
Journal of Computer Science 10 (7): 1094-1106, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1094.1106 Published Online 10 (7) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: N. Shylashree, Department of Electronics and Communication Engg, PESCE, Mandya, India

1094 Science Publications

JCS

HARDWARE REALIZATION OF HIGH SPEED
ELLIPTIC CURVE POINT MULTIPLICATION USING

PRECOMPUTATION OVER GF(p)

N. Shylashree and V. Sridhar

Department of Electronics and Communication Engg, PESCE, Mandya, India

Received 2013-12-07; Revised 2013-12-24; Accepted 2014-02-04

ABSTRACT

Two new theoretical approaches for the hardware realization of high speed elliptic curve point multiplication
over a prime field (GF(p)) are presented. These hardware implementations use multiple units of elliptic curve
point doublers, point adders and multiplexers. The modular hardware approach used here provides high speed
and scalability.

Keywords: Elliptic Curve Point Adders, Point Doublers, Elliptic Curve Point Multiplier, Point

Multiplexers, Galois Field

1. INTRODUCTION

In Diffi-Hellman type key agreement (Idrissi et al.,
2012), Elliptic Curve Digital Signature Algorithm
(Shivkumar and Umamaheswari, 2014) and Elgamal
crypto systems (Jie and Kamarulhaili, 2011; Ismail and
Hijazi, 2012), we use elliptic curve Point Multiplication
(PM) (Hankerson et al., 2004). Several hardware
solutions are already available for elliptic curve Point
Multiplication, (Ghosh et al., 2007; Orlando and Paar,
2001; De Dormole and Quisquater, 2007).

Our objective is to generate the scalar product kP
where P is a point on an elliptic curve over a prime field
Fp and k is an integer that belongs to Zp. We propose a
fast hardware solution to PM which makes use of
hardware Point Doubler (PD) and Point Adder (PA)
modules. We describe two different schemes for fast
multiplication. In the first method we relize the design
for a ‘t’ bit k. Then we extend the design for binary
multiples of ‘t’. In the second method multi scalar
multiplication is used and the desired result is selected
using appropriate multiplexers.

2. BASIC SYMBOLS AND NOTATIONS

Let the given scalar multiplier k be represented in
binary as Equation (1):

 t 1 t 2 2 1 0k k k k k k− − =  … (1)

Here, t is the number of bits of k. That is the size

of k when stored in binary is t bits. In terms of these
bits k is given by:

 t 1 t 2 2

t 1 t 2 2 1 0k 2 k 2 k 2 k 2k k − −
− −= + +…+ + + (2)

In the light of Equation (2), the product kP can be

expressed as Equation (3):

()t 1 t 2 2
t 1 t 2 2 1 0

t 1 t 2 2
t 1 t 2 2 1 0

kP 2 k 2 k 2 k 2k k P

2 Pk 2 Pk 2 Pk 2Pk k P

− −
− −

− −
− −

= + + …+ + +

= + + …+ + +
 (3)

That is Equation (4 and 5):

t 1 t 1

i
i i i

i 0 i 0

kp 2 Pk B k
− −

= =

= =∑ ∑ (4)

Where:

Bi = 2iP for i = 0, 1, 2…,t–1 (5)

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1095 Science Publications

JCS

2.1. Realization of Bik i (First Method)

Consider the term Biki. The bit ki can be either zero
or 1. Therefore, multiplication by ki can be
represented as Equation (6):

i i i

i i i i

B k 0 when k 0

B k B when k 1

= = 


= = 
 (6)

From Equation (5) Biki is equivalent to the logical

AND operation as Equation (7):

Bi ki =Bi AND ki (7)

The elliptic curve point Bi belonging to the prime
field Fp has two components as:

Bi = (xi, yi)

where the size of each is m bits. m is given by Equation
(8):

2m log p =   (8)

Thus the size of Bi is 2m.
In the hardware realization, (Bi AND ki) can be

realized using an array of 2m AND-gates. We can also
make use of a 2m input Controlled Buffer (CB) with an
enable control input EB as shown in Fig. 1. When EB =
0, the output is zero (2m bits) and when EB = 1, output =
Bi = 2iP. Therefore, the Controlled Buffer (CB) realizes
Equation (6) are shown in Fig. 1.

