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ABSTRACT

Two new theoretical approaches for the hardwarizeat@n of high speed elliptic curve point muligation

over a prime field (GF(p)) are presented. Thesdvinare implementations use multiple units of ekipturve

point doublers, point adders and multiplexers. feglular hardware approach used here provides piggds
and scalability.
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1. INTRODUCTION k=[ k1Ko Kok, K] (1)

In Diffi-Hellman type key agreement (Idrisst al., ) _ ) )
2012), Elliptic Curve Digital Signature Algorithm Here, t is the number of bits of k. That is theesiz
(Shivkumar and Umamaheswari, 2014) and Elgamalof k when stored in binary is t bits. In terms bEse
crypto systems (Jie and Kamarulhaili, 201dmail and bits k is given by:

Hijazi, 2012), we use elliptic curve Point Multigdition
(PM) (Hankersonet al., 2004). Several hardware
solutions are already available for elliptic curiPeint
Multiplication, (Ghoshet al., 2007; Orlando and Paar,
2001; De Dormole and Quisquater, 2007). In the light of Equation (2), the product kP can be

Our objective is to generate the scalar product kPexpressed as Equation (3):
where P is a point on an elliptic curve over a rifield
Fp and k is an integer that belongs to Zp. We psep® _ ) L
fast hardware solution fo PM which makes use of kP = ( 27Ku* 27k ..+ Zk+ 2+ k) 1
hardware Point Doubler (PD) and Point Adder (PA) =2"'pk_ + 22Pk ,+..+ 2 Pk+ 2Pkt kP
modules. We describe two different schemes for fast
multiplication. In the first method we relize thesign
for a ‘t" bit k. Then we extend the design for hipa
multiples of ‘t". In the second method multi scalar . .
multiplication is used and the desired result iected R <
using appropriate multiplexers. "p-Zz Pk=> Bk )

2. BASIC SYMBOLS AND NOTATIONS

k= 27, + 2%k ,+...+ Zk+ 2k+ k (2)

®3)

That is Equation (4 and 5):

Where:

Let the given scalar multiplier k be represented in A
binary as Equation (1): Bi=2Pfori=0,1,2...t1 (5)
Corresponding Author: N. Shylashree, Department of Electronics and Conication Engg, PESCE, Mandya, India

////A Science Publications 1094 JCS



N. Shylashree and V. Sridhar / Journal of Comp8teence 10 (7): 1094-1106, 2014

2.1. Realization of Bk; (First Method)

Consider the term |B;. The bit k can be either zero

or 1. Therefore, multiplication by jkcan be
represented as Equation (6):

(6)

Bk, =0 when k=10
Bk, =B, when k =

From Equation (5) B; is equivalent to the logical
AND operation as Equation (7):

Bi ki :Bi AND ki (7)

The elliptic curve point Bbelonging to the prime
field F, has two components as:

Bi = (x, yi)

where the size of each is m bits. m is given by dfigun

(8):
m=[|og2 p} (8)

Thus the size of Bs 2m.
In the hardware realization, (BAND k;) can be

realized using an array of 2m AND-gates. We cao als |p - Q,+ 2%+ Pk
- 1

make use of a 2m input Controlled Buffer (CB) wath
enable control input EB as shownRig. 1. When EB =
0, the output is zero (2m bits) and when EB = Ipou=

B; = 2P. Therefore, the Controlled Buffer (CB) realizes

Equation (6) are shown Fig. 1.
2.2. Realization of kP

From Equation (3) for kP, we can see that kP is

obtained as a series of Point Additions. Our aito iget
kP using several 2 input Point Adders. To realizis, t
Equation (3) for kP is written as:

kP = Pk + 2Pk+ 4Pk+...+ 2 Pk

The RHS of this Equation (9) is grouped as follows:

kP=(((Pk + 2PK)+ 4PK+ )+ 2 Pk, )

Q,= Q,+ 8Pk (12)

Q.= Q_,+ 2Pk, (13)
That is Equation (14):

Q.. = Q+2"Pk (14)

fori=1,2,..., t-1.
From Equation (10, 11) substituting fog:Q

Q, = Pk, + 2Pk + 4Pk (15)
Similarly, from Equation (12) and(15):

Q,= Pk, + 2Pk+ 4Pk+ 8Pk (16)
In this way, we can see that:

Q.. = Pk + 2Pk+ 4Pk+...+ 2' Pk, (17)

The RHS of Equation (17) is same as kP as given
by Equation (3) Thus kP is realized as the PoinhSu
of Q.» and 2'Pk.,. That is Equation (18):

(18)

3. HARDWARE REALIZATION FOR AN
‘t-BIT 'k’

The elliptical curve Point Multiplier is realizeds a
shown inFig. 2. Output kP is obtained as the Point Sum
of the last Point Adder in a chain of (t-1) Poirdd®rs.

