
Journal of Computer Science 10 (7): 1298-1306, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1298.1306 Published Online 10 (7) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Hasan Kahtan, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Selangor, Malaysia

1298 Science Publications

JCS

DEPENDABILITY ATTRIBUTES FOR INCREASED SECURITY
IN COMPONENT-BASED SOFTWARE DEVELOPMENT

Hasan Kahtan, Nordin Abu Bakar and Rosmawati Nordin

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Selangor, Malaysia

Received 2014-01-05; Revised 2014-02-25; Accepted 2014-03-01

ABSTRACT

Existing software applications become increasingly distributed as their continuity and lifetimes are
lengthened; consequently, the users’ dependence on these applications is increased. The security of
these applications has become a primary concern in their design, construction and evolution. Thus,
these applications give rise to major concerns on the capability of the current development approach to
develop secure systems. Component-Based Software Development (CBSD) is a software engineering
approach. CBSD has been successfully applied in many domains. However, the CBSD capability to
develop secure software applications is lacking to date. This study is an extension of the previous
study on the challenges of the security features in CBSD models. Therefore, this study proposes a
solution to the lack of security in CBSD models by highlighting the attributes that must be embedded
into the CBSD process. A thorough analysis of existing studies is conducted to investigate the related
software security attributes. The outcome analysis is beneficial for industries, such as software
development companies, as well as for academic institutions. The analysis also serves as a baseline
reference for companies that develop component-based software.

Keywords: Component-Based Software Development, Software Security Attributes, Dependability

Attributes, Availability, Reliability, Integrity, Confidentiality, Safety, Maintainability

1. INTRODUCTION

Existing software applications become increasingly
distributed as their continuity and lifetimes are
lengthened; consequently, the users’ dependence on
these applications is increased. The dependability of
these applications has become a primary concern in their
design, construction and evolution. Kahtan et al. (2012)
reported that pervasive computing gives rise to major
concerns on the capability of current development models
to develop dependable systems. Component-Based
Software Development (CBSD) is a software engineering
approach (Sommerville, 2011); its capability to develop
dependable software applications is unknown to date.

CBSD is a technique that focuses on the use of
existing software codes to develop software applications
and thus avoids the need to develop from scratch

(Alhazbi and Jantan, 2007; Lin, 2007). CBSD shifts the
development emphasis from programming software to
composing software systems (Gill and Tomar, 2010)
by integrating existing software components based on
the assumption that certain parts of a large software
system reappear regularly and that common parts must
be written once and then reused several times rather
than written over and over again (Ahmed et al., 2012).

Several studies have reported the different challenges
in using CBSD in software development in terms of
component security trust. According to Moradian and
Håkansson (2010), the interdependencies of software
components create security issues during the integration
phase of their development. Talib et al. (2010) stated that
the lack of a suitable guide during the CBSD life cycle
leads to faults in software requirements, design, or codes
and thus results in major security threats. According to

Hasan Kahtan et al. / Journal of Computer Science 10 (7): 1298-1306, 2014

1299 Science Publications

JCS

Carvalho et al. (2009), selecting a component with
unknown security properties is unacceptable because it
may produce catastrophic results.

Therefore, dependability attributes must be verified
and validated throughout the CBSD process to
guarantee the dependability of software applications
(Kahtan et al., 2012). The original definition of
dependability underscores the justification of the trust.
Dependability is defined as the level of reliability with
which a property of a computer system can deliver the
service it is supposed to provide (Laprie, 1992).
Avizienis et al. (2004) defined dependability as the
ability of a system to avoid service failures that are
more frequent and severe than expected.

This study is organized as follows. Section 1
provides the introduction. Section 2 explains software
security and CBSD in detail. Section 3 defines and
reviews related studies on software security. Section 4
highlights software security attributes. Dependability
attributes are defined in Section 5. Finally, the
conclusion is provided in section 6.