2.2. Realization of kP

From Equation (3) for kP, we can see that kP is
obtained as a series of Point Additions. Our aim is to get
kP using several 2 input Point Adders. To realize this,
Equation (3) for kP is written as:

t 1
0 1 2 t 1kP Pk 2Pk 4Pk 2 Pk−

−= + + +…+

The RHS of this Equation (9) is grouped as follows:

()()() t 1
0 1 2 t 1 kP Pk 2Pk 4Pk , 2 Pk−

−= + + + … + (9)

Then, kP can be obtained as the cumulative sum of 2-
input Point Adders. To get that, let us introduce the
symbols Q1, Q2,…Qt-1 as follows Equation (10-13):

()1 0 1Q Pk 2Pk= + (10)

2 1 2Q Q 4Pk= + (11)

3 2 2Q Q 8Pk= + (12)

t 1
t 1 t 2 t 1Q Q 2 Pk−
− − −= + (13)

That is Equation (14):

i 1

i 1 i iQ Q 2 Pk+
+ = + (14)

for i = 1,2,…, t–1.

From Equation (10, 11) substituting for Q1:

2 0 1 2Q Pk 2Pk 4Pk= + + (15)

Similarly, from Equation (12) and(15):

3 0 1 2 2Q Pk 2Pk 4Pk 8Pk= + + + (16)

In this way, we can see that:

t 1
t 1 0 1 2 t 1Q Pk 2Pk 4Pk 2 Pk−
− −= + + + …+ (17)

The RHS of Equation (17) is same as kP as given

by Equation (3) Thus kP is realized as the Point Sum
of Qt-2 and 2t-1Pkt-1. That is Equation (18):

t 1
t 2 t 1kP Q 2 Pk−
− −= + + (18)

3. HARDWARE REALIZATION FOR AN
‘t’ -BIT ‘k’

The elliptical curve Point Multiplier is realized as
shown in Fig. 2. Output kP is obtained as the Point Sum
of the last Point Adder in a chain of (t-1) Point Adders.
In Fig. 2, t cascaded Point Doublers (PD’s) are used to
generate 2P, 4P,…, 2t-1P, 2tP. The Controlled Buffers are
denoted by CB in Fig. 2. They generate 2iPki for i = 0 to
(t-1). The bit ki of K and 2iP are the inputs to the
corresponding CB. The output of each CB is one of the
inputs to the corresponding Point Adder (PA). Equation
(10) is realized by Point Adder PA1. Similarly PA2
realizes Q2 as in Equation (11). The last Point Adder
PAt–1 realizes Equation (13) to give out Qt-1 which is the
desired output kP itself. The Point Multiplication Module
(PMM) provides an additional output 2tP from the last
PD block. This output 2tP is used for cascading purpose
which will be described later.

The Point Doubling and Addition can be
accomplished internally in either affine or projective
co-ordinates. In the PMM described in Fig. 2, if say bit
ki = 0, we cannot avoid Point Adder PAi because, next

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1096 Science Publications

JCS

time, ki may not be zero. The number of Point Adders
is fixed at (t-1) to take care of all possible value of k.

Therefore, the use of Non Adjacent Form (NAF)
representation of k has no benefit in this scheme.

Fig. 1. Controlled buffer block

Fig. 2. Multiple PD-PA Point Multiplication Module (PMM)

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1097 Science Publications

JCS

3.1. Timing Analysis of the Proposed PMM

The running time of the PMM shown in Fig. 2 is
determined in terms of the running times of Point
doublers and Point Adders. All PD’s are similar in
structure and working and so also all PA’s are similar.
Let D be the time (in an appropriate unit) required by a
PD to complete the doubling action and let A be the
time required by a PA for Addition. D and A depend on
the internal design of the PD’s and PA’s respectively
(Hankerson et al., 2004; Ding et al., 2013).

