
Journal of Computer Science 9 (8): 972-980, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.972.980 Published Online 9 (8) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: T. Prem Jacob, Department of CSE, Sathyabama University, Chennai, India

972
Science Publications

JCS

OPTIMIZATION OF TEST CASES BY PRIORITIZATION

1T. Prem Jacob and 2T. Ravi

1Department of CSE, Sathyabama University, Chennai, India
2Department of CSE, Srinivasa Institute of Engineering and Technology, Chennai, India

Received 2013-06-10, Revised 2013-06-12; Accepted 2013-07-04

ABSTRACT

Regression testing is testing the software in order to make sure that the modification made on the
program lines does not affect the other parts of the software, it is in maintenance phase and accounts for
80% of the maintenance cost and thus optimizing regression testing is one of the prime motives of
software testers. Here we take the advantage of selecting test case information available in regression
testing and prioritize them based on the number of modified lines covered by the test case, the test case
which covers the most number of modified lines has the highest priority and is executed first and the one
with the least coverage of modified lines has the lowest priority and is executed last provided deadline
time is not reached, thus even if the testing is not finished we will have covered maximum modified
lines, the prioritization of the test cases are done using the genetic algorithm, the genetic algorithm takes
test case information from regression testing as input and produces a sequence of test case to be executed
such that the maximum number of modified code is covered.

Keywords: Regression Testing, Test Case, Genetic Algorithm, Test Suite

1. INTRODUCTION

 Software testing requires resources and consumes
30-50% of the total cost of development. It is impractical
to repeatedly test the software by executing a complete
set of test cases under resource constraints (Zhong,
2008). Because of these reason researches have
considered various methods for reducing the cost of
regression testing, this includes test case minimization
and regression test selection, test suite minimization
techniques lower cost by reducing a test suite to a
minimal subset that maintains equivalent coverage of the
original test suite with respect to a particular test
adequacy criterion, regression test selection method
reduces the cost of regression testing by selecting an
appropriate subset of the existing test suite based on
information about the program, modified version (Jacob
and Ravi, 2013a). Test suite minimization methods and
Regression test selection, however, can have drawbacks
(Smith, 2009). For example, although some empirical
evidence indicates that, in certain cases, there is little or

no loss in the ability of a minimized test suite to reveal
faults in comparison to its non-minimized original other
empirical evidence shows that the fault detection
capabilities of test suites can be severely compromised
by minimization (Sampath, 2008). Because test case
prioritization techniques do not themselves discard test
cases, they can avoid the drawbacks that can occur when
regression test selection and test suite minimization
discard test cases (Islam, 2012). Alternatively, in cases
where the discarding of test cases is acceptable, test case
prioritization can be used in conjunction with regression
test selection or test suite minimization techniques to
prioritize the test cases in the selected or minimized test
suite (Kapfhammer, 2007).

2. RELATED WORK

 Huang (2010) has proposed a cost cognizant test
case prioritization technique based on the use of historic
records and genetic algorithm. They run a controlled
experiment to evaluate the proposed technique’s

T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013

973 Science Publications

JCS

effectiveness. This technique however does not take
care of the test cases similarity. Sabharwal (2011) has
proposed a technique for prioritization test case
scenarios derived from activity diagram using the
concept of basic information flow metric and genetic
algorithm. Sabharwal (2011) has generated prioritized
test case in static testing using genetic algorithm. They
have applied a similar approach as to prioritize test case
scenarios derived from source code in static testing.
Andrews and Sasikala (2012) has applied genetic
algorithm for randomized unit testing to figure out the
best suitable test cases. Mohsen FallahRad has applied
common genetic and bacteriological algorithm for
optimizing testing data in mutation testing.

