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ABSTRACT 

Two new theoretical approaches for the hardware realization of high speed elliptic curve point multiplication 
over a prime field (GF(p)) are presented. These hardware implementations use multiple units of elliptic curve 
point doublers, point adders and multiplexers. The modular hardware approach used here provides high speed 
and scalability. 
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1. INTRODUCTION 

In Diffi-Hellman type key agreement (Idrissi et al., 
2012), Elliptic Curve Digital Signature Algorithm 
(Shivkumar and Umamaheswari, 2014) and Elgamal 
crypto systems (Jie and Kamarulhaili, 2011; Ismail and 
Hijazi, 2012), we use elliptic curve Point Multiplication 
(PM) (Hankerson et al., 2004). Several hardware 
solutions are already available for elliptic curve Point 
Multiplication, (Ghosh et al., 2007; Orlando and Paar, 
2001; De Dormole and Quisquater, 2007).  

Our objective is to generate the scalar product kP 
where P is a point on an elliptic curve over a prime field 
Fp and k is an integer that belongs to Zp. We propose a 
fast hardware solution to PM which makes use of 
hardware Point Doubler (PD) and Point Adder (PA) 
modules. We describe two different schemes for fast 
multiplication. In the first method we relize the design 
for a ‘t’ bit k. Then we extend the design for binary 
multiples of ‘t’. In the second method multi scalar 
multiplication is used and the desired result is selected 
using appropriate multiplexers. 

2. BASIC SYMBOLS AND NOTATIONS 

Let the given scalar multiplier k be represented in 
binary as Equation (1): 

 t 1 t 2 2 1 0k k k k k k− − =  …  (1) 

 
Here, t is the number of bits of k. That is the size 

of k when stored in binary is t bits. In terms of these 
bits k is given by: 
 
 t 1 t 2 2

t 1 t 2 2 1 0k  2 k  2 k 2 k  2k  k  − −
− −= + +…+ + +   (2) 

 
In the light of Equation (2), the product kP can be 

expressed as Equation (3): 
 

( )t 1 t 2 2
t 1 t 2 2 1 0

t 1 t 2 2
t 1 t 2 2 1 0

kP   2 k  2 k 2 k  2k  k P

2 Pk  2 Pk 2 Pk  2Pk  k P

− −
− −

− −
− −

= + + …+ + +

= + + …+ + +
    (3) 

 
That is Equation (4 and 5): 

 
t 1 t 1

i
i i i

i 0 i 0

kp 2 Pk B k
− −

= =

= =∑ ∑    (4) 

 
Where: 
   
Bi = 2iP for i = 0, 1, 2…,t–1 (5) 
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2.1. Realization of Bik i (First Method) 

Consider the term Biki. The bit ki can be either zero 
or 1. Therefore, multiplication by ki can be 
represented as Equation (6): 
 

i i i

i i i i

B k 0 when k 0

B k B when k 1

= = 


= = 
 (6) 

 
From Equation (5) Biki is equivalent to the logical 

AND operation as Equation (7): 
  
Bi ki =Bi AND ki (7) 
 

The elliptic curve point Bi belonging to the prime 
field Fp has two components as: 
 
Bi = (xi, yi) 
 
where the size of each is m bits. m is given by Equation 
(8): 
 

2m log p =    (8) 
 

Thus the size of Bi is 2m. 
In the hardware realization, (Bi AND ki) can be 

realized using an array of 2m AND-gates. We can also 
make use of a 2m input Controlled Buffer (CB) with an 
enable control input EB as shown in Fig. 1. When EB = 
0, the output is zero (2m bits) and when EB = 1, output = 
Bi = 2iP. Therefore, the Controlled Buffer (CB) realizes 
Equation (6) are shown in Fig. 1. 