3.1.1. Precomputation

Here, P, 2P,..,2tP are precomputed and readily
available at the corresponding locations. Now, we need
not consider the time taken by PD’s. Consider the time
required to get the output Q1 from PA1 after applying the
input k. Here, inputs k0, k1, k2,…,kt-1 are applied
simultaneously from a single register holding k. Time
taken for signals to pass through CB’s are neglected
compared to the time needed at PA’s. Initially, P, 2P, k0
and k1 are available at say T0. Neglecting the time taken
by CB’s, Pk0 and 2Pk1 are available at the input of PA1 at
T0 itself. Therefore, the output Q1 will be ready at T0+A
where A is the time required to generate the output by
PA1. Thus the transition delay at PA1 is A units of time.
After Q1 is ready, time required by PA2 to process Q1
and 4Pk2 to get Q2 would be again A. Therefore the total
time from T0 up to the time of getting Q2 would be A+A
= 2A. Thus each PA along the chain adds a delay of A
and the total delay would be (t-1) A to get kP. Observe that
there are (t-1) Point Adders in the additive chain. Therefore
the total running time T1 is given by Equation (19):

()1T t –1 A= (19)

3.2. Point Multiplication Module

The Point Multiplication hardware using multiple
PD’s and PA’s can be represented by a modular block
as shown in Fig. 3. The module is called as PMMt
which stands for Point Multiplier Module that gives kP
where ‘t’ is the size of ‘k’ in bits. Thus PMM8 means,
the size of ‘k’ is 8 bits. P is the given elliptic curve
point of total size 2m.

4. POINT MULTIPLIER MODULES IN
CASCADE

When ‘t’ is large, the number of PD’s and PA’s in
PMMt would also be large. The design and construction
of such a large sized Point Multiplier Module becomes

practically difficult and can be cumbersome. Therefore,
when ‘t’ is large, several smaller sized Point Multiplier
Modules are cascaded to realize kP as follows.

Let the smaller size chosen be w bits. The binary
representation of ‘k’ is partitioned into ‘d’ words of size
‘w’ bits each. The value of ‘d’ is given by Equation (20):

t
d

w
 =  
 

 (20)

 If ‘t’ is not perfectly divisible by ‘w’, binary
representation of ‘k’ is padded with d*w-t zeros on the
left hand side (De Dormole and Quisquater, 2007). The
partition of ‘k’ into ‘d’ words is shown in Fig. 4. Let K0,
K1,..., Kd-1 be the decomposed binary words of ‘k’. Now
‘k’ can be expressed in terms of Kd-1,…, K1, K0 in base 2w
as Equation (21) (Shivkumar and Umamaheswari, 2014):

[]d –1 2 1 0 2w
k K K K K= … (21)

The numerical value of ‘k’ in terms of Kd-1,…, K1, K0

can be expressed as:

d(w –1) 2w w
d–1 2 1 0k 2 K , , 2 K 2 K K= + … + + + (22)

Now, in the light of Equation (22), the product kP can

be written as Equation (23):

()d –1 w 2w w
d–1 2 1 0kP 2 PK , , 2 PK 2 PK PK= + … + + + (23)

That is Equation (24 and 25):

i

d 1

ii 0
kP P K

−

=
=∑ (24)

Where:

()i
iwP 2 P for 0 i d –1= ≤ ≤ (25)

K0, K1, …, Kd–1 are of size w bits each and the RHS

of Equation (23) has d terms. Therefore, d number of
cascaded PMMw’s can realize Equation (23) to get kP as
shown in Fig. 5. Equation (23) can be expressed in terms
of partial sums S1, S2, …,Sd-1 as follows Equation (26-28):

w
1 1 0 1 1 0 0Let S 2 PK PK P K P K= + = + (26)

2w

2 2 1 2 2 1

2w w
2 1 0

Then, S 2 PK S P K S

 2 PK 2 PK PK

= + = +

= + +
 (27)

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1098 Science Publications

JCS

Fig. 3. Point Multiplier Module for a ‘t’ bit ‘k’

Fig. 4. Partition of k into d words of w bits each

Fig. 5. Cascaded PMM’s for large K

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1099 Science Publications

JCS

 ………………………………………………………..