2. SOFTWARE SECURITY AND CBSD

Current applications and systems contain software
components as basic elements and CBSD is utilized to
build applications and systems (Ahmed et al., 2012;
Kouroshfar et al., 2009; Lau et al., 2011). However,
CBSD lacks security in terms of software components
(Hutchinson et al., 2004; Karen et al., 2011). Thus, the
software can be considered a defective source. For
example, malicious hackers and intruders exploit
software defects (coding bugs such as buffer overflows
and design flaws such as inconsistent error handling) to
obtain unauthorized access and launch attacks. This
problem emphasizes the need for designers to build a
secure software (Al-Azzani and Bahsoon, 2010). In a
recent example of hacking reported by Gibbs (2013),
the Malaysian site of Google was hacked by a Pakistani
group. The search service was replaced with a splash
screen crediting the group before the site was taken
completely offline. Researchers have acknowledged the
importance of software security in the software
development lifecycle. Due to poor software
development practices, which include improper testing,
failure to control common programming errors and
poor understanding of the interactions between
different software components that will lead to system
failure (Kahtan et al., 2012). Examples of such
opinions are discussed briefly below.

McGraw (2004) stated that in the fight for better
software, treating the disease itself (poorly designed and
implemented software) is better than taking an aspirin to
stop the symptoms. The deep integration of software
security into the development process and the
engineering lessons from software practitioners have no
substitute. Hadžiosmanović et al. (2012) discovered that
vulnerabilities in Industrial Control Systems (ICSs),
which include nuclear power plants and oil and gas
extraction and distribution facilities, have increased
mainly because of poor software development cycles
used by several vendors and the “security by obscurity”
paradigm used to “protect” legacy devices. Dobariya and
Gajjar (2012) noted that one of the challenges in VoIP is
that poor software development can lead to various
security problems. Bygren et al. (2012) stated that poor
software development in early-and mid-stage acquisition
can result in failure to provide the desired results. This
failure ranges from unwanted or missing features to cost
and schedule overruns as well as critical flaws in system
security or reliability. Sudhakar and Dava (2012)
reported that poor software development practices occur
because of marketing pressure and could lead to the
release of unsecure server applications. These problems
have caused an increase in traffic monitoring approaches.
Thomas (2012) claimed that vulnerabilities can cause
broad-range system failure, which is often compounded
by poor software development. The majority of
companies have discovered that they do not possess the
engineering discipline to recreate binaries that are
currently running their businesses.

Many technologists and commercial vendors have
demonstrated that unsecure software affects people’s
lives in many ways. For instance, the Symantec
Security Response team (Security, 2012) highlighted in
the 2011 symantec internet security threat report that
more than 5.5 billion malicious attacks were blocked in
2011; this value is more than 81% higher than that in
2010. The Verizon Enterprise Solutions team (Verizon,
2012) revealed in The 2012 Data Breach Incident
Report that 855 malicious incidents occurred in 2012;
174 million records were compromised. The sophos
team (Sophos, 2012) reported in security threat report
2012 that Google removed more than 100 malicious
applications from the Android Market in 2011 when
hackers exploited vulnerabilities in the system. Secunia
(2011) stated in secunia yearly report 2011 that the

Hasan Kahtan et al. / Journal of Computer Science 10 (7): 1298-1306, 2014

1300 Science Publications

JCS

vulnerabilities that affect typical end points have tripled
to more than 800 and that the majority of these
vulnerabilities (79%) are found in third-party programs.
Technologies (2011) team highlighted in that
organizations collectively lose 545 man hours a year on
the average owing to IT downtime and data recovery.

In conclusion, protecting a continuously evolving
network is difficult even when the software is not
updated every five minutes. If a software has a
defensively designed self-protection mechanism, is
properly tested from a security perspective, or has few
vulnerabilities, operating a secure network will be
easy and cost effective. Progress should be attained on
both fronts. However, in the long term, codes that are
easy to defend must be developed (McGraw, 2011).
Researchers and technologists need to understand how
to manage poor software development practices. The
software security approach aims to provide such help
by exploring the development of best practices.
Software security involves helping CBSD designers
remove the burden of security problems from end users.

3. SOFTWARE SECURITY

The term “software security” has been defined by
many authors in literature. McGraw (2004) stated that
software security is engineering software that can
continue to function correctly under malicious attacks.
Cogo (2013) defined software security as a function
focused on vulnerability extraction and system
protection. Ghebremedhin (2012) defined software
security as a measure that prevents the danger or risk
of attacks. The Department of Homeland Security
(Karen et al., 2006) defined secure software as software
that cannot be forced to perform unintended functions.
Software security also refers to the process of creating
software that is considered secure (Boampong and
Wahsheh, 2012). This process includes a robust design
that deters software attacks through the identification
and expulsion of problems in the software itself and
through the provision of proper information to software
developers, architects and users with regard to the
development of secure applications.

