
Journal of Computer Science 10 (8): 1575-1581, 2014 
ISSN: 1549-3636 
© 2014 Science Publications 
doi:10.3844/jcssp.2014.1575.1581 Published Online 10 (8) 2014 (http://www.thescipub.com/jcs.toc) 

Corresponding Author: Siham Ezzouak, Department of Mathematics and Computer Science, Faculty of Science, 
 University Mohammed First, Oujda, BP 60000, Morocco 
 

1575 Science Publications

 
JCS 

A VARIANT OF POLLARD’S RHO ATTACK 
ON ELLIPTIC CURVE CRYPTOSYSTEMS 

Siham Ezzouak, Mohammed Elamrani and Abdelmalek Azizi 
 

Department of Mathematics and Computer Science, 
Faculty of Science, University Mohammed First, Oujda, BP 60000, Morocco 

 
Received 2014-02-18; Revised 2014-04-05; Accepted 2014-04-09 

ABSTRACT  

Elliptic Curve cryptosystems appear to be more secure and  efficient when requiring small  key size to 
implement than other  public key cryptosystems. Its security is based upon the difficulty of solving 
Elliptic Curve Discrete Logarithm Problem (ECDLP). This study proposes a variant of generic algorithm 
Pollard’s Rho  for finding ECDLP using cycle detection with stack  and a mixture of cycle detection and 
random walks. The Pollard’s Rho using cycle detection with stack requires less  iterations  than Pollard’s 
Rho original in reaching collision. Random walks allow the iteration function to act randomly than the 
original iteration function, thus, the Pollard rho method performs more efficiently. In practice, the 
experiment results show that the proposed methods decreases the number of iterations and  speed up the 
computation of discrete logarithm problem on elliptic curves. 
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1. INTRODUCTION  

Elliptic curves over finite fields have been proposed 
by Diffie-Hellman to implement key passing scheme and 
elliptic curves variants for digital signature. The security 
of this cryptosystem is linked to the difficulty to solve 
elliptic curve discrete logarithm problem and if this 
problem is resolved the cryptosystem is broken.  

Although there are several attacks against this 
cryptosystem such as Baby-Step Giant-Step (Shanks, 
1971), Pollard’s Rho method and its parallelized variant, 
their complexity is the square root of the prime order of 
the generating point used (Harrison, 2010). Up to now, 
Pollard’s Rho method is known as the best method to 
resolve the discrete logarithm problem on  general 
groups, specifically elliptic curve. Hence automorphism 
of the group (Duursma et al., 1990), parallelization 
(Oorschot and Wiener, 1999), iteration function (Teske, 
1998; 2001) or cycle detection (Brent, 1980; Cheon et al., 
2012) are used to improve this attack. In this study, we try 
to introduce a variant of Pollard’s Rho attack using the 

new cycle detection proposed by (Nivasch, 2004) and the 
random walks proposed  by Teske. After that, we analyze 
the running time and implement the new algorithm. The 
remainder of this study is  proceded as follow: Section 2 
introduces some basic definitions for the elliptic curves, 
Floyd’s algorithm and Pollard’s Rho algorithm. Section 
3 describes how Pollard’s Rho algorithm may be 
modified using Nivash’s cycle detection instead of 
Floyd’s algorithm. We explain how to introduce random 
walks on the modified Pollard’s Rho and the algorithms 
are compared in section 4. 

2. BACKGROUND 

This section introduces the elliptic curve 
cryptosystem, Floyd finding cycle algorithm Floyd 
(1962)  and Pollard’s Rho method (Pollard, 1978). The 
Pollard’s Rho method uses iteration function to build 
sequence of elements and it uses cycle detection to 
find match or collision. The match leads to the 
solution of ECDLP. In fact, this method is based on a 
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random walk and the Birthday Paradox which states 
that in a a set of 23 randomly chosen people, the 
chance that at least two of them share the same 
birthday is greater than 50%. Then, if random objects 
are selected with replacement from n objects, one may 
expect n / 2π  rounds before an object is picked twice. 

2.1. Elliptic Curve Cryptosystem 

The addition rule of the group of elliptic curves is 
easy to be implemented. Therefore, algebraic formulas 
for the group law can be derived from the geometric 
description. A general elliptic curve E over finite field K 
has the form y2+axy+by = x3+cx2+dx+e where a, b, c, d 
and e are in K.  The addition operation is defined over 
elliptic curves  with the inclusion of a point O called 
point at infinity or identity. 