()

()

d –1 w
d 1 d–1 d –2 d –1 d –1 d– 2

d–1 w 2w w
d–1 2 1 0

S 2 PK S P K S

 2 PK , , 2 PK 2 PK PK

− = + = +

= + … + + +
 (28)

From Equation (28, 23) we see that Equation (29):

d–1kP S = (29)

Realization of these partial sums is shown in Fig. 5.

Pi’s are realized as Pi = 2wPi–1 for 0≤ i ≤ (d-1) with P0 =
P. The output of Point Adder PA1 is S1. The inputs to get
S1 are P1K1 and P0K0. The inputs to get S2 are P2K2 and
S1 and so on. The output of the last Point Adder gives
Sd–1 which is same as kP. Additional output 2dwP can be
used for further cascading.

4.1. Total Number of PD’s and PA’s in
Cascaded PMM

Each PMMW uses (w-1) number of PA’s and ‘w’
number of PD’s. There are ‘d’ number of PMMW’s and
(d-1) number of PA’s in Fig. 5. Therefore the total
number of PD’s is dw which is equal to ‘t’. The number
of PA’s is d (w-1) + (d-1) = dw-1 = t-1. Since ‘t’ the size
of ‘k’ can go up to m (size of p), the number of PD’s is
m and the number of PA’s is (m-1).

4.2. Timing Analysis of the Cascaded PMM

The timing analysis of the cascaded PMM’s is
determined with precomputation of 2WP for w=1,2,…etc.

4.2.1. Precomputation

All inputs K0, K1,…, Kd–1 are applied
simultaneously. Consider the inputs K0P0 and K1P1 to
PA1 in Fig. 5. The delay due to PMMw(1), the PMMw
identified by 1 in Fig. 5, for signal K0P0 is (w-1)A as
given by Equation (19).

Thus equation (30) and (31) becomes:

() ()0 0delay K P w 1 A= − (30)

Similarly:

() ()1 1delay K P w 1 A= − (31)

Therefore, both of them are available after a delay

of (w-1) A at the input of PA1. Therefore the delay of
S1 is, delay (S1) = of Equation (32):

()w 1 A A wA− + = (32)

Now, consider the inputs to PA2 which are S1 and
K2P2. Delay of K2P2 due to PMMW (2) is Equation (33):

() ()2 2delay K P w 1 A= − (33)

From Equation (32 and 33), both S1 and K2P2 are

available at the input of PA2 after a delay of wA. To
this, adding the delay in PA2, we get Equation (34):

() ()2delay S wA A w 1 A= + = + (34)

In this way, each PA in the adder chain adds a delay of

A. Thus (d-1) PA’s add a delay of (d-1) A. Initial delay at
the input of PA1 is (w-1) A. Hence the total delay of Sd-1 is:

() () ()d–1delay S w 1 A d –1 A= − +

Therefore the total delay of signal kP is Equation (35):

() ()delay kP w d – 2 A= + (35)

4.3. Register Size Requirement for PMMW

In PMMW, let the size of P be N-bits Equation (36-38):

WThen the size of 2 * P will be N W+ (36)

2Wthe size of 2 * P will be N 2* W+ (37)

………………………………….

dWthe size of 2 * P will be N d * W+ (38)

Here N is the NIST standard Value for ECC. Thus,
the sizes will be increasing progressively for each
succeeding stage and this should be taken care off
during the realization of the modules. However, except
for the register sizes the modules are similar.

5. BASIC PRINCIPLE FOR AN 8-BIT ‘k’
WITHOUT CB (SECOND METHOD)

Let P be a given point on the elliptic curve E (Fp).
Let ‘k’ be an 8 bit integer belonging to Zp. The
objective is to generate kP as fast as possible.

5.1. Precomputation

Assuming that P is known in advance, we precompute
2P, 4P,…,128P using the Point Doublers. We also
precompute the following additive terms using Point
Adders as shown in Fig. 6. 3 P using P + 2P, 12P using 4P
+ 8P, 48P using 16P + 32P and 192P using 64P + 128P.