2.2. Realization of kP 

From Equation (3) for kP, we can see that kP is 
obtained as a series of Point Additions. Our aim is to get 
kP using several 2 input Point Adders. To realize this, 
Equation (3) for kP is written as: 
 

t 1
0 1 2 t 1kP  Pk 2Pk  4Pk 2 Pk−

−= + + +…+  

 

The RHS of this Equation (9) is grouped as follows: 
 

( )( )( ) t 1
0 1 2 t 1 kP Pk 2Pk  4Pk ,  2 Pk−

−= + + + … +    (9) 
 

Then, kP can be obtained as the cumulative sum of 2-
input Point Adders. To get that, let us introduce the 
symbols Q1, Q2,…Qt-1 as follows Equation (10-13): 
 

( )1 0 1Q  Pk 2Pk= +    (10) 
 

2 1 2Q  Q 4Pk= +    (11) 

3 2 2Q  Q 8Pk= +    (12) 
 

t 1
t 1 t 2 t 1Q  Q 2 Pk−
− − −= +   (13) 

 
That is Equation (14): 

 
i 1

i 1 i iQ  Q 2 Pk+
+ = +  (14) 

 
for i = 1,2,…, t–1. 
 

From Equation (10, 11) substituting for Q1: 
 

2 0 1 2Q  Pk 2Pk 4Pk= + +  (15) 
 

Similarly, from Equation (12) and(15): 
 

3 0 1 2 2Q  Pk 2Pk 4Pk 8Pk= + + +  (16) 
 

In this way, we can see that: 
 

t 1
t 1 0 1 2 t 1Q  Pk 2Pk 4Pk  2 Pk−
− −= + + + …+  (17) 

 
The RHS of Equation (17) is same as kP as given 

by Equation (3) Thus kP is realized as the Point Sum 
of Qt-2 and 2t-1Pkt-1. That is Equation (18): 
 

t 1
t 2 t 1kP  Q 2  Pk−
− −= + +  (18) 

3. HARDWARE REALIZATION FOR AN 
‘t’ -BIT ‘k’  

The elliptical curve Point Multiplier is realized as 
shown in Fig. 2. Output kP is obtained as the Point Sum 
of the last Point Adder in a chain of (t-1) Point Adders. 
In Fig. 2, t cascaded Point Doublers (PD’s) are used to 
generate 2P, 4P,…, 2t-1P, 2tP. The Controlled Buffers are 
denoted by CB in Fig. 2. They generate 2iPki for i = 0 to 
(t-1). The bit ki of K and 2iP are the inputs to the 
corresponding CB. The output of each CB is one of the 
inputs to the corresponding Point Adder (PA). Equation 
(10) is realized by Point Adder PA1. Similarly PA2 
realizes Q2 as in Equation (11). The last Point Adder 
PAt–1 realizes Equation (13) to give out Qt-1 which is the 
desired output kP itself. The Point Multiplication Module 
(PMM) provides an additional output 2tP from the last 
PD block. This output 2tP is used for cascading purpose 
which will be described later. 

The Point Doubling and Addition can be 
accomplished internally in either affine or projective 
co-ordinates. In the PMM described in Fig. 2, if say bit 
ki = 0, we cannot avoid Point Adder PAi because, next 
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time, ki may not be zero. The number of Point Adders 
is fixed at (t-1) to take care of all possible value of k. 

Therefore, the use of Non Adjacent Form (NAF) 
representation of k has no benefit in this scheme. 

 

 

 
Fig. 1. Controlled buffer block 

 

 
 

Fig. 2. Multiple PD-PA Point Multiplication Module (PMM)
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3.1. Timing Analysis of the Proposed PMM 

The running time of the PMM shown in Fig. 2 is 
determined in terms of the running times of Point 
doublers and Point Adders. All PD’s are similar in 
structure and working and so also all PA’s are similar. 
Let D be the time (in an appropriate unit) required by a 
PD to complete the doubling action and let A be the 
time required by a PA for Addition. D and A depend on 
the internal design of the PD’s and PA’s respectively 
(Hankerson et al., 2004; Ding et al., 2013). 

3.1.1. Precomputation  

Here, P, 2P,..,2tP are precomputed and readily 
available at the corresponding locations. Now, we need 
not consider the time taken by PD’s. Consider the time 
required to get the output Q1 from PA1 after applying the 
input k. Here, inputs k0, k1, k2,…,kt-1 are applied 
simultaneously from a single register holding k. Time 
taken for signals to pass through CB’s are neglected 
compared to the time needed at PA’s. Initially, P, 2P, k0 
and k1 are available at say T0. Neglecting the time taken 
by CB’s, Pk0 and 2Pk1 are available at the input of PA1 at 
T0 itself. Therefore, the output Q1 will be ready at T0+A 
where A is the time required to generate the output by 
PA1. Thus the transition delay at PA1 is A units of time. 
After Q1 is ready, time required by PA2 to process Q1 
and 4Pk2 to get Q2 would be again A. Therefore the total 
time from T0 up to the time of getting Q2 would be A+A 
= 2A. Thus each PA along the chain adds a delay of A 
and the total delay would be (t-1) A to get kP. Observe that 
there are (t-1) Point Adders in the additive chain. Therefore 
the total running time T1 is given by Equation (19): 