In Fig. 2, t cascaded Point Doublers (PD’s) are used to
generate 2P, 4P,,.2"'P, 2P. The Controlled Buffers are
denoted by CB itrig. 2. They generate'Rk for i = 0 to
(t-1). The bit k of K and 2P are the inputs to the
corresponding CB. The output of each CB is onehef t
inputs to the corresponding Point Adder (PA). Etumat
(10) is realized by Point Adder RASimilarly PA
realizes @ as in Equation (11). The last Point Adder
PA._; realizes Equation (13) to give outQvhich is the
desired output kP itself. The Point Multiplicatidodule

Then, kP can be obtained as the cumulative sum of 2(ppMM) provides an additional outputP2from the last

input Point Adders. To get that, let us introdute t
symbols @, Q,,...Q.; as follows Equation (10-13):

Q.= (Pk;+ 2Pk) (10)
Q,= Q+ 4Pk (11)
////4 Science Publications
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PD block. This output'P is used for cascading purpose
which will be described later.

The Point Doubling and Addition can be
accomplished internally in either affine or projeet
co-ordinates. In the PMM describedHig. 2, if say bit
ki = 0, we cannot avoid Point Adder P#ecause, next
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time, k may not be zero. The number of Point Adders Therefore, the use of Non Adjacent Form (NAF)

is fixed at (t-1) to take care of all possible \alof k. representation of k has no benefit in this scheme.
[ » » ] Output
— —
]
Bi : I
[} L}
] ] Biki or 2t Pkl
; CB ;
I |
] I
o —
k ——— EB

Fig. 1. Controlled buffer block

A
y

=) kz kl ko
L |
P | k0
CB
> ' Pk
Ll
Bg
v
PD,
1(1 . Q]
Ll
2p CB, ol PA
> 2Pk,
) 4 B
PD, | ; Q,
Kk 2
2o | PA, -
4P 1 CB,| 4Pk, -
B, T
‘ 2
l' I l
. 1 l I
1
L 4 L - L_ .
1 i
PD ! |
! k 1 Qe Output
-1 o kP
2t1p Ll CB‘ . PAH _bQ
T 21pk, ! -
A 4 Bt
PD,

Z'Pl Output

Fig. 2. Multiple PD-PA Point Multiplication Module (PMM
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3.1. Timing Analysis of the Proposed PMM practically difficult and can be cumbersome. Therefore,
) ] ) ) when ‘t’ is large, several smaller sized Point Multiplier
The running time of the PMM shown ifig. 2is  podules arecascaded to realize kP as follows.
determined in terms of the running times of Point [ et the smaller size chosen be w bits. The binary
doublers and Point Adders. All PD’s are similar in representation of ‘K’ is partitioned into ‘d’ wordd size
structure and working and so also all PA’s are lsimi  ‘w’ bits each. The value of ‘d’ is given by Equati(20):
Let D be the time (in an appropriate unit) requibsda

PD to complete the doubling action and let A be the d {t}

time required by a PA for Addition. D and A depe (20)

the internal design of the PD’s and PA’s respetyive
(Hankersoret al., 2004; Dinget al., 2013). If ‘" is not perfectly divisible by ‘w’, binary

3.1.1. Precomputation representation of 'k’ is padded with d*w-t zeros e
5 . left hand side (De Dormole and Quisquater, 200%e T
Here, P, 2P,..P are precomputed and readily parition of k into ‘d’ words is shown ifFig. 4. LetKo,

available at theorresponding locations. Now, we need Ky,..., Ky1 be the decomposed binary words of ‘k’. Now
not consider the timéaken by PD’s. Consider the time 4 can pe expressed in terms ofK..., Ky, Ko in base2”

required to get the output,@om PA, after applying the 45 Equation (21) (Shivkumar and Umamaheswari, 2014)
input k. Here, inputs k ki, ki....,k, are applied
simultaneously from a single registeolding k. Time
taken for signals to pass through CB’s aeglected
compared to the time needed at PA's. Initially2P, k ) _
and k are available at say,TNeglecting the time taken The numerical value of 'k’ in terms ofd, ..., Ky, Ko
by CB’s, Pk and 2Pk are available at the input of PAt ~ Ca@n be expressed as:

Toitself. Therefore, the output,Qvill be ready at §+A

w

k= [Kyp KKK ], (21)

where A is the time required to generate the output K = 2" 7K i+, .. +2%K, + 2"K,+ K, (22)
PA;. Thus the transition delay at P& A units of time.
After Q, is ready, time required by BAo process @ Now, in the light of Equation (22), the product &&h

and 4Pk to get Q would be again A. Therefore the total be written as Equation (23):

time from T, up to the time of getting Quould be A+A

= 2A. Thus each PA along the chain adds a dela& of | p - FPK 4, ...+ 2 PK+ 2 PK+ PK (23)
and the total delay would be (t-1) A to get kP. €@s that
there are (t-1) Point Adders in the additive ch@imerefore

the total running time {Tis given by Equation (19): Thatis Equation (24 and 25):

T= (t-1) A (19) kP=Y"""R K (24)
3.2. Point Multiplication Module Where:
The Point Multiplication hardware using multiple
PD’s and PA’s can be represented by a modular blockR = 2" P for G k( d-} (25)
as shown inFig. 3. The module is called as PMM
which stands for Point Multiplier Module that givkR Ko, Ky, ..., Koy are of size w bits each and the RHS

where 't is t‘h,e_size of 'k’ in bits. Thus PMMmeans,  of Equation (23) has d terms. Therefore, d number o
the size of 'k’ is 8 bits. P is the given elliptarve  ca5caded PMis can realize Equation (23) to get kP as
point of total size 2m. shown inFig. 5. Equation (23) can be expressed in terms
of partial sums , ...,311as follows Equation (26-28):
4. POINT MULTIPLIER MODULES IN P B S quation (26-28)
CASCADE let S= 2 PK+ PK= PK+ PK (26)
When ‘t' is large, the number of PD’s and PA’s in

PMM; would also be large. The design and construction The;’ §= 2 Pk+ 5= P (27)
of such alarge sized Point Multiplier Module becomes = 2"PK,+2'PK + PK,
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Fig. 3. Point Multiplier Module for a ‘t’ bit 'k’
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Fig. 5. Cascaded PMM's for large K
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Now, consider the inputs to RAvhich are $ and

Sp.= 2VPK, .+ S .= BLK # S, 28 K,P,. Delay of P, due to PMMy (2) is Equation (33):
= 2IPK i+, 2V PR+ 2 PR PK, delay( K,B)=( w- 3 A (33)
From Equation (28, 23) we see that Equation (29): From Equation (32 and 33), both &nd KP, are
_ available at the input of PAafter a delay of wA. To

kP = S, (29) this, adding the delay in BAwe get Equation (34):
Realization of these partial sums is showrFig. 5. delay(S) = wA+ A= (w+ } A (34)

Pi's are realized as; B 2"P_; for 0< i < (d-1) with R =
P. The output of Point Adder RAs S. The inputs to get
S; are RK; and BK,. The inputs to get Sare BK, and
S, and so on. The output of the last Point Adder gjive
Si-1 Which is same as kP. Additional outpﬂfvlz can be
used for further cascading.

4.1.Total Number of PD's and PA’s in
Cascaded PMM Therefore the total delay of signal kP is Equaf®B):

In this way, each PA in the adder chain adds aydsla
A. Thus (d-1) PA’s add a delay of (d-1) A. Init@élay at
the input of PAis (w-1) A. Hence the total delay of Ss:

delay(S.,) = (w )} A+(d-LL 2

Each PMMW uses (w-1) number of PA's and ‘W' oV kP = d—% ¢ 35
number of PD’s. There are ‘d’ number of PMM and elay( kF) = (w 7 (35)
(d-1) number of PA's inFig. 5 Therefore the total

number of PD’s is dw which is equal to ‘t’. The nipen 4.3. Register Size Requirement for PMM

of PA's is d (w-1) + (d-1) = dw-1 = t-1. Since the size In PMMy, let the size of P be N-bits Equation (36-38):
of ‘k’ can go up to m (size of p), the number of P

m and the number of PA’s is (m-1). Then the size of 2 * Pwillbe N\ (36)
4.2. Timing Analysis of the Cascaded PMM the size of  * Pwillbe N 2*W (37)

The timing analysis of the cascaded PMM'’s is
determined with precomputation of R for w=1,2,...etc.