3. PROBLEM DEFINITION

 Prioritization (orderings) of T and f are a function
that, applied to any such ordering, yields an award
value to that ordering. For simplicity and without loss
of generality, the definition assumes that higher award
values are preferable to lower ones. For given T, a test
suite, PT, the set of permutations of T and f, a
function from PT to the real number. Our aim is to
find T’∈ PT such that:

(∀T’’) (T’’ ∈ PT’)
(T’’ ≠ T’) [f (T’) ≥ f(T’’)]

 To measure the success of a prioritization technique
in meeting the goal, we must describe the goal
quantitatively. Depending upon the choice of f, the test
case prioritization problem may be intractable. It is also
possible to integrate test case prioritization with
regression test selection or test suite minimization
techniques (Jacob and Ravi, 2013b). Alternatively, we
might prioritize test cases in terms of their increasing
cost-per-coverage of features listed in a requirements
specification. We restrict our attention, focusing on
general test case prioritization in application to
regression testing, independent of regression test
selection and test suite minimization (Canessane and
Srinivasan, 2013; Andrews and Sasikala, 2012).

4. GENETIC ALORITHM

 Genetic Algorithms (GAs) are search methods based
on principles of natural selection and genetics. GAs
encodes the decision variables of a search problem into
finite-length strings of alphabets of certain cardinality.

The strings which are candidate solutions to the search
problem are referred to as chromosomes, the alphabets
are referred to as genes and the values of genes are called
alleles (Sabharwal, 2011). Unlike traditional search
methods, genetic algorithms rely on a population of
candidate solutions. Once the problem is encoded in a
chromosomal manner and a fitness measure for
discriminating good solutions from bad ones has been
chosen, we can start to evolve solutions to the search
problem using the following steps.

4.1. Initialization

 The initial population of candidate solutions is
usually generated randomly across the search space.

4.2. Evaluation

 Once the population is initialized the fitness values
of the candidate solutions are evaluated.

4.3. Selection

 Selection allocates more copies of those solutions
with higher fitness values and imposes the survival-of-
the-fittest mechanism on the candidate solutions.

4.4. Recombination

 Recombination combines parts of two or more
parental solutions to create new, possibly better solutions
(i.e., offspring).

4.5. Mutation

 While recombination operates on two or more
parental chromosomes, mutation locally but randomly
modifies a solution.

4.6. Replacement

 The offspring population created by selection,
recombination and mutation replaces the original
parental population. Repeat steps from evolution to
replacement until a terminating condition is met.

5. PROPOSED METHODOLOGY

 Genetic algorithm is stochastic search technique,
which is based on the idea of selection of the fittest
chromosome. Fitness of the chromosome can be defined
by a suitable objective function. Genetic algorithm carry
out a multidimensional search by maintaining population
of potential user, random methods consisting of a
combination of iterative search methods and simple
random search methods can find a solution for a given
problem. The steps of genetic algorithm are.

T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013

974 Science Publications

JCS

Table 1. Test case execution history
Test case ID A B C Expected output Execution history
T1 30 20 40 Obtuse angle triangle 8,9,10,11,12,13
T2 30 20 40 Obtuse angle triangle 8,9,10,11,12,13,14,15,16,17
T3 30 20 40 Obtuse angle triangle 10,11,12,13
T4 30 20 40 Obtuse angle triangle 10,11,12,13,14,15,16,20,21,22
T5 30 20 40 Obtuse angle triangle 12,13,14,15,16,20,21,22
T6 30 20 40 22,23,24,25,28
T7 30 20 40 Obtuse angle triangle 5,6,7,8,9,10,11,12,13,14,15,16,
 20,21,15, 16,20,21,35
T8 - - -
T9 30 20 40 5,6,7,8,9,10,11,12,13,14,15,16,
 20,21,15,16,20,12,35
T10 30 20 40 18,19,20,21,35
T11 30 20 40 Obtuse angle triangle 24,25
T12 30 20 40 Obtuse angle triangle 15,16,20,21

5.1. Generate Population

 Initially population is randomly selected and
encoded. Each chromosome represents the possible
solution of the problem.

5.2. Evaluate the Fitness

 Fitness of the chromosome can be defined by the
objective function. This objective function generates a
real number from the input chromosome. Based on this
number two or more chromosome can be compared.

