zulkernine, 2007.
Reputation-enhanced QoS-based web services
discovery. Proceedings of the IEEE International
Conference on Web Services, Jul. 9-13, IEEE Xplre
Press, Salt Lake City, UT, pp: 249-256. DOI:
10.1109/ICWS.2007.152

Ye, G., C. Wu, J. Yue and S. Cheng, 2009. A QoS-aware
model for web services discovery. Proceedings of
the 1st International Workshop on Education
Technology and Computer Science, Mar. 7-8, IEEE
Xplre Press, Wuhan, Hubei, pp: 740-744. DOI:
10.1109/ETCS.2009.700

Yeung, W.L., 2011. A formal and visual modeling
approach to choreography based web services
composition and conformance verification. Expert
Syst. Applic., 38: 12772-12785. DOI:
10.1016/j.eswa.2011.04.068

Yu, L., 2007. Introduction to the semantic web and
semantic web services. 1st Edn., Chapman and
Hall/CRC ISBN-10: 1584889330, pp: 368.

Zhang, Y., Z. Zheng and M.R. Lyu, 2010. WSExpress: A
QoS-aware search engine for web services.
Proceedings of the IEEE International Conference
on Web Services, Jul. 5-10, IEEE Xplre Press,

Miami, FL., pp: 91-98. DOI:
10.1109/ICWS.2010.20

Zhu, C.Y. and Y. Du, 2010. Application of logical petri
nets in web service composition. Proceedings of the
International Conference on Mechatronics and
Automation, Aug. 4-7, IEEE Xplre Press, Xi'an, pp:
913-918. DOI: 10.1109/ICMA.2010.5589966