4.2.1. Precomputation the size of &' * P will be N d*W (38)

Al “inputs Ko, Ky,..., Ky are —applied Here N is the NIST standard Value for ECC. Thus,
simultaneously. Consider the inputsf§ and KP; 0 o gizes will be increasing progressively for each

PA, in Fig. 5 The delay due to PMM1), the PMM, g cceeding stage and this should be taken care off

id_entifit?d by 1 inFig. 5, for signal KPo is (W-1)A @S qyring the realization of the modules. However,eptc
given by Equation (19). for the register sizes the modules are similar.

Thus equation (30) and (31) becomes: 5. BASIC PRINCIPLE FOR AN 8-BIT ‘K’
delay( K,R) =( v} A (30) WITHOUT CB (SECOND METHOD)

Let P be a given point on the elliptic curve E)(F
Let 'k’ be an 8 bit integer belonging to,ZThe
objective is to generate kP as fast as possible.

Similarly:

delay( KR)=(w-3 A (31)
5.1. Precomputation
Therefore, both of them are available after a delay
of (w-1) A at the input of PA Therefore the delay of
S, is, delay (9 = of Equation (32):

Assuming that P is known in advance, we precompute
2P, 4P,...,128P using the Point Doublers. We also
precompute the following additive terms using Point
(W-1)A + A = wA (32) Adders as shown iRig. 6. 3 P using P + 2P, 12P using 4P
+ 8P, 48P using 16P + 32P and 192P using 64P +128P

////4 Science Publications 1099 JCS
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P L. » P
v
PD PA~+ |——» 3P
2P r’ » 0P
v
PD
4P » 4P
v L
PD PA~ f—— 12P
SP ’_' » SP
Y
PD
16P PDL » 16P
h
PD PA+ | 48P
P » 32P
32P
PD
» 54P
64P L
A 4
PD I_’ PA+ b—— 192P
128P » ]28P
Y
PD
256D

Fig. 6. Multiple PD-PA Fast Point Multiplication (FPM) make

In Fig. 6, PD is a Point Doubler and PA is a Point 2-2. Expression for kP
Adder. The hardware precomputation module uses 8 The 8 bit integer k is written in binary as Equat{89):

PD’s and 4 PA’s. These precomputed values are useq( _

later in the realization of the fast multiplier. &kast PD

in Fig. 6 generates 256P. This value is needed for

further concatenation which will be described later

,////4 Science Publications
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Equation (40):

1100

(39)

The decimal value of k in terms of its binary digi$
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(40)

k =128k, + 64k + 32k + 16k+ 8k+ 4k+ 2+ k

Therefore kP is:

kP = 128Pk+ 64Pk+ 32Rk 16P
+8Pk, + 4Pk + 2P k+ Pk

The RHS of the above equation is formatted into 4
sub groups as:

kP = (128Pk+ 64PK + ( 32Rk 16BPk

+(8Pk, + 4Pk) + ( 2Pk+ PK (1)

The sub groups are represented by@® Q, and Q as:

Q, = (128Pk + 64PK) (42)
Q, = (32Pk + 16Pk) (43)
Q, = (8Pk+ 4Pk) (44)
Q= (2Pk + PK) (45)

Then in the light of Equation (42-45), Equation Y41
becomes Equation (46):

kP=Q+ Q+ Q+ Q (46)
This can be rewritten as Equation (47):
HJ:(Q+ Q)+(Q+ Q) 47

Now let us consider gas given by Equation (45):

Whenk = Oandk= 0,Q= O

Whenk = landk= 0, P (48)
Whenk = Oandk= 1, ¢= 2P

Whenk = landk= 1, Q= 2P P I

This can be written in a tabular form as shown in
Table 1

From Equation (48) andlable 1, we see that Qcan
be realized as the output of a4 multiplexer with
inputs 0, P, 2P and 3P as showrFig. 7. Here, k and

ko are binary inputs. 2P and 3P are the precomputed

values of P as shown Kig. 6.
Similar to as inFig. 6, three more multiplexers are
used to generate;QQ,and @ as shown irFig. 8.