One important goal of software security is to ensure
justifiable confidence in the following basic features:
The software under consideration functions in the
intended manner and does not compromise the security
or any other required properties of the software; the

software environment or managed information is
reliable and can continue to operate under all
anticipated circumstances; and the software does not
have vulnerabilities (McGraw, 2011). Such
vulnerabilities may refer to an anomalous and hostile
environment and to other utilization conditions (Karen,
2009). For this reason, software developers must
anticipate these conditions and then design and
implement the software to manage these challenges
efficiently. Such conditions may include any of the
following: Exposure of the operational software to
accidental events threatening its basic security; exposed
to intentional choices or actions that threaten its
security during its development, deployment, operation,
or continuity; and the presence of unintentional faults
in the software and its environment.

Many studies have stated that the only means to solve
software vulnerability is to consider software security
development (Khaled and Han, 2006; Kim, 2004;
McGraw, 2004; Mir and Quadri, 2012; Simpson, 2012).
However, efforts to measure and improve software
security remain under investigation (Alberts et al., 2012;
Colombo et al., 2012; Karen et al., 2006; Lai, 2012;
Steward et al., 2012). To address the research problem
and the gaps identified in existing literature, the
following issues are investigated:

• What are the common software security attributes

addressed in the literature
• What significant attributes should be considered to

solve the shortcomings of CBSD

4. SOFTWARE SECURITY ATTRIBUTES

In literature, the terms “dependability,”
“trustworthiness,” and “survivability” are used
interchangeably to describe the properties of software
security (Karen, 2009).

4.1. Dependability

 Dependable software executes predictably and
operates correctly under all conditions even when the
conditions are hostile, the software is under attack, or the
software operates on a malicious host.

4.2. Trustworthiness

 Trustworthy software contains few vulnerabilities or
weaknesses that can be intentionally exploited to subvert

Hasan Kahtan et al. / Journal of Computer Science 10 (7): 1298-1306, 2014

1301 Science Publications

JCS

or sabotage the reliability of the software. To be
considered trustworthy, the software must contain no
logic that causes it to behave in a malicious manner.

4.3. Survivability

Survivability (also referred to as “resilience”):
Software is considered resilient when it can (a) resist
(i.e., protect itself against) or tolerate (i.e., continue
operating dependably in spite of most known attacks,
including as many novel attacks as possible) attacks
and (b) recover quickly with as little damage as
possible from attacks that the software can neither
resist nor tolerate.

In several studies, the trustworthiness attribute is
required in CBSD to achieve a secure software
component (Muhammad and Zulkernine, 2011; Yan and
Prehofer, 2011; Zhou, 2010). Other researchers
believe that survivability (or resilience) is necessary
to have secure software components (Gama et al.,
2012; Zhiwen et al., 2010). The dependability
attribute is a widely accepted concept through which
to achieve better security in most software
components (Crnkovic and Grunske, 2007; Xu et al.,
2006; Yi and Li, 2011). In Security in The Software
Lifecycle (Karen et al., 2006), the Department of
Homeland Security defined “dependability” as the
degree to which the software is operable and capable of
performing its functionality or delivering a service that
can justifiably be relied upon (i.e., trusted) as correct. To
achieve dependability, the software must have the ability
to avoid service failures that are frequent, severe, or have
longer duration and are considered acceptable to users.
Survivability and trustworthiness are closely related to
dependability (Karen et al., 2006).

According to Sommerville (2011), the
dependability of a computer system is the property of
the system that reflects the user’s degree of trust in
that system. The most important dimensions of
dependability are availability, reliability, safety and
security. Moreover, the dependability of a computer
system is a property that equates to its trustworthiness.
The dependability attributes in CBSD has been
considered in many studies (De Andrés et al., 2008;
Gallina et al., 2012; Kharchenko et al., 2009; Tambe et al.,
2010; Yi and Li, 2011). Dependability counters the
security vulnerabilities, abnormal behavior and
untrustworthy issues in a software system. To consider
a system dependable, it must be viewed according to

different but complementary properties (or instances of
dependability), such as availability, integrity,
reliability, safety, maintainability and confidentiality
(Avizienis et al., 2004; Dai et al., 2006; Redwine Jr, 2007).