 
( )1T  t –1  A=    (19) 

3.2. Point Multiplication Module 

The Point Multiplication hardware using multiple 
PD’s and PA’s can be represented by a modular block 
as shown in Fig. 3. The module is called as PMMt 
which stands for Point Multiplier Module that gives kP 
where ‘t’ is the size of ‘k’ in bits. Thus PMM8 means, 
the size of ‘k’ is 8 bits. P is the given elliptic curve 
point of total size 2m. 

4. POINT MULTIPLIER MODULES IN 
CASCADE 

When ‘t’ is large, the number of PD’s and PA’s in 
PMMt would also be large. The design and construction 
of such a large sized Point Multiplier Module becomes 

practically difficult and can be cumbersome. Therefore, 
when ‘t’ is large, several smaller sized Point Multiplier 
Modules are cascaded to realize kP as follows. 

Let the smaller size chosen be w bits. The binary 
representation of ‘k’ is partitioned into ‘d’ words of size 
‘w’ bits each. The value of ‘d’ is given by Equation (20): 
 

t
d

w
 =  
 

 (20) 

 
 If ‘t’ is not perfectly divisible by ‘w’, binary 
representation of ‘k’ is padded with d*w-t zeros on the 
left hand side (De Dormole and Quisquater, 2007). The 
partition of ‘k’ into ‘d’ words is shown in Fig. 4. Let K0, 
K1,..., Kd-1 be the decomposed binary words of ‘k’. Now 
‘k’ can be expressed in terms of Kd-1,…, K1, K0 in base 2w 
as Equation (21) (Shivkumar and Umamaheswari, 2014): 
 

[ ]d –1 2 1 0 2w
k  K  K K K= …  (21) 

 
The numerical value of ‘k’ in terms of Kd-1,…, K1, K0 

can be expressed as: 
 

d(w –1) 2w w
d–1 2 1 0k  2 K ,  , 2 K 2 K K= + … + + +  (22) 

 
Now, in the light of Equation (22), the product kP can 

be written as Equation (23): 
 

( )d –1 w 2w w
d–1 2 1 0kP  2 PK ,  , 2 PK 2 PK PK= + … + + +  (23) 

 
That is Equation (24 and 25): 

 

i

d 1

ii 0
kP P K

−

=
=∑    (24) 

 
Where: 
 

( )i
iwP  2 P for 0 i d –1= ≤ ≤   (25) 

 
K0, K1, …, Kd–1 are of size w bits each and the RHS 

of Equation (23) has d terms. Therefore, d number of 
cascaded PMMw’s can realize Equation (23) to get kP as 
shown in Fig. 5. Equation (23) can be expressed in terms 
of partial sums S1, S2, …,Sd-1 as follows Equation (26-28): 
 

w
1 1 0 1 1 0 0Let    S  2 PK PK  P K  P K= + = +   (26) 

 
2w

2 2 1 2 2 1

2w w
2 1 0

Then,  S  2 PK  S  P K S

 2 PK 2 PK PK                  

= + = +

= + +
   (27) 
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Fig. 3. Point Multiplier Module for a ‘t’ bit ‘k’ 

 

 

 

Fig. 4. Partition of k into d words of w bits each 

 

 

 

Fig. 5. Cascaded PMM’s for large K 
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 ……………………………………………………….. 

( )

( )

d –1 w
d 1 d–1 d –2 d –1 d –1 d– 2

d–1 w 2w w
d–1 2 1 0          

S  2 PK  S  P K  S

 2 PK , , 2 PK 2 PK PK  

− = + = +

= + … + + +
   (28) 

 
From Equation (28, 23) we see that Equation (29):  

 
d–1kP  S  =   (29) 

 
Realization of these partial sums is shown in Fig. 5. 