////4 Science Publications

Table 1.Q, in terms of kand k

ky ko Q
0 0 0
0 1 P
1 0 2P
1 1 3P

1101

6. HARDWARE REALIZATION FOR AN
8-BIT ‘K’

The Fast Point Multiplication (FPM) hardware
realization is shown irFig. 8. Here, Multiplexer MX
realizes Q as given by Equation (45). MXealizes Q
as given by Equation (44), MX2 realizes §s given by
Equation (43) and MxXrealizes Q as given by Equation
(42). Point Adder PAgives (Q+Q,) while PA gives
(Q2+Qs). Finally, PA gives (Q+Qy) + (Q+Qs) which is
the output kP as given by Equation (47). Thus the
hardware presented ifig. 8. realizes kP using the
precomputed products of P andldnultiplexers.

6.1. Timing Analysis of the FPM

In the FPM circuit ofFig. 8, all the 8 bits of the
multiplier k are applied simultaneously to the
multiplexers at say ¢7= 0. It is presumed that all the
input signals to the multiplexers are readily esafalié
before . Hence we have to calculate the time delay due
to multiplexers and Point Adders. Compared to the
running time of a Point Adder, the time delay in a
multiplexer, which is a combinational circuit, is
negligibly small. Therefore we neglect the delay in
multiplexers and we assume that the outputs of the
multiplexers @, Q;, Q, and Q are available to the
input of adders at = 0.

Let the input output transition time delay in theiri®
Adder PA be A in appropriate time units. The Point
Adders are similar in design and construction, and
therefore time delays are also same. That is tphetin
output transition time delay of each Point Addetale as
A. For PA, the output (@-Q,) would be available after a
delay of A. This can be expressed as Equation (49):

T(Q+ Q) = A (49)

Similarly Equation (50):
T(Q,+ Q) = A (50)
Jcs
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Inputs Output

ki ko

Select control

Fig. 7. Qg as the output of a 4x1 Multiplexer
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Fig. 8. Fast Point Multiplication (FPM) module using mulégers
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Therefore the inputs (@ Q) and (Q+ Q) to PAyare realization shown irFig. 10, the size of 'k’ is 32 bits
simultaneously available with a delay of A. To thi® add  which is expressed in base 256 format as Equa&8it (
the delay in PAto get the final delay as Equation (51):

T((Q+Q)+(Q+Q) = Tk = & A= 22 (51) K7 [KoKKK ol (53)
Thus, for an 8 bit FPM unit, the delay is 2A. Here, K, K,, K; and K are 8 bit each. Kis the LSB
and K; is the MSB. The value of k is given by Equation

6.2. Comparison with a Conventional Multiplier (54):

Consider the Right-to-left binary method of Point
Multiplication (De Dormole and Quisquater, 2007) = 256K + 256 K,+ 256K+ K (54)
With precomputation, the doubling time is elimirchte
and the running time is nA where n is the hamming

weight of k, that is the number of 1's in k. wheret Therefore kP is given by Equation (55):
size of k is 8 bits, the maximum value of n is 8.
Therefore the worst case delay in the conventional kP = 256 PK+ 256 PK+ 256PK+ P} (55)

method is 8A and the average case is 4A. In our

method, the running time is 2A. Thus the speedwf o In our scheme, 256P, 258 258P and 258 are
method is twice that of the conventional method. pre-computed and readily available as showRig 10
6.3. Hardware/Complexity Let us designate these values by the symbglP P,
) ) o and R as Equation (56-59):
The inputs to each multiplexer are 4 elliptic curve

points. Each point has two co-ordinates (x, y). The P-p (56)
maximum size of each component is given by m, where °

Equation (52):

P = 256F (57)
m:[log2 P] (52)
Here p is the prime number of the prime field F P, = 256 F (58)
Therefore the size of each point is 2m. Hence ¢l t
number of signals at the input of each multiplexékbe P = 256 P (59)
3

4x (2m) = 8m. The 0 input to the multiplexiig. 7 can

be eliminated because it is a constant and zeracéje

externally 3 inputs of size 2m each have to be  Substituting these symbols in Equation (17) we get:
considered. Then the overall number of input signal

would be ¥(2m) = 6m. For a 160 bit p, the size of inputs kP = R K,+ B K,+ PK+ RK (60)
to a multiplexer would be>d60 = 960 and the size of
the output would bex160 = 320. Equation (60) is rewritten as:

6.4. Fast Point Multiplication Module

The Fast Point Multiplication shown frig. 8 along
with the precomputation hardware can be represdnted
a modular block as shown kig. 9. The module is called
as FPM which stands for Fast Point Multiplier Module _
for 8 bit sized ‘k’ that gives output kP with ingutP’ 8= (RK+ RK) (62)
and ‘k’. The module is shown iRig. 9. The additional
output 2P is for concatenation. and:

7. CONCATENATION OF FAST POINT S = (RK+ RK) (63)

MULTIPLIER MODULES _ _ _ _
Equation (61-63) are realized using three point

When the size of k' is large, the 8-bit FPM8'’s dam adders as shown iRig. 10. In the circuit ofFig. 10,
concatenated to realize kP for large sized k. la th signals k, K;, K; and K are applied simultaneously.

kP = (BK+ RK)+(RK+ RK) = S+ ¢ (61)

Thus, kP is realized as the sum @8d $ where:

////4 Science Publications 1103 JCS
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P

k (size 8 bits)

FPM;

Fig. 9. Fast Point Multiplier (FPM) Module

Po =P KG
FPMs(1) | K,P= K,P,
P= K, PA-1 g
256P l + S
FPM;(2) I
Py - Qutput
Po K, PA-3 P
256°P JV . —
FPM;s(3) | k.p.
Pi= K3 PA-2
256°P l
+ S,

K;P;

P=
256°P

!

Fig. 10.Concatenation of FPM8's for a 32 bit k
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7.1. Latency of Signal kP for FPMand FPMs,

From Equation (51), we know that the latency of
each FPM is 2A. Therefore the latencies ofk3 and
PoK, are Equation (64):

L(PK,) =L(PK,)

= 2A (64)

To this, the latency of PA-1 is added to get Equrati
(65):

L(S)) = 2A+A =3A (65)
Similarly, the latency of Sis Equation (66):
L(S,) = 3A (66)

Therefore the latency of kP =SS, is Equation
(67):
L(kP) = 3A+A = 4A (67)

Thus, for a 32 bit Fast Point Multiplier (FRM the
overall latency is 4A.

7.2. Extension of FPM’s to 128 Bits and 256 Bits

The hardware presented kig. 10 realizes kP for a
32 bit k. This circuit can be called FRMSimilar to the
circuit of Fig. 10, four FPMy,'s can be concatenated to
realize FPM,gm which realizes kP with the size of ‘k’
equals 128 bits. The latency of this would be 42A+=
6A. Similarly, four such FPM 128’s can be concateda
to get FPM;, which can give out kP with a 512 bit k.
Here, the latency would be 6A+2A = 8A.

7.3.Register Size Requirement for FPM and
FPM3,

In FPM, let the size of P be N-bits Equation (68-71):

Then the size of 256P will be N (68)
the size of 256 P willbe M 1 (69)
the size of 256 P willbe M 2 (70)
the size of 256 P willbe M & (71)

case of FPM, the register sizes are calculated
similarly and implemented.

8. COMPARISON WITH OTHER
METHODS

In our proposed hardware realization, a large numbe
of PD’s and PA’s are used. Since the PD moduled ase
identical in design and characteristics, it is edsy
replicate and integrate them. Similarly, PA modutas
be replicated and integrated. This makes the Field
Programmable Gate Array (FPGA) implementation of
Elliptic curve point multiplication easy and efécit. This
type of modular approach has not been attemptdigrear
Same holds good for Controlled Buffers. In our rodth
the number of PD’'s and PA’'s used are m and (m-1)
respectively which are relatively large. For exaengie
NIST standard for m specifies one of the valuemftbe
set {192, 224, 256, 384 and 521}. In our method =
bits of k are applied simultaneously. Thereby &ngft
of the bits of k one at a time is avoided (KumaiQ®;
Schinianakist al., 2009; Portilleet al., 2010; Jacokt al.,
2013). This saves ‘t' clock cycles of time wherei&
the size of 'k’ in bits.

9. CONCLUSION

Two new theoretical hardware modules for Elliptic
Curve Point Multiplication are described. PN/
and FPM's provide fast multiplication and they can
be easily cascaded to realize point multiplicatfon
larger values of k.

PMMy, (w = 8) and FPM use available Point
Addition and Point Doubling sub modules, Therefore
our proposed methods are faster compared to the
conventional methods. Compared to the first method
PMM;, the second method FRMis faster, even
though it requires more register space. From these
modules we can create a macro model for realization
of elliptic curve point multipliers for very large The
techniques described can be modified for Point
Multiplication over binary field.

These methods require large register spaces for
storing the precomputed products of P as discussed
section 4.3 and 7.3. But the modules are similat an
can be easily replicated.

Our proposed scalar multiplication modules are

Here N is the NIST standard Value for ECC. Here easily scalable and can be used independently or as

also, the sizes will be increasing progressivefytHe
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