In conclusion, current literature shows that
dependability attributes are the cure for security threats,
abnormal behavior and untrustworthy issues in a
software system. Therefore, in this study, dependability
attributes are considered to overcome the security
lacking in component-based software development.

5. DEPENDABILITY ATTRIBUTES

In simple terms, dependability ensures that the
software always operates correctly. Several low-level
properties can be viewed as attributes of dependability as
well. Table 1 presents the dependability attributes
(Avizienis et al., 2004; Redwine Jr, 2007).

Two interesting questions must be considered in
relation to this topic: How can these properties be
satisfied collectively in one CBSD process and can the
current state of the CBSD approach collectively address
the requirements.

Tremendous research efforts have been exerted in
current literature, resulting in many studies on
integrating all six dependability attributes into the
CBSD process. Table 2 highlights the dependability
attributes integrated into the CBSD process addressed
in the current literature.

However, each study on verifying safety and
maintainability as well as on estimating reliability,
integrity, confidentiality and availability properties in
CBSD has progressed independently (Crnkovic and
Grunske, 2007). This condition can be attributed to
the following reasons: (1) the attributes of safety and
maintainability that address challenges must be
specified, composed and verified in the software
component; (2) the traditional ways to estimate
reliability and availability attributes in a system
architecture using stochastic methods are based on
uncertain and inaccurate parameters; and (3) studies
that analyze the vulnerabilities of confidentiality and
integrity attributes are inadequate. All of these
attributes must be embedded into the CBSD process to
develop dependable component-based software
systems. If the CBSD approach is enhanced in this
manner, specifying and verifying these same attributes
would be possible.

Hasan Kahtan et al. / Journal of Computer Science 10 (7): 1298-1306, 2014

1302 Science Publications

JCS

Table 1. Dependability attributes
Dependability attributes Description
Availability The software should be operational and ready to provide the correct service.
 It must be easily accessible to its intended and authorized users, referring to
 both humans and processes. The availability of a system is the probability that it is
 capable of delivering useful services at any time.
Reliability The continuity of correct service refers to the probability that the system can aptly
 the expected services to the user over a given period of time. It also refers to
 the probability of failure-free operation over a certain period of time for a
 specific purpose within a particular environment.
Integrity This attribute refers to the fact that the software must be protected
 from subversion; improper system alterations must be absent. Unauthorized
 modifications by unauthorized entities, such as corruption, overwriting,
 destruction, tampering and insertion of unintended (including malicious)
 logic or deletion, lead to subversions in the system. In such cases, integrity
 must be preserved during the development and implementation of the software.
Confidentiality This attribute refers to the absence of unauthorized disclosure of information as
 applied to the software rather than the data being handled. Moroever, its
 refers to the characteristics, existence and/or protected or hidden content of
 unauthorized entities. Confidentiality often prevents unauthorized entities from
 learning about the system through reverse engineering or by developing effective
 attacks against the system.
Safety This attribute refers to the absence of catastrophic effects on both the
 environment and the user. It can also refer to the possibility that the
 system can cause damage to the environment and people.
Maintainability This attribute refers to the ability to go through repairs and modifications.
 New requirements emerge as systems are used.Thus, the usefulness of a
 system must be maintained by modifying it to accommodate such
 requirements. Maintainable software is software that can be adapted
 economically to manage new requirements; in such instances,
 the modifications are unlikely to introduce new errors into the system.

Table 2. Dependability attributes in the CBSD proces
Dependability attributes
Publications Availability Reliability Integrity Confidentiality Safety Maintainability
Koziolek et al. (2013) √
Li et al. (2012) √
Machida et al. (2011) √
Reussner et al. (2003) √ √
Matevska and Hasselbring (2007) √
Grunske (2007) √ √ √
Lanoix et al. (2007) √ √ √ √
Jha et al. (2013) √ √ √
Mir and Quadri (2012) √ √ √
Nicolas et al. (2011) √ √
Conmy and Bate (2010) √
Vidushi and Baliyan (2011) √
Sharma et al. (2009) √
Agrawal (2012) √

6. CONCLUSION

A thorough analysis of existing research was
conducted in this study to investigate the related
software security attributes. Literature indicates that

several attributes are used interchangeably to describe
the properties of software security. Hence, the
dependability attributes utilized to solve the lack of
security in the CBSD process were proposed in this
study. Six dependability attributes were identified:

Hasan Kahtan et al. / Journal of Computer Science 10 (7): 1298-1306, 2014

1303 Science Publications

JCS

Availability, reliability, confidentiality, integrity,
safety and maintainability. By considering these
dependability attributes, the CBSD product will be
cured of security threats, abnormal behavior and
untrustworthy issues. Moreover, embedding
dependability attributes will help CBSD developers
relieve end users of the burden of security problems.