Let p be a prime with p>3. Elliptic curves can be 
implemented over fields of characteristic 2 and 3 and 
enjoy many optimizations, but suffer from specialized 
discrete log attacks Coppersmith (1984)  and should 
generally be avoided. Let Fp = GF(p) the Galois Field over 
p  and a, b ∈ Fp and satisfy the condition 4a3+27b2 mod(p) 
≠ 0 then an elliptic curve over the Galois field E(Fp)(a,b) is 
defined by equation y2 = x3+ax+b mod(p) where x∈ Fp. 

Let P = (x1, y1) and Q = (x2, y2) be two points in the 
elliptic curve E(Fp)(a, b), to compute the sum R = (x3, y3) 
of points P and Q we use explicit formulas: 

• If  P = O then R = Q 
• If  Q = O then R = P 
• Otherwise 

- If x1 ≠ x2 put 
λ = (y1-y2) (x1-x2)

-1 then 
x3 = λ2-x1-x2 

y3 = λ (x1-x3)-y1 

-If x1 = x2 and y1 = -y2 then R = O 
- If  x1 = x2 and y1 ≠ y2 so P = Q put 

2 1
1 1 2(3x A)(y y ) then−λ = + +  

x3 = λ2 –x1-x2 
y3 = λ (x1-x3)-y1 
 

The most expensive step is the division in the 
computation of λ. 

Definition 1 

Hankerson et al. (2004) The Elliptic Curve Discrete 
Logarithm Problem (ECDLP) is: 

Given an elliptic curve E defined over a finite field 
Fp, a point P ∈ E(Fp) of order n and a point Q∈〈P〉, 

find the integer l∈[0, n-1] such that Q = lP. The 
integer d is called the discrete logarithm of Q to the 
base P, denoted l = logPQ. 

This problem is considered as hard mathematical 
problem like the Integer Factorisation Problem (IFP) and 
the logarithm problem in multiplicative group of finite 
field (DLP). All methods, proposed up to now which 
solve ECDLP, require exponential running time. 

2.2. Floyd’s Cycle-finding Algorithm 

Instead of comparing each new Yi to all previous 
ones and stores all elements until obtaining collision, It is 
better to choose Floyd’s algorithm Floyd (1962) in order 
to minimize the memory requirement and running time. 
In fact, one computes pairs (Yi, Y2i) of points for i = 
1,2,3... until finding Yi = Y2i. After computing a new 
pair, the previous pair can be discarded, thus the storage 
requirements are negligible. 

Theorem 1 

Knuth (1969) [exercises 6-7] for a periodic 
sequence Y0, Y1, Y2,…, there exists an i>0 such that 
Y i = Y2i and the smallest such i lies in the range 
µ≤i≤µ+λ. µ and λ are the preperiod and the period of 
the sequence Yi respectively. 

If we suppose that the sequence is generated by 
random function then the expected value of µ and λ is 
close to n / 8π . As a consequence, µ+λ is 

around n / 2π . 

2.3. Pollard’s Rho Algorithm 

The idea of Pollard is that three  possibilities are 
chosen in a random manner and the resulting sequence 
is sufficiently complicated to be regarded as a random 
mapping. Let us start with random point R0 and build 
the sequence Ri with the iteration function f until the 
collision occurs. In fact, E(Fp) is finite, the sequence 
Ri become periodic after some iterations so there will 
be some indices i<j such that Ri = Rj, j-i is the period 
and Ri,Ri+1,Ri+2,…,Rj form a loop. For cycle detection, 
Floyd’s method is used. The original Pollard’s Rho 
method on elliptic curves is detailed bellow: 

• Split E(Fp) into three  disjoint sets S1, S2 and S3 of 
roughly equal size 

• Let R0 = a0P + b0Q with a0 and b0 two random 
integers in ]0, n[ and the iterative function f was 
defined as: 
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i i 1

i i 1 i i 2

i i 3

P R if R S

f (R ) R 2R if R S

Q R if R S
+

 + ∈
= = ∈
 + ∈

 

 
The sequence ai and bi can be computed as follow: 

 

i i i 1

i 1 i 1 i i i 2

i i i 3

(a 1,b )if R S

(a ,b ) (2a ,2b )if R S

(a ,b 1)if R S
+ +

 + ∈
= ∈
 + ∈

 

 
• Compute Rj and R2j and compare them until a match 

is found using the iteration function f 

• If Rj = R2j, then 2 j j

j 2 j

a a
l (modn)

b b

−
=

−
with bj ≠ b2j. So 

ECDLP is resolved 
 

In the last step with negligible probability, we can 
have bj = b2j. In this case, we restart the process with 
different starting points R0. 