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1100 Science Publications

JCS

Fig. 6. Multiple PD-PA Fast Point Multiplication (FPM) module

In Fig. 6, PD is a Point Doubler and PA is a Point
Adder. The hardware precomputation module uses 8
PD’s and 4 PA’s. These precomputed values are used
later in the realization of the fast multiplier. The last PD
in Fig. 6 generates 256P. This value is needed for
further concatenation which will be described later.

5.2. Expression for kP
The 8 bit integer k is written in binary as Equation (39):

[]7 6 5 4 3 2 1 0k k k k k k k k k= (39)

The decimal value of k in terms of its binary digits is

Equation (40):

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1101 Science Publications

JCS

7 6 5 4 3 2 1 0k 128k 64k 32k 16k 8k 4k 2k k= + + + + + + + (40)

Therefore kP is:

7 6 5 4

3 2 1 0

kP 128Pk 64Pk 32Pk 16Pk

8Pk 4Pk 2P k Pk

= + + +
+ + + +

The RHS of the above equation is formatted into 4

sub groups as:

() ()
() ()

7 6 5 4

3 2 1 0

kP 128Pk 64Pk 32Pk 16Pk

8Pk 4Pk 2Pk Pk

= + + +

+ + + +
 (41)

The sub groups are represented by Q3, Q2, Q1 and Q0 as:

()3 7 6Q 128Pk 64Pk= + (42)

()2 5 4Q 32Pk 16Pk= + (43)

()1 3 2Q 8Pk 4Pk= + (44)

()0 1 0Q 2Pk Pk= + (45)

Then in the light of Equation (42-45), Equation (41)

becomes Equation (46):

3 2 1 0kP Q Q Q Q = + + + (46)

This can be rewritten as Equation (47):

() ()3 2 1 0kP Q Q Q Q = + + + (47)

Now let us consider Q0 as given by Equation (45):

0 1 0

0 1 0

0 1 0

0 1 0

When k 0 and k 0, Q 0

When k 1 and k 0, Q P

When k 0 and k 1, Q 2P

When k 1 and k 1, Q 2P P 3P

= = = 
= = = 
= = = 
= = = + = 

 (48)

This can be written in a tabular form as shown in

Table 1.
From Equation (48) and Table 1, we see that Q0 can

be realized as the output of a 4×1 multiplexer with
inputs 0, P, 2P and 3P as shown in Fig. 7. Here, k1 and
k0 are binary inputs. 2P and 3P are the precomputed
values of P as shown in Fig. 6.

Similar to as in Fig. 6, three more multiplexers are
used to generate Q1, Q2 and Q3 as shown in Fig. 8.

Table 1. Q0 in terms of k1 and k0

k1 k0 Q0

0 0 0
0 1 P
1 0 2P
1 1 3P

6. HARDWARE REALIZATION FOR AN
8-BIT ‘k’

The Fast Point Multiplication (FPM) hardware
realization is shown in Fig. 8. Here, Multiplexer MX0
realizes Q0 as given by Equation (45). MX1 realizes Q1
as given by Equation (44), MX2 realizes Q2 as given by
Equation (43) and MX3 realizes Q3 as given by Equation
(42). Point Adder PA1 gives (Q0+Q1) while PA2 gives
(Q2+Q3). Finally, PA3 gives (Q0+Q1) + (Q2+Q3) which is
the output kP as given by Equation (47). Thus the
hardware presented in Fig. 8. realizes kP using the
precomputed products of P and 4×1 multiplexers.

6.1. Timing Analysis of the FPM

In the FPM circuit of Fig. 8, all the 8 bits of the
multiplier k are applied simultaneously to the
multiplexers at say T0 = 0. It is presumed that all the
input signals to the multiplexers are readily available
before T0. Hence we have to calculate the time delay due
to multiplexers and Point Adders. Compared to the
running time of a Point Adder, the time delay in a
multiplexer, which is a combinational circuit, is
negligibly small. Therefore we neglect the delay in
multiplexers and we assume that the outputs of the
multiplexers Q0, Q1, Q2 and Q3 are available to the
input of adders at T0 = 0.