Pi’s are realized as Pi = 2wPi–1 for 0≤ i ≤ (d-1) with P0 = 
P. The output of Point Adder PA1 is S1. The inputs to get 
S1 are P1K1 and P0K0. The inputs to get S2 are P2K2 and 
S1 and so on. The output of the last Point Adder gives  
Sd–1 which is same as kP. Additional output 2dwP can be 
used for further cascading. 

4.1. Total Number of PD’s and PA’s in 
Cascaded PMM 

Each PMMW uses (w-1) number of PA’s and ‘w’ 
number of PD’s. There are ‘d’ number of PMMW’s and 
(d-1) number of PA’s in Fig. 5. Therefore the total 
number of PD’s is dw which is equal to ‘t’. The number 
of PA’s is d (w-1) + (d-1) = dw-1 = t-1. Since ‘t’ the size 
of ‘k’ can go up to m (size of p), the number of PD’s is 
m and the number of PA’s is (m-1). 

4.2. Timing Analysis of the Cascaded PMM 

The timing analysis of the cascaded PMM’s is 
determined with precomputation of 2WP for w=1,2,…etc. 

4.2.1. Precomputation 

All inputs K0, K1,…, Kd–1 are applied 
simultaneously. Consider the inputs K0P0 and K1P1 to 
PA1 in Fig. 5. The delay due to PMMw(1), the PMMw 
identified by 1 in Fig. 5, for signal K0P0 is (w-1)A as 
given by Equation (19). 
 

Thus equation (30) and (31) becomes: 
 

( ) ( )0 0delay K P w 1  A= −    (30) 

 
Similarly: 
 

( ) ( )1 1delay K P w 1  A= −    (31) 

 
Therefore, both of them are available after a delay 

of (w-1) A at the input of PA1. Therefore the delay of 
S1 is, delay (S1) = of Equation (32): 
 
( )w 1 A  A  wA− + =     (32) 

Now, consider the inputs to PA2 which are S1 and 
K2P2. Delay of K2P2 due to PMMW (2) is Equation (33): 
 

( ) ( )2 2delay K P w 1 A= −     (33) 

 
From Equation (32 and 33), both S1 and K2P2 are 

available at the input of PA2 after a delay of wA. To 
this, adding the delay in PA2, we get Equation (34): 
 

( ) ( )2delay S   wA A  w 1 A= + = +    (34) 

 
In this way, each PA in the adder chain adds a delay of 

A. Thus (d-1) PA’s add a delay of (d-1) A. Initial delay at 
the input of PA1 is (w-1) A. Hence the total delay of Sd-1 is: 
 

( ) ( ) ( )d–1delay S   w 1 A d –1 A= − +  

 
Therefore the total delay of signal kP is Equation (35): 

 
( ) ( )delay kP   w d – 2 A= +   (35) 

4.3. Register Size Requirement for PMMW 

In PMMW, let the size of P be N-bits Equation (36-38): 
 

WThen the size of 2 *  P will be N W+    (36) 
 

2Wthe size of 2 *  P will be N 2* W+    (37) 
 
…………………………………. 
 

dWthe size of 2 *  P will be N d * W+    (38) 
 

Here N is the NIST standard Value for ECC. Thus, 
the sizes will be increasing progressively for each 
succeeding stage and this should be taken care off 
during the realization of the modules. However, except 
for the register sizes the modules are similar. 

5. BASIC PRINCIPLE FOR AN 8-BIT ‘k’ 
WITHOUT CB (SECOND METHOD) 

Let P be a given point on the elliptic curve E (Fp). 
Let ‘k’ be an 8 bit integer belonging to Zp. The 
objective is to generate kP as fast as possible. 

5.1. Precomputation 

Assuming that P is known in advance, we precompute 
2P, 4P,…,128P using the Point Doublers. We also 
precompute the following additive terms using Point 
Adders as shown in Fig. 6. 3 P using P + 2P, 12P using 4P 
+ 8P, 48P using 16P + 32P and 192P using 64P + 128P. 
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Fig. 6. Multiple PD-PA Fast Point Multiplication (FPM) module 

 

In Fig. 6, PD is a Point Doubler and PA is a Point 
Adder. The hardware precomputation module uses 8 
PD’s and 4 PA’s. These precomputed values are used 
later in the realization of the fast multiplier. The last PD 
in Fig. 6 generates 256P. This value is needed for 
further concatenation which will be described later. 