This study has contributed to highlight the
importance of embedding the CBSD process into the
dependability attributes, the analysis in this study serves
as a baseline reference for software development
companies in promoting the CBSD. The analysis is
beneficial for industries, such as software development
companies and can also be used for academic purposes
in order to fill the gap in existing CBSD models.

This study limited to address the importance of
embedding the CBSD process into the dependability
attributes. Discussion of embedding the CBSD phases
(i.e., requirement analysis, design, implementation
and testing) into dependability attributes is beyond the
scope of this paper.

Future studies could start by identifying the
vulnerabilities that affect the dependability attributes.
In addition, designing a model for developing a
dependable component-based software, which can
overcome the weaknesses of the existing models while
retaining their strengths.

7. ACKNOWLEDGEMENT

This research is funded by the Research Management
Institute, Universiti Teknologi MARA (UiTM).

8. REFERENCES

Agrawal, J.R.D.V.K., 2012. Study of perfective
maintainability for component-based software
systems using aspect-oriented-programming
techniques. Proceedings osf the International
Conference on Intelligent Computational Systems,
Jan. 7-8, Dubai, pp: 62-66.

Ahmed, B., A.H. Al-Talhi, M. Qureshi and A.I. Khan,
2012. Novel component-based development model
for SIP-based mobile application. King AbdulAziz
Univers.

Al-Azzani, S. and R. Bahsoon, 2010. Using implied
scenarios in security testing. Proceedings of the
ICSE Workshop on Software Engineering for
Secure Systems, May 01-08, ACM New York, NY,
USA., pp: 15-21. DOI: 10.1145/1809100.1809103

Alberts, C.J., J.H. Allen and R.W. Stoddard, 2012. Risk-
based measurement and analysis: Application to
software security. Software Engineering Institute,
Carnegie Mellon University.

Alhazbi, S. and A. Jantan, 2007. Dependencies
management in dynamically updateable component-
based systems. J. Comput. Sci., 3: 499-505 DOI :
10.3844/jcssp.2007.499.505.

Avizienis, A., J.C. Laprie, B. Randell and C. Landwehr,
2004. Basic concepts and taxonomy of dependable
and secure computing. IEEE Trans. Dependable
Secure Comput., 1: 11-33. DOI:
10.1109/TDSC.2004.2

Boampong, P.A. and L.A. Wahsheh, 2012. Different
facets of security in the cloud. Proceedings of the
15th Communications and Networking Simulation
Symposium, Mar. 26-29, Society for Computer
Simulation International San Diego, CA, USA.

Bygren, S., G. Carrier, T. Maher, P. Maurer and D.
Smiley et al., 2012. Applying the fundamentals of
quality to software acquisition. Proceedings of the
IEEE International, Systems Conference, Mar. 19-
22, IEEE Xplore Press, Vancouver, BC., pp: 1-6.
DOI: 10.1109/SysCon.2012.6189447

Carvalho, F., S.R.L. Meira, B. Freitas and J. Eulino,
2009. Embedded software component quality and
certification. Proceedings of the 35th Euromicro
Conference on Software Engineering and Advanced
Applications, Aug. 17-29, IEEE Xplore Press,
Patras, pp: 420-427. DOI: 10.1109/SEAA.2009.90

Cogo, V.V., 2013. Diversity in Automatic Cloud
Computing Resource Selection. 1st Edn., LAP
LAMBERT Academic Publishing, ISBN-10:
3659433594, pp: 68.