Let the input output transition time delay in the Point
Adder PA1 be A in appropriate time units. The Point
Adders are similar in design and construction, and
therefore time delays are also same. That is the input
output transition time delay of each Point Adder is take as
A. For PA1, the output (Q0+Q1) would be available after a
delay of A. This can be expressed as Equation (49):

()0 1T Q Q A+ = (49)

Similarly Equation (50):

()2 3T Q Q A+ = (50)

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1102 Science Publications

JCS

Fig. 7. Q0 as the output of a 4×1 Multiplexer

Fig. 8. Fast Point Multiplication (FPM) module using multiplexers

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1103 Science Publications

JCS

Therefore the inputs (Q0+ Q1) and (Q2+ Q3) to PA3 are
simultaneously available with a delay of A. To this, we add
the delay in PA3 to get the final delay as Equation (51):

() ()() ()0 1 2 3T Q Q Q Q T kP A A 2A+ + + = = + = (51)

Thus, for an 8 bit FPM unit, the delay is 2A.

6.2. Comparison with a Conventional Multiplier

Consider the Right-to-left binary method of Point
Multiplication (De Dormole and Quisquater, 2007)
With precomputation, the doubling time is eliminated
and the running time is nA where n is the hamming
weight of k, that is the number of 1’s in k. when the
size of k is 8 bits, the maximum value of n is 8.
Therefore the worst case delay in the conventional
method is 8A and the average case is 4A. In our
method, the running time is 2A. Thus the speed of our
method is twice that of the conventional method.

6.3. Hardware/Complexity

The inputs to each multiplexer are 4 elliptic curve
points. Each point has two co-ordinates (x, y). The
maximum size of each component is given by m, where
Equation (52):

2m log P =   (52)

 Here p is the prime number of the prime field Fp.
Therefore the size of each point is 2m. Hence the total
number of signals at the input of each multiplexer will be
4× (2m) = 8m. The 0 input to the multiplexer Fig. 7 can
be eliminated because it is a constant and zero. Hence,
externally 3 inputs of size 2m each have to be
considered. Then the overall number of input signals
would be 3×(2m) = 6m. For a 160 bit p, the size of inputs
to a multiplexer would be 6×160 = 960 and the size of
the output would be 2×160 = 320.

6.4. Fast Point Multiplication Module

The Fast Point Multiplication shown in Fig. 8 along
with the precomputation hardware can be represented by
a modular block as shown in Fig. 9. The module is called
as FPM8 which stands for Fast Point Multiplier Module
for 8 bit sized ‘k’ that gives output kP with inputs ‘P’
and ‘k’. The module is shown in Fig. 9. The additional
output 28P is for concatenation.

7. CONCATENATION OF FAST POINT
MULTIPLIER MODULES

When the size of ‘k’ is large, the 8-bit FPM8’s can be
concatenated to realize kP for large sized k. In the

realization shown in Fig. 10, the size of ‘k’ is 32 bits
which is expressed in base 256 format as Equation (53):

[]3 2 1 0 256
k K K K K= (53)

Here, K3, K2, K1 and K0 are 8 bit each. K0 is the LSB

and K3 is the MSB. The value of k is given by Equation
(54):

3 2
3 2 1 0k 256 K 256 K 256K K= + + + (54)

Therefore kP is given by Equation (55):

3 2

3 2 1 0kP 256 PK 256 PK 256PK PK= + + + (55)

In our scheme, 256P, 2562P, 2563P and 2564P are

pre-computed and readily available as shown in Fig. 10.
Let us designate these values by the symbols P0, P1, P2
and P3 as Equation (56-59):

0P P= (56)

1P 256P= (57)

2

2P 256 P= (58)

3

3P 256 P= (59)

Substituting these symbols in Equation (17) we get:

3 3 2 2 1 1 0 0kP P K P K P K P K= + + + (60)

 Equation (60) is rewritten as:

() ()3 3 2 2 1 1 0 0 2 1kP P K P K P K P K S S= + + + = + (61)

Thus, kP is realized as the sum of S1 and S2 where:

()2 3 3 2 2S P K P K= + (62)

and:

()1 1 1 0 0S P K P K= + (63)

Equation (61-63) are realized using three point

adders as shown in Fig. 10. In the circuit of Fig. 10,
signals K0, K1, K2 and K3 are applied simultaneously.