5.2. Expression for kP 
The 8 bit integer k is written in binary as Equation (39): 

 
[ ]7 6 5 4 3 2 1 0k  k k k k k k k k=  (39) 

 
The decimal value of k in terms of its binary digits is 

Equation (40): 
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7 6 5 4 3 2 1 0k 128k 64k 32k 16k 8k 4k 2k  k= + + + + + + +  (40)  

Therefore kP is: 
 

7 6 5 4

3 2 1 0

kP  128Pk 64Pk 32Pk 16Pk

8Pk 4Pk 2P k  Pk

= + + +
+ + + +

 

 
The RHS of the above equation is formatted into 4 

sub groups as: 
 

( ) ( )
( ) ( )

7 6 5 4

3 2 1 0

kP  128Pk 64Pk   32Pk 16Pk

8Pk 4Pk   2Pk  Pk   

= + + +

+ + + +
  (41) 

 
The sub groups are represented by Q3, Q2, Q1 and Q0 as: 

 

( )3 7 6Q   128Pk 64Pk= +    (42) 

 

( )2 5 4Q   32Pk 16Pk= +   (43) 

 

( )1 3 2Q   8Pk 4Pk= +  (44) 

 

( )0 1 0Q  2Pk  Pk= +   (45) 

 
Then in the light of Equation (42-45), Equation (41) 

becomes Equation (46): 
 

3 2 1 0kP  Q  Q  Q  Q  = + + +    (46) 
 

This can be rewritten as Equation (47): 
 

( ) ( )3 2 1 0kP  Q  Q  Q  Q  = + + +    (47) 
 

Now let us consider Q0 as given by Equation (45): 
 

0 1 0

0 1 0

0 1 0

0 1 0

When k  0 and k  0,  Q  0

When k  1 and k  0,  Q  P

When k  0 and k  1,  Q  2P

When k  1 and k  1,  Q  2P P 3P 

= = = 
= = = 
= = = 
= = = + = 

   (48) 

 
This can be written in a tabular form as shown in 

Table 1. 
From Equation (48) and Table 1, we see that Q0 can 

be realized as the output of a 4×1 multiplexer with 
inputs 0, P, 2P and 3P as shown in Fig. 7. Here, k1 and 
k0 are binary inputs. 2P and 3P are the precomputed 
values of P as shown in Fig. 6.  

Similar to as in Fig. 6, three more multiplexers are 
used to generate Q1, Q2 and Q3 as shown in Fig. 8. 

Table 1. Q0 in terms of k1 and k0 

k1  k0  Q0 

0  0  0 
0  1 P 
1  0  2P 
1  1  3P 

6. HARDWARE REALIZATION FOR AN 
8-BIT ‘k’ 

The Fast Point Multiplication (FPM) hardware 
realization is shown in Fig. 8. Here, Multiplexer MX0 
realizes Q0 as given by Equation (45). MX1 realizes Q1 
as given by Equation (44), MX2 realizes Q2 as given by 
Equation (43) and MX3 realizes Q3 as given by Equation 
(42). Point Adder PA1 gives (Q0+Q1) while PA2 gives 
(Q2+Q3). Finally, PA3 gives (Q0+Q1) + (Q2+Q3) which is 
the output kP as given by Equation (47). Thus the 
hardware presented in Fig. 8. realizes kP using the 
precomputed products of P and 4×1 multiplexers. 

6.1. Timing Analysis of the FPM 

In the FPM circuit of Fig. 8, all the 8 bits of the 
multiplier k are applied simultaneously to the 
multiplexers at say T0 = 0. It is presumed that all the 
input signals to the multiplexers are readily available 
before T0. Hence we have to calculate the time delay due 
to multiplexers and Point Adders. Compared to the 
running time of a Point Adder, the time delay in a 
multiplexer, which is a combinational circuit, is 
negligibly small. Therefore we neglect the delay in 
multiplexers and we assume that the outputs of the 
multiplexers Q0, Q1, Q2 and Q3 are available to the 
input of adders at T0 = 0. 