Colombo, R.T., M.S. Pessôa, A.C. Guerra and C.C.
Gomes, 2012. Prioritization of software security
intangible attributes. ACM SIGSOFT Soft. Eng.
Notes, 37: 1-7. DOI: 10.1145/2382756.2382781

Conmy, P. and I. Bate, 2010. Component-based safety
analysis of FPGAs. IEEE Trans. Indust. Inform., 6:
195-205. DOI: 10.1109/TII.2009.2039938

Crnkovic, I. and L. Grunske, 2007. Evaluating
dependability attributes of component-based
specifications. Proceedings of the 29th International
Conference on Software Engineering-Companion,
May 20-26, IEEE Xplore Press, Minneapolis, MN,
USA., pp: 157-158. DOI:
10.1109/ICSECOMPANION.2007.36

Hasan Kahtan et al. / Journal of Computer Science 10 (7): 1298-1306, 2014

1304 Science Publications

JCS

Dai, Y.S., T. Marshall and X. Guan, 2006. Autonomic
and dependable computing: Moving towards a
model-driven approach. J. Comput. Sci., 2: 496-504.
DOI: 10.3844/jcssp.2006.496.504

De Andrés, D., J.C. Ruiz and P. Gil, 2008. Designing
component-based vlsi systems: Core selection using
dependability, performance, area and power
consumption measures. Universidad Politécnica de
Valencia (UPV).

Dobariya, D. and J. Gajjar, 2012. Threats in SIP based
voip systems.

Gallina, B., M.A. Javed, F.U. Muram and S. Punnekkat,
2012. A model-driven dependability analysis
method for component-based architectures.
Proceedings of the 38th EUROMICRO Conference
on Software Engineering and Advanced
Applications, Sept. 5-8, IEEE Xplore Press, Cesme,
Izmir, pp: 233-240. DOI: 10.1109/SEAA.2012.35

Gama, K., W. Rudametkin and D. Donsez, 2012.
Resilience in dynamic component-based
applications. Proceedigs of the 26th Brazilian
Symposium on Software Engineering, Sept. 23-28,
IEEE Xplore Press, Natal, pp: 191-195. DOI:
10.1109/SBES.2012.32

Ghebremedhin, A.G., 2012. Combining static source
code analysis and threat assessment modeling for
testing open source software security.

Gibbs, S., 2013. Google Malaysia taken offline by
Pakistani hackers. The Guardian.

Gill, N.S. and P. Tomar, 2010. Modified development
process of component-based software engineering.
ACM SIGSOFT Soft. Eng. Notes, 35: 1-6. DOI:

10.1145/1734103.1734120
Grunske, L., 2007. Early quality prediction of

component-based systems-a generic framework. J.
Syst. Soft., 80: 678-686. DOI:

10.1016/j.jss.2006.08.014
Hadžiosmanović, D., L. Simionato, D. Bolzoni, E.

Zambon and S. Etalle, 2012. N-Gram against the
machine: On the feasibility of the n-gram network
analysis for binary protocols. Res. Attacks,
Intrusions Defenses, 354-373. DOI: 10.1007/978-3-
642-33338-5_18

Hutchinson, J., G. Kotonya, I. Sommerville and S. Hall,
2004. A service model for component-based
development. Proceedings of the 30th Euromicro
Conference, Aug. 31-Sept. 3, IEEE Xplore Press,
pp: 162-169. DOI: 10.1109/EURMIC.2004.1333368

Jha, P.C., V. Bali, S. Narula and M. Kalra, 2013.
Optimal component selection based on cohesion and
coupling for component based software system
under build-or-buy scheme. J. Comput. Sci. DOI:
10.1016/j.jocs.2013.07.003

Kahtan, H., N.A. Bakar and R. Nordin, 2012. Reviewing
the challenges of security features in component
based software development models. Proceedings of
the IEEE Symposium E-Learning, E-Management
and E-Services, Oct. 21-24, IEEE Xplore Press,

Kuala Lumpur, pp: 1-6. DOI:
10.1109/IS3e.2012.6414955

Karen, G., 2009. Introduction to software security.
Karen, G., T. Winograd and B.A. Hamilton, 2011. Safety

and security considerations for component based
engineering of software-intensive systems.

Karen, G., T. Winograd, H.L. McKinley, P. Holley and
B.A. Hamilton, 2006. Security in the software life
cycle: Making software development processes-and
the software produced by them-more secure.
Department of Homeland Security.