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1104 Science Publications

JCS

Fig. 9. Fast Point Multiplier (FPM) Module

Fig. 10. Concatenation of FPM8’s for a 32 bit k

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1105 Science Publications

JCS

7.1. Latency of Signal kP for FPM8 and FPM32

From Equation (51), we know that the latency of
each FPM8 is 2A. Therefore the latencies of P1K1 and
P0K0 are Equation (64):

() ()1 1 0 0L PK L P K 2A= = (64)

To this, the latency of PA-1 is added to get Equation

(65):

()1L S 2A A 3A= + = (65)

Similarly, the latency of S2 is Equation (66):

()2L S 3A= (66)

Therefore the latency of kP = S2 +S1 is Equation

(67):

()L kP 3A A 4A= + = (67)

Thus, for a 32 bit Fast Point Multiplier (FPM32) the

overall latency is 4A.

7.2. Extension of FPM’s to 128 Bits and 256 Bits

The hardware presented in Fig. 10 realizes kP for a
32 bit k. This circuit can be called FPM32. Similar to the
circuit of Fig. 10, four FPM32’s can be concatenated to
realize FPM128m which realizes kP with the size of ‘k’
equals 128 bits. The latency of this would be 4A + 2A =
6A. Similarly, four such FPM 128’s can be concatenated
to get FPM512 which can give out kP with a 512 bit k.
Here, the latency would be 6A+2A = 8A.

7.3. Register Size Requirement for FPM8 and
FPM32

 In FPM8, let the size of P be N-bits Equation (68-71):

Then the size of 256P will be N 8+ (68)

2the size of 256 P will be N 16+ (69)

3the size of 256 P will be N 24+ (70)

4the size of 256 P will be N 32+ (71)

Here N is the NIST standard Value for ECC. Here
also, the sizes will be increasing progressively. In the

case of FPM32, the register sizes are calculated
similarly and implemented.

8. COMPARISON WITH OTHER
METHODS

In our proposed hardware realization, a large number
of PD’s and PA’s are used. Since the PD modules used are
identical in design and characteristics, it is easy to
replicate and integrate them. Similarly, PA modules can
be replicated and integrated. This makes the Field
Programmable Gate Array (FPGA) implementation of
Elliptic curve point multiplication easy and efficient. This
type of modular approach has not been attempted earlier.
Same holds good for Controlled Buffers. In our method,
the number of PD’s and PA’s used are m and (m-1)
respectively which are relatively large. For example the
NIST standard for m specifies one of the values from the
set {192, 224, 256, 384 and 521}. In our method, all the
bits of k are applied simultaneously. Thereby shifting
of the bits of k one at a time is avoided (Kumar, 2006;
Schinianakis et al., 2009; Portilla et al., 2010; Jacob et al.,
2013). This saves ‘t’ clock cycles of time where ‘t’ is
the size of ‘k’ in bits.

9. CONCLUSION

Two new theoretical hardware modules for Elliptic
Curve Point Multiplication are described. PMMW’s
and FPM8’s provide fast multiplication and they can
be easily cascaded to realize point multiplication for
larger values of k.

PMMW (w = 8) and FPM8 use available Point
Addition and Point Doubling sub modules, Therefore
our proposed methods are faster compared to the
conventional methods. Compared to the first method
PMM8, the second method FPM8 is faster, even
though it requires more register space. From these
modules we can create a macro model for realization
of elliptic curve point multipliers for very large k. The
techniques described can be modified for Point
Multiplication over binary field.

These methods require large register spaces for
storing the precomputed products of P as discussed in
section 4.3 and 7.3. But the modules are similar and
can be easily replicated.

Our proposed scalar multiplication modules are
easily scalable and can be used independently or as
sub modules in an elliptic curve crypto system.

N. Shylashree and V. Sridhar / Journal of Computer Science 10 (7): 1094-1106, 2014

1106 Science Publications

JCS

 In future, Fast Elliptic Curve Point Multiplication
using Balanced Ternary Representation and Pre-
computation over GF(p) can be investigated. The
existing investigation can be extended to address
varied design parameters like speed, power and area.