Let the input output transition time delay in the Point 
Adder PA1 be A in appropriate time units. The Point 
Adders are similar in design and construction, and 
therefore time delays are also same. That is the input 
output transition time delay of each Point Adder is take as 
A. For PA1, the output (Q0+Q1) would be available after a 
delay of A. This can be expressed as Equation (49): 

 
( )0 1T Q  Q   A+ =    (49) 

 
Similarly Equation (50): 

 

( )2 3T Q  Q   A+ =    (50) 
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Fig. 7. Q0 as the output of a 4×1 Multiplexer 
 

 
 

Fig. 8. Fast Point Multiplication (FPM) module using multiplexers 
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Therefore the inputs (Q0+ Q1) and (Q2+ Q3) to PA3 are 
simultaneously available with a delay of A. To this, we add 
the delay in PA3 to get the final delay as Equation (51): 
 

( ) ( )( ) ( )0 1 2 3T Q Q Q Q   T kP   A A  2A+ + + = = + =   (51) 
 

Thus, for an 8 bit FPM unit, the delay is 2A. 

6.2. Comparison with a Conventional Multiplier 

Consider the Right-to-left binary method of Point 
Multiplication (De Dormole and Quisquater, 2007) 
With precomputation, the doubling time is eliminated 
and the running time is nA where n is the hamming 
weight of k, that is the number of 1’s in k. when the 
size of k is 8 bits, the maximum value of n is 8. 
Therefore the worst case delay in the conventional 
method is 8A and the average case is 4A. In our 
method, the running time is 2A. Thus the speed of our 
method is twice that of the conventional method. 

6.3. Hardware/Complexity 

The inputs to each multiplexer are 4 elliptic curve 
points. Each point has two co-ordinates (x, y). The 
maximum size of each component is given by m, where 
Equation (52): 
 

2m log P =    (52) 
 

 Here p is the prime number of the prime field Fp. 
Therefore the size of each point is 2m. Hence the total 
number of signals at the input of each multiplexer will be 
4× (2m) = 8m. The 0 input to the multiplexer Fig. 7 can 
be eliminated because it is a constant and zero. Hence, 
externally 3 inputs of size 2m each have to be 
considered. Then the overall number of input signals 
would be 3×(2m) = 6m. For a 160 bit p, the size of inputs 
to a multiplexer would be 6×160 = 960 and the size of 
the output would be 2×160 = 320. 

6.4. Fast Point Multiplication Module 

The Fast Point Multiplication shown in Fig. 8 along 
with the precomputation hardware can be represented by 
a modular block as shown in Fig. 9. The module is called 
as FPM8 which stands for Fast Point Multiplier Module 
for 8 bit sized ‘k’ that gives output kP with inputs ‘P’ 
and ‘k’. The module is shown in Fig. 9. The additional 
output 28P is for concatenation. 

7. CONCATENATION OF FAST POINT 
MULTIPLIER MODULES 

When the size of ‘k’ is large, the 8-bit FPM8’s can be 
concatenated to realize kP for large sized k. In the 

realization shown in Fig. 10, the size of ‘k’ is 32 bits 
which is expressed in base 256 format as Equation (53): 
 

[ ]3 2 1 0 256
k  K K K K=   (53) 

 
Here, K3, K2, K1 and K0 are 8 bit each. K0 is the LSB 

and K3 is the MSB. The value of k is given by Equation 
(54): 
 

3 2
3 2 1 0k  256 K  256 K  256K  K= + + +   (54) 

 
Therefore kP is given by Equation (55): 

 
3 2

3 2 1 0kP  256 PK  256 PK  256PK PK= + + +    (55) 

 
In our scheme, 256P, 2562P, 2563P and 2564P are 

pre-computed and readily available as shown in Fig. 10. 
Let us designate these values by the symbols P0, P1, P2 
and P3 as Equation (56-59): 
 

0P  P=    (56) 

 

1P  256P=   (57) 

 
2

2P  256 P=   (58) 

 
3

3P  256 P=   (59) 

 
Substituting these symbols in Equation (17) we get: 

 

3 3 2 2 1 1 0 0kP  P K  P K  P K P K= + + +    (60) 
 
 Equation (60) is rewritten as: 
 

( ) ( )3 3 2 2 1 1 0 0 2 1kP  P K P K P K P K   S  S= + + + = +    (61) 

 
Thus, kP is realized as the sum of S1 and S2 where: 

 
( )2 3 3 2 2S  P K  P K= +   (62) 

 
and: 
 

( )1 1 1 0 0S  P K  P K= +    (63) 