Khaled, K.M. and J. Han, 2006. Assessing security
properties of software components: A software
engineer’s perspective. Prcoeedings of theAustralian
Software Engineering Conference, Apr. 18-21, IEEE
Xplore Press, Sydney, NSW., pp: 10-10. DOI:
10.1109/ASWEC.2006.13

Kharchenko, V., V. Sklyar and A. Siora, 2009.
Dependability of safety-critical computer systems
through component-based evolution. Proceedigns of
the 4th International Conference on Dependability
of Computer Systems, Jun. 30-Jul. 2, IEEE Xplore
Press, Brunow, pp: 42-49. DOI: 10.1109/DepCoS-
RELCOMEX.2009.22

Kim, H., 2004. A framework for security assurance in
component based development. Comput. Sci.
Applic. DOI: 10.1007/978-3-540-24707-4_70

Kouroshfar, E, Y.H. Shahir and R. Ramsin, 2009.
Process patterns for component-based software
development. Component-Based Soft. Eng. DOI:

10.1007/978-3-642-02414-6_4
Koziolek, A., D. Ardagna and R. Mirandola, 2013. Hybrid

multi-attribute QoS optimization in component based
software systems. J. Syst. Software, 86: 2542-2558.
DOI: 10.1016/j.jss.2013.03.081

Lai, S.T., 2012. An analyzer-based security measurement
model for increasing software security. Int. J.
Comput. Sci., 4: 81-91.

Hasan Kahtan et al. / Journal of Computer Science 10 (7): 1298-1306, 2014

1305 Science Publications

JCS

Lanoix, A., H. Denis, M. Heisel and J. Souquieres, 2007.
Enhancing dependability of component-based
systems. Proceedings of the 12th Ada-Europe
International Conference on Reliable Software
Technologies, Jun. 25-29, Springer Berlin
Heidelberg, Geneva, Switzerland, pp: 41-54. DOI:
10.1007/978-3-540-73230-3_4

Laprie, J.C., 1992. Dependability: Basic concepts and
terminology of dependable computing and fault-
tolerant systems.

Lau, K.K., F.M. Taweel and C.M. Tran, 2011. The W
model for component-based software development.
Proceedings of the 37th EUROMICRO Conference
on Software Engineering and Advanced
Applications, Aug. 30-Sept. 2, IEEE Xplore Press,

Oulu, pp: 47-50. DOI: 10.1109/SEAA.2011.17
Li, Q., H. Yang and H. Wang, 2012. Component-based

software system reliability allocation and assessment
based on ANP and petri. Proceedings of the
International Conference on Reliability, Risk,
Maintenance and Safety Engineering, Jun. 15-18,
IEEE Xplore Press, Chengdu, pp: 227-231. DOI:
10.1109/ICQR2MSE.2012.6246225

Lin, J., 2007. Mapping uml component specifications to
JEE implementations. J. Comput. Sci., 3: 780-785.
DOI: 10.3844/jcssp.2007.780.785.

Machida, F., E. Andrade, D.S. Kim and K.S. Trivedi,
2011. Candy: Component-based availability
modeling framework for cloud service
management using sysml. Proceedings of the 30th
IEEE Symposium on Reliable Distributed
Systems, Oct. 4-7, IEEE Xplore Press, Madrid, pp:
209-218. DOI: 10.1109/SRDS.2011.33

Matevska, J. and W. Hasselbring, 2007. A scenario-based
approach to increasing service availability at runtime
reconfiguration of component-based systems.
Proceedings of the 33rd EUROMICRO Conference
on Software Engineering and Advanced Applications,
Aug. 28-31, IEEE Xplore Press, Lubeck, pp: 137-
148. DOI: 10.1109/EUROMICRO.2007.10

McGraw, G., 2004. Software security. Security Privacy,
IEEE, 2: 80-83. DOI: 10.1109/MSECP.2004.1281254

McGraw, G., 2011. Software security and the building
security in maturity model.

Mir, I.A. and S.M.K. Quadri, 2012. Analysis and
evaluating security of component-based software
development: A security metrics framework. Int. J.
Comput. Netw. Inform. Security, 4: 21-21. DOI:

10.5815/ijcnis.2012.11.03

Moradian, E. and A. Håkansson, 2010. Controlling
security of software development with multi-agent
system. Knowledge-Based Intell. Inform. Eng. Syst.,
DOI: 10.1007/978-3-642-15384-6_11

Muhammad, K. and M. Zulkernine, 2011. Building
components with embedded security monitors.
Proceedings of the Joint ACM SIGSOFT
Conference-QoSA and ACM SIGSOFT
Symposium-ISARCS on Quality of Software
Architectures-QoSA and Architecting Critical
Systems-ISARCS, Jun. 20-24, ACM New York,
NY, USA., pp: 133-142. DOI:
10.1145/2000259.2000282

Nicolas, N., K. Boudaoud, C. Delettre and M. Riveill,
2011. A component-based approach to security
protocol design. Proceedigns of the IEEE
Workshops of International Conference on
Advanced Information Networking and
Applications, Mar. 22-25, IEEE Xplore Press,

Biopolis, pp: 279-284. DOI:
10.1109/WAINA.2011.34

Redwine Jr, S.T., 2007. Software assurance: A
curriculum guide to the common body of knowledge
to produce. Acquire and Sustain Secure Software. H.
Security.