10. ACKNOWLEDGEMENT

The researcher would like to thank the Chairman Dr.
R N Shetty, Director Dr. H N Shivashankar, Principal
Dr. M K Venkatesha of RNS Institute of Technology for
their constant support and encouragement and also to
thank her professor N Bhaskara Rao, for his guidance
and helpful comments in the study.

11. REFERENCES

De Dormole, G.M. and J.J. Quisquater, 2007. High-
speed hardware implementations of elliptic curve
cryptography: A survey. J. Syst. Archit., 53: 72-84.
DOI: 10.1016/j.sysarc.2006.09.002

Ding, Q., T. Reece and W.H. Robinson, 2013. Timing
analysis in software and hardware to implement
NIST elliptic curves over prime fields.
Proceedings of the 3rd International Workshop on
Petri Nets and Performance Models, Aug. 4-7,
IEEE Xplore Press, Columbus, pp: 1358-1362.
DOI: 10.1109/MWSCAS.2013.6674908.

Ghosh S., M. Alam, I.S. Gupta and D.R. Chowdhury,
2007. A robust GF(p) parallel arithmetic unit for
public key cryptography. Proceedings of the 10th
Euromicro Conference on Digital System Design
Architectures, Methods and Tools, Aug. 29-31,
IEEE Xplore Press, Germany, pp: 109-115. DOI:
10.1109/DSD.2007.14

Hankerson, D., S. Vanstone and A.J. Menezes, 2004.
Guide to Elliptic Curve Cryptography. 1st Edn.,
Springer, New York, ISBN-10: 038795273X, pp:
311.

Idrissi, Y.E.H.E., N. Zahid and M. Jedra, 2012.
Security analysis of 3GPP (LTE)-WLAN
interworking and a new local authentication
method based on EAP-AKA. Proceedings of the
International Conference on Future Generation
Communication Technology, Dec. 12-14, IEEE
Xplore Press, London, pp: 137-142. DOI:
10.1109/FGCT.2012.6476561

Ismail, E.S. and M.S. Hijazi, 2012. Development of a
new elliptic curve cryptosystem with factoring
problem. Am. J. Applied Sci., 9: 1443-1447.DOI:
10.3844/ajassp.2012.1443.1447

Jacob, N., S. Saetang, C.N. Chen, S. Kutzner and S.
Ling et al., 2013. Feasibility and practicability of
standardized cryptography on 4-bit micro
controllers. Selected Areas Cryptography, 7707:
184-201. DOI: 10.1007/978-3-642-35999-6_13

Jie, L.K. and H. Kamarulhaili, 2011. Polynomial
interpolation in the elliptic curve cryptosystem. J.
Math. Stat., 7: 326-331. DOI:
10.3844/jmssp.2011.326.331

Kumar, S.S., 2006. Elliptic Curve Cryptography for
Constrained Devices. Dissertation Submitted for the
Award of PhD, Bochum, Germany.

Orlando, G. and C. Paar, 2001. A scalable GF(p) elliptic
curve processor architecture for programmable
hardware. Proceedings of the 3rd International
Workshop Paris, May 14-16, Springer Berlin
Heidelberg, France, pp: 348-363. DOI: 10.1007/3-
540-44709-1_29

Portilla, J., A. Otero, E. de la Torre, T. Riesgo and O.
Stecklina et al., 2010. Adaptable security in wireless
sensor networks by using reconfigurable ECC
hardware coprocessors. Int. J. Distribut. Sensor
Networks. DOI: 10.1155/2010/740823

Schinianakis, D.M., A.P. Fournaris, H.E. Michail, A.P.
Kakarountas and T.S. Stouraitis, 2009. An RNS
implementation of an Fp elliptic curve point
multiplier. IEEE Trans. Circ. Syst., 56: 1202-1213.
DOI: 10.1109/TCSI.2008.2008507

Shivkumar, S. and G. Umamaheswari, 2014. Certificate
authority schemes using elliptic curve cryptography,
RSA and their variants-simulation using ns2. Am. J.
Applied Sci., 11: 171-179. DOI:
10.3844/ajassp.2014.171.179