Algorithm 1 . Iteration function 
1: function f (R): R1 
2: if R ∈ S1 then 
3:  R1← R + P 
4: else if R ∈ S2 then 
5:  R1 ← 2R 
6: else 
7:  R1← R + Q 
8: end if 
9: return R1 
10: end function 
11: function f (a, b): a1, b1 
12: if R ∈ S1 then 
13:  a1←a + 1 
14: else if R ∈ S2 then 
15:  a1←   2a 
16:  b1 ← 2b 
17: else 
18:  b1← b + 1 
19: end if 
20: return a1, b1 
21: end function 

Algorithm 2.  Pollard’s Rho with Floyd’s cycle finding 
algorithm 

Require: P, Q, S1, S2, S3 
Ensure: Integer l where Q = lP 
1: a0 ←random∈ ]0; n[ 
2: b0 ←random ∈]0; n[ 

3: j←   0 
4: R0←   a0P+b0Q 
5: for all j such that Rj ≠ R2j do 
6:  (Rj+1, aj+1, bj+1) ← f(Rj), f(aj, bj) 
7:  (R2(j+1), a2(j+1), b2(j+1)) ←f(f(R2j)), f(f(a2j, b2j)) 
8:  j ← j + 1 
9: if Rj = R2j and bj ≠ b2j then 

10:  2 j j

j 2 j

a a
l mod(n)

b b

−
←

−
   

11: else if bj = b2j then 
12:  a0 ← random ∈]0; n[ 
13:  b0 ←  random ∈]0; n[ 
14:  j ← 0 
15:  end if 
16:  end for 
17: Return l 
 

The Pollard’s Rho algorithm is known as the best 
algorithm to resolve ECDLP in the generic groups. If f 
supposed a random map than the expected number of 
iterations before a collision occurs is close ton / 2π . In 
addition, the memory requirement is negligible and the 
running time is exponential. 

2.4. Pollard’s Rho Algorithm with Random 
Walks 

The iteration function used in Pollard’s Rho 
algorithm is not random enough (Knuth, 1969), So Teske 
proposed a better iteration function by applying more 
arbitrary multipliers. Divide E(Fp) into s disjoint subsets 
S1, S2,..,Ss of approximately the same size. A good 
choice for s seems to be around 20 (Teske, 2001). 
Choose 2s random integers ai, bi mod n. 

Let Si = {R(X,Y ) ∈E(Fp)} X(mod s) = i} and  
M i = aiP + biQ So the iteration function is defined as 

bellow: 
 

j j 1 i j j if (R ) R M R if R S+= = + ∈  

 
Moreover, the pseudocode of the iteration function is: 

Algorithm 3. Iteration function 

1: function f (R): R1 
2: if R∈Si then 
3:  R1← R +Mi 
4: end if 
5: return R1 
6: end function 
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7: function f (R, a, b): a1, b1 
8: if R∈Si then 
9:  a1← ai + a 
10:  b1←bi + b 
11: end if 
12: return a1, b1 
13: end function 

The Pollard Rho original can be modified just by 
replacing the old iteration function by the new one. 

3. POLLARD’S RHO ALGORITHM 
USING STACK 

In this section, we explain how we can improve 
Pollard’s Rho method using stack. First, we describe 
Nivasch’s method for cycle detection (Nivasch, 2004). 
Second, we outline the Pollard’s Rho modified and we 
show the two methods with random walks. Then we 
compare them and select the best one. Finaly, we 
implement the proposed algorithm and we make a 
comparison with the original algorithm. 

3.1. Nivasch’s Cycle-finding Algorithm 

The stack has been created and starts out empty. At 
each step j, remove all the top entries  (xi, i)  (pop) from 
the stack where xi>xj. If xi = xj is found in the stack, we 
are finished. So the cycle length is j-i. Else, add (xj, j) to 
the top of the stack (push) and continue. 

This algorithm run in linear time, use logarithmic space 
and halt in the smallest value of the sequence cycle. 