Reussner, R.H., H.W. Schmidt and I.H. Poernomo, 2003.
Reliability prediction for component-based software
architectures. J. Syst. Softw., 66: 241-252. DOI:

10.1016/S0164-1212(02)00080-8
Secunia, 2011. Secunia yearly report.
Security, S.E., 2012. Symantec internet security threat

report-2011 Trends.
Sharma, A., P.S. Grover and R. Kumar, 2009. Predicting

maintainability of component-based systems by
using fuzzy logic. Contemporary Comput., 40: 581-
591. DOI: 10.1007/978-3-642-03547-0_55

Simpson, S., 2012. Sharing lessons learned: “Practiced”
practices for software security. Datenschutz und
Datensicherheit-DuD, 36: 641-644. DOI:

10.1007/s11623-012-0218-z
Sommerville, I., 2011. Software Engineering and

Pearson.
Sophos, 2012. Security threat report.
Steward, C., L.A. Wahsheh, A. Ahmad, J.M. Graham

and C.V. Hinds et al., 2012. Software security: The
dangerous afterthought. Proceedings of the 9th
International Conference on Information
Technology: New Generations, Apr. 16-18, IEEE
Xplore Press, Las Vegas, NV., pp: 815-818. DOI:
10.1109/ITNG.2012.60

Hasan Kahtan et al. / Journal of Computer Science 10 (7): 1298-1306, 2014

1306 Science Publications

JCS

Sudhakar, A. and U.D. Dava, 2012. An approach to
detect and prevent denial of service attacks and
worms using distributed denial-of-service detection
mechanism. Int. J. Eng.,

Talib, M.A., A. Khelifi and L. Jololian, 2010. Secure
software engineering: A new teaching perspective
based on the SWEBOK. Interdisciplinary J. Inform.
Knowl. Manag., 5: 83-99.

Tambe, S., A. Dabholkar, J. Balasubramanian, A.
Gokhale and D.C. Schmidt, 2010. Model-driven
tools for dependability management in component-
based distributed systems. Vanderbilt University.

Technologies, C.A., 2011. Research report: The
avoidable cost of downtime.

Thomas, M., 2012. Accidental systems, hidden
assumptions and safety assurance. Achieving Syst.
Safety. DOI: 10.1007/978-1-4471-2494-8_1

Verizon, 2012. Data breach investigations report.
Vidushi, S. and P. Baliyan, 2011. Maintainability

analysis of component based systems. Int. J. Softw.
Eng. Applic., 5: 107-118.

Xu, L., H. Ziv, T.A. Alspaugh and D.J. Richardson,
2006. An architectural pattern for non-functional
dependability requirements. J. Syst. Softw., 79:
1370-1378. DOI: 10.1016/j.jss.2006.02.061

Yan, Z. and C. Prehofer, 2011. Autonomic trust
management for a component-based software
system. IEEE Trans. Dependable Secure Comput.,
8: 810-823. DOI: 10.1109/TDSC.2010.47

Yi, S. and D. Li, 2011. The research of component-
based dependable encapsulation. Proceedings of
the 13th IASME/WSEAS International
Conference on Mathematical Methods and
Computational Techniques in Electrical
Engineering Conference on Applied Computing,
(CAC’ 11), World Scientific and Engineering
Academy and Society (WSEAS) Stevens Point,
Wisconsin, USA., pp: 27-30.

Zhiwen, W., L. Ke, Z. Huafeng and X. Qin, 2010.
Component availability based survivability recovery
in information system. Proceedings of the 5th
International Conference on Frontier of Computer
Science and Technology (CST’ 10).

Zhou, Y., 2010. A visual modeling tool for the
development of trustworthy component-based
systems. Concordia University.