 
Equation (61-63) are realized using three point 

adders as shown in Fig. 10. In the circuit of Fig. 10, 
signals K0, K1, K2 and K3 are applied simultaneously. 
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Fig. 9. Fast Point Multiplier (FPM) Module 

 

 
 

Fig. 10. Concatenation of FPM8’s for a 32 bit k 
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7.1. Latency of Signal kP for FPM8 and FPM32 

From Equation (51), we know that the latency of 
each FPM8 is 2A. Therefore the latencies of P1K1 and 
P0K0 are Equation (64): 
 

( ) ( )1 1 0 0L PK  L P K   2A= =   (64) 

 
To this, the latency of PA-1 is added to get Equation 

(65): 
 

( )1L S   2A A 3A= + =   (65) 

 
Similarly, the latency of S2 is Equation (66): 

 
( )2L S   3A=    (66) 

 
Therefore the latency of kP = S2 +S1 is Equation 

(67): 
 

( )L kP   3A A  4A= + =   (67) 

 
Thus, for a 32 bit Fast Point Multiplier (FPM32) the 

overall latency is 4A. 

7.2. Extension of FPM’s to 128 Bits and 256 Bits 

The hardware presented in Fig. 10 realizes kP for a 
32 bit k. This circuit can be called FPM32. Similar to the 
circuit of Fig. 10, four FPM32’s can be concatenated to 
realize FPM128m which realizes kP with the size of ‘k’ 
equals 128 bits. The latency of this would be 4A + 2A = 
6A. Similarly, four such FPM 128’s can be concatenated 
to get FPM512 which can give out kP with a 512 bit k. 
Here, the latency would be 6A+2A = 8A. 

7.3. Register Size Requirement for FPM8 and 
FPM32 

 In FPM8, let the size of P be N-bits Equation (68-71): 
 
Then the size of 256P will be N 8+    (68) 
 

2the size of 256 P will be N 16+    (69) 
 

3the size of 256 P will be N 24+    (70) 
 

4the size of 256 P will be N 32+    (71) 
 

Here N is the NIST standard Value for ECC. Here 
also, the sizes will be increasing progressively. In the 

case of FPM32, the register sizes are calculated 
similarly and implemented. 

8. COMPARISON WITH OTHER 
METHODS 

In our proposed hardware realization, a large number 
of PD’s and PA’s are used. Since the PD modules used are 
identical in design and characteristics, it is easy to 
replicate and integrate them. Similarly, PA modules can 
be replicated and integrated. This makes the Field 
Programmable Gate Array (FPGA) implementation of 
Elliptic curve point multiplication easy and efficient. This 
type of modular approach has not been attempted earlier. 
Same holds good for Controlled Buffers. In our method, 
the number of PD’s and PA’s used are m and (m-1) 
respectively which are relatively large. For example the 
NIST standard for m specifies one of the values from the 
set {192, 224, 256, 384 and 521}. In our method, all the 
bits of k are applied simultaneously. Thereby shifting 
of the bits of k one at a time is avoided (Kumar, 2006; 
Schinianakis et al., 2009; Portilla et al., 2010; Jacob et al., 
2013). This saves ‘t’ clock cycles of time where ‘t’ is 
the size of ‘k’ in bits. 

9. CONCLUSION 

Two new theoretical hardware modules for Elliptic 
Curve Point Multiplication are described. PMMW’s 
and FPM8’s provide fast multiplication and they can 
be easily cascaded to realize point multiplication for 
larger values of k. 

PMMW (w = 8) and FPM8 use available Point 
Addition and Point Doubling sub modules, Therefore 
our proposed methods are faster compared to the 
conventional methods. Compared to the first method 
PMM8, the second method FPM8 is faster, even 
though it requires more register space. From these 
modules we can create a macro model for realization 
of elliptic curve point multipliers for very large k. The 
techniques described can be modified for Point 
Multiplication over binary field. 

These methods require large register spaces for 
storing the precomputed products of P as discussed in 
section 4.3 and 7.3. But the modules are similar and 
can be easily replicated.  

Our proposed scalar multiplication modules are 
easily scalable and can be used independently or as 
sub modules in an elliptic curve crypto system. 
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 In future, Fast Elliptic Curve Point Multiplication 
using Balanced Ternary Representation and Pre-
computation over GF(p) can be investigated. The 
existing investigation can be extended to address 
varied design parameters like speed, power and area. 
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