3.2. Pollard’s Rho Algorithm Modified  

Our idea is to use stack to store elements generated 
by the iteration function, the main algorithm is as 
follow: We keep in the stack pairs (i, ai, bi, Ri), the Ri 
in the stack forms increasing sequence, so we define 
lexicography order on E(Fp). If Rj>Ri where 0<i<j, we 
push the pairs (j, aj, bj, Rj) in the stack, otherwise if 
Ri>Rj we pop all pairs (i, ai, bi, Ri) until we find Ri = Rj 
or Ri<Rj. In the first case, we halt the process and 
compute l. In the second case, we push (j, aj, bj, Rj) in 
the stack and we generate other points. The details of 
the procedure are as follow: 

• E(Fp) is into three disjoint sets S1, S2 and S3 
• S1, S2 and S3 contain points with y-coordinate value 

between [0, p/3[, [p/3, 2p/3[or [2p/3, p[ successively 
• Let R0 = a0P + b0Q with a0 and b0 two random 

integers ∈ [1, n-1] and we define the iterative 
function f 

i i 1

i i 1 i i 2

i i 3

P R if R S

f (R ) R 2R if R S

Q R if R S
+

 + ∈
= = ∈
 + ∈

 

 
The sequence ai and bi can be computed as follow: 

 

i i i 1

i 1 i 1 i i i 2

i i i 3

(a 1,b )if R S

(a ,b ) (2a ,2b )if R S

(a ,b 1)if R S
+ +

 + ∈
= ∈
 + ∈

 

 
If Rj is less than Ri we pop from the stack all Ri where 

Rj<Ri else we push Rj on the top of the stack and continue. 
We halt the process when Ri = Rj then we find the 

fixed point, the logarithm discrete is resolved and 

j i

i j

a a
l (modn)

b b

−
=

−
. 

The pseudo-code is as follow: 

Algorithm 4 . Pollard’s Rho Algorithm with stack 

Require: P, Q, S1, S2, S3 
Ensure: Integer l such that Q = lP 
1: a0←random ∈]0; n[ 
2: b0← random ∈]0; n[ 
3: j← 1 
4: i ←0 
5: R0←a0P + b0Q 
6: (Rj, aj, bj)←(f(R0), f(a0, b0)) 
7: stack←push (i, ai, bi, Ri) 
8: for all j such that Rj ≠ Ri do 
9:  if Rj<Ri then 
10:  repeat 
11:  stack.pop() 
12:  (i; ai; bi;Ri) ←stack:top() 
13:  until Rj≥Ri 
14:  end if 
15:  if Rj>Ri then 
16:  stack←push(j, aj, bj, Rj) 
17:  (Rj+1, aj+1, bj+1)←(f(Rj), f(aj, bj)) 
18: else 

19:  j i

i j

a a
l mod(n)

b b

−
←

−
 

20:  break 
21:  end if 
22:  j ← j + 1 
23: end for 
24: Return l 
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The stack size must not exceeded the memory 
allowed for this attack. In this case, this attack will be 
discarded and unused. For this reason, we analyse stack 
size at time n<µ+λ. 

Theorem 2 

Nivasch (2004) Given a positive integer n, let Sn be 
the stack size at time n and Mn the maximum stack size 
up to time n. Then: 

• Sn has expectation ln n + O(1) 
• Mn is almost surely<δ ln n for any constant δ>e 

At each iteration, Nivash’s cycle finding algorithm 
stores only one element Xi. 

However, in our case, we store (i, ai, bi, Ri) which 
means that the memory required is multiplied by 5. Thus 
the stack size is approximately 6 ln n+O(1). 

3.3. Random Walks 

Random walks developed by Teske are known to do 
much better than the original iteration function at the 
cost of little more computation. Hence, we use a mixture 
of random walks and stack in the Pollard’s Rho 
algorithm. The steps in Pollard’s Rho modified is 
described as follows: 

• We partitioned E(Fp) into 20 disjoint sets S1, S2,.. S20 
• S1, S2,…,S20 contain points with x-coordinate mod 

20 equals to 0, 1, 2, …19 successively 
• We generete 20 random couples (ai, bi) and we 

compute the points Mi = ai P + biQ 
• Let R0 = a0P+b0Q with a0 and b0 two random integers 

in [1, n-1] and we define the iterative function f: 
 

i i 1 j i i jf (R ) R {M R if R S }+= = + ∈  

 
The sequence ai and bi can be computed as follow: 

 

i i j j i j(a ,b ) {(a a ,b b )} if R S= + + ∈  

 
• If Ri+1 is less than Ri we pop from the stack all Ri 

where Ri+1 is the least else we push Ri+1 on the top of 
the stack and continue 

• We halt process when Ri = Rk then we find the fixed 
point, the logarithm discrete is resolved and 

k i

i k

a a
l (mod n)

b b

−=
−

 

3.4. Implementation 

The Pollard’s Rho has been tested using stack on 
modern PC Core Duo with the Software Software 
Algebra Geometry Experimentation (SAGE) (Stein, 
2010). First, we produce data file containing p prime 
numbers and for each prime number we build a secure 
elliptic curve and choose arbitrary point P and Q, we 
add the X and Y coordinate of P and Q to the file. 
Second, we use our approach to compute the discrete 
logarithm of Q to the base P. We follow these steps to 
implement the algorithm: 

 
• Generate p prime numbers with size between six and 

fourteen digits (ten generation for each size) 
• Generate random numbers A and B such that (4A3 + 

27B2)mod(p) different from 0 
• Use p prime numbers, A and B numbers to generate 

elliptic curve 
• Choose random X coordinate for Points P and Q 

from E(Fp) and calculate Y coordinate using 
Weierstrass Equation 

• Compute integer l such that Q = lP using the method 
described above 

4. COMPARISON BETWEEN 
ALGORITHMS 

Analysis algorithm is quite important in computer 
programming because there are usually several 
algorithms available for a particular application and we 
would like to know which is the best. 

4.1. Analysis 

The most expensive steps in the Pollard’s Rho method 
is the evaluation of the iteration function, thus it’s quite 
important to compute the number of evaluation of this last 
to analyze the performance of the modified method. 

The number of iterations in Pollard’s Rho modified is 
at most µ+2λ that is roughly 3 n / 8π . However, with 

the original Pollard’s Rho is n / 2π but at each 
iteration, f  has been evaluated three times instead of 
one time with the Pollard’s Rho modified. Therefore, 
the number of evaluations of f before the algorithm 
terminates is 3 n / 2π with the original Pollard’s Rho 

and 3 n / 8π  with the modified Pollard’s Rho. We 
conclude that the running time will be the greatest in 
the Pollard’s Rho original. However, the amount of 
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memory is increased because with the Pollard’s Rho 
original we store only pair (Yi, Y2i) and in each step, 
we generate the new pairs and we discard the previous 
pairs, so the memory used is negligeable. However, 
with Pollard’s Rho modified we store all generated Ri 
that form  an  increasing sequence and we delete the 
element from the stack only if the current Ri is less 
than this element. 

4.2. Experiment Results  

In order to validate what we claim, we made 
severel experiments on random elliptic curves  by 
computing the running time and  the  number of 
evaluations of iteration function for each of them. In 
Table 1, we found that if the length of p is less than 

fifteen digits, the running time of Pollard’s Rho 
modified is less than the original Pollard’s Rho. In 
Table 2,  we will compare the number of evaluations 
of the iteration function of two methods, it is the 
lowest in Pollard’s Rho with stack. As a consequence, 
the Pollard Rho’s modified method performs better 
than the original Pollard’s Rho method. 

In Table 3, we will compare the running time of 
Pollard’s Rho with random walks and Pollard’s Rho 
mixing stack and random walks. Our experiment used 
prime numbers with size between six and eleven digits 
and the experimental results prove that the first method 
is lower than the second. We found that mixed walks 
using stack perform better than Pollard’s Rho only with 
random walks. 

 
Table 1. Running time comparison of new Pollard’s RHO and Original Pollard’s RHO 

Digit Pollard’s Rho Pollard’s Rho 
No. (p) with stack with Floyd’s 
6 0.13816063 0.09353127 
7 0.52002090 0.38864080 
8 1.55706340 1.10163240 
9 5.01763730 3.78752410 
10 12.94963120 9.72552160 
11 47.00025480 36.28078460 
12 173.74268710 120.13733630 
13 763.50992900 458.66987140 
14 1994.19594744 1499.03777833 
 
Table 2. Number evaluation of function iteration comparison of Pollard’s RHO modified and Pollard’s RHO original 
Digit Pollard’s Rho Pollard’s Rho  
No. (p) with stack with Floyd’s 
6 1147 550 
7 4554 2310 
8 13376 6208 
9 38560 21502 
10 147098 77176 
11 456563 214430 
12 796299 416246 
13 2717168 1477922 
14 12819430 6433273 

 
Table 3. Running time of Pollard’s Rho with random walks and mixing stack and random walks 

Digit Pollard with Random Walks 
No. (p) Random Walks stack 
6 3.9533380 1.3746310 
7 17.4098880 11.2679040 
8 44.5107820 30.9887360 
9 210.4911547 108.6511900 
10 638.0878780 447.9731964 
11 3834.4660393 1618.8607724 
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5 CONCLUSION  

In this study we have outlined a new algorithm to 
speed-up Pollard’s Rho attack by make use of first 
Nivasch’s cycle detection and second mixing Nivasch’s 
cycle detection and random walks. However, this variant 
is not appropriate if the memory used is limited. For 
further research, we intend to improve Pollard’s Rho 
method using at the same time cycle detection, random 
walks and Parallelization. 
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