5.3. Apply Selection

 In general the selection is depending on the
fitness value of the chromosome. The chromosome
with higher or lower value will be selected based on
the problem definition.

5.4. Apply Crossover and Mutation

 Parents are chosen and randomly combined. This
technique for generating random chromosome is
called crossover.

6. TEST CASE OPTIMIZATION USING GA

 Let’s say a program has test case suite T, now if one
can make modification in the program p, suppose
modified program is P’, so in order to test program P’
one can generate a prioritize sequence of test cases from
test case suite T, on the basis of the line of code modified
(Binkley and College, 1997).

6.1. Fitness Function

 The following fitness function will be used.

 Fitness value (F) = Σ {order * (number of modified
lines covered by test cases)}.

6.2. Crossover

 Here one can use one point cross over with
crossover probability Pc = 0.33.
 Crossover Probability = Fitness Function of
Chromosomes/∑Fitness Function.

6.3. Mutation

 Here we will use mutation probability Pm = 0.2. It
means that 20% of the genes will be muted within a
chromosome. Table 1 tells us which test case covers
which line code. This is helpful later on when we know
the number of modified lines, we can compare the
number of modified lines with above information and
sort out which test case covers most modified lines of
code (Sastry, 2007). Assume that lines 5, 8, 10, 15, 20,
23, 28, 35 are modified and the modified lines of code
covered by each test case are shown in the Table 2. It
shows the test cases which does not at all cover
modified lines of code though they cover lines. We
limit only to prioritize the test cases based on number
of modified lines a test case covers are shown in the
Table 3.
 Now we apply genetic algorithm, on this data,
generate random number without repetition and put it in
the following column, these pattern of random number
would represent chromosomes and we would have
chromosomes, e1, e2, … and so on and then we find the
fitness of each chromosomes, find probability, perform
selection and recommend which chromosomes to be
taken into the popula-tion. Based on the random number
we came to know that the first random number
recommends the chromosome1 which is represented as:

T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013

975 Science Publications

JCS

Table 2. Test case code coverage
 Test Test Test Test Test Test Test Test Test Test Test Test
Statement case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 case 10 case 11 case 12
5 X X
6 X X
7 X X
8 X X X X
9 X X X X
10 X X X X X X
11 X X X X X X
12 X X X X X X X
13 X X X X X X X
14 X X X X X
15 X X X X X X
16 X X X X
17 X
18 X
19 X
20 X X X X X X
21 X X X X X
22 X X X
23 X
24 X
25 X X
26 X
27
28 X
29
30
31
32
33
34
35 X X X

Table 3. Number of modified lines covered by the test case
Test case T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
Number of modified lines 2 4 1 3 2 2 5 2 4 1 0 2

Table 4. Using genetic algorithm on the same data
 Fitness Normalized Cumulative Selection of
Chromosomes value value probability random numbers Recommendation
T1->T2-> T3-> T4-> T5->T6->T7->
T8->T9->T10->T11-> T11-> T12 196 196/573 = 0.342 0.342 0.3 Chromosomes e1
T2->T4->T6->T8->T10->T12->
T1->T3->T5-> T7->T9->T11 189 189/573 = 0.329 0.671 0.4 Chromosomes e2
T5->T6->T8->T9->T12->T1->
T7->T11->T2-> T3->T4->T10 188 188/573 = 0.328 1.000 0.2 Chromosomes e1

(T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12)

 Because the selected random number lies between 0-
0.342. Second random number recommends the
chromosome 2 which is represented as:

(T2→T4→T6→T8→T10→T12→T1→T3→T5→T7→T
9→T11)

 Because the random number lies between 0.342-
0.671. The third random number recommends the
chromosome 1 which is represented as:

T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013

976 Science Publications

JCS

(T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1
1→T12)

 Because the selected random number lies between 0-
0.342. So now we have the following member in our
mating pool:

T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12
T2→T4→T6→T8→T10→T12→T1→T3→T5→T7→T

9→T11
T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12

 Now we will apply the one point crossover on these
chromosomes and will generate the new off springs:

T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12
T2→T4→T6→T8→T10→T12→T1→T3→T5→T7→T

9→T11
T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12

 When we apply one point crossover to the selected
population then we get these offspring’s:

T1→T2→T3→T4→T5→T6→T7→T9→T11→T8→T1

0→T12
T2→T4→T6→T8→T10→T12→T1→T9→T11→T3→

T5→T7
T1→T2→T3→T4→T5→T6→T7→T9→T11→T8→T1

0→T12

 Suppose if the crossover probability is 0.3 then we
select 2 chromosomes from the offspring and one from
the parents based on the fitness function value. This
process is repeated certain fixed number of iterations, on
repeating this procedure multiple times, we will get the
nearly optimum solution are shown in the Table 4.

7. STEP BY STEP PROCEDURE FOR
GENETIC ALGORITHM

7.1. GA Initialization

 In this module sample population is initialized. It is
generated randomly. Population is a collection of
chromosomes. Each chromosome consists of genes in it.
Here order is the priority of the test case, if the test case

is to be executed first then the order of the test case will
be n, where n is the number of test case, NML is number
of lines modified. E1, E2,.. are the chromosomes, to
generate this random pattern we use rand() present in
stdlib of c language, if “K” the random number
generated it should satisfy this condition K ≤ N, the other
condition is that the number should not repeat, thus if we
calculate the total number of possibilities then one will
have to calculate the value of N X (N-1) X (N-2) X (N-
3)….1 this value will be very large if N is large, thus
genetic algorithm would much optimize the load of find
such a possibilities.

7.2. GA Evaluation

 Once the population is initialized, the fitness values
of the candidate solutions are evaluated. This is where
we attempt to identify the most successful members of
the population and typically we accomplish this using a
fitness function (Guillaumier, 2003):

Order NML E1 E2 E3 E4 E5
12 2 5 9 . . .
11 4 4 4 . . .
10 6 8 2 . . .
9 7 9 10 . . .
8 6 1 5 . . .
7 1 2 11 . . .
6 0 10 12 . . .

 The fitness calculation is done for each chromosome
using the following formula:

n

1

fitness vlaue of each chromosomes Order NML= ×∑

 Here one can find the order and number of
modified lines of each test cases in a test case pattern
present in a chromosomes, gives the fitness value of a
particular chromosomes. Here for instance if one takes
the first chromosome e1, then one has test case 5
scheduled to be executed first, test case 4 comes second
thus, for first test case We take the value 5 and index it
in the array of matrix, this gives as the order and
number of the particular test case in column one and
two, we find the product of order and number of
modified line test case 5 and it comes out to be 48 as
8×6 then one can proceed with test case 4 it comes out
to be 63 and then we add 48+63, this process continues
till then end of all the test cases finally we get the
fitness of chromosomes e1 and we calculate for e1-e5.

T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013

977 Science Publications

JCS

7.3. GA Selection

 In the selection process typically we call the fitness
function to identify the individuals that we use to create
the next generation. We calculate the probability and
cumulative probability of the population by the formula:

Probabliltyof a chromosome

Fitness of the particular chromosomes

(fitness of all chromosomes)

=

∑

1

ith

Cumulative probability of ith chromosome

probability=∑

 After finding the cumulative probability, one use
roulette wheel technique to find the parents, so that one
can perform crossover and mutation operation.

7.4. GA Crossover

 Recombination combines parts of two or more
parental solutions to create new, possibly better
solutions. Consider that the following two chromosomes
(e1, e2) were selected to be the fittest amongst the five
chromosomes. The execution sequence of these two
chromosomes:

E2 T8 T7 T3 T5 T1 T12 T4 T11 T6 T10 T2 T9
E4 T3 T4 T1 T10 T12 T11 T9 T8 T7 T2 T5 T6

 In one point cross over one generates the a random
number smaller than the number of test cases, then one
can take that random number of point of crossover, we
calculate the cross over probability:

E2 T8 T7 T3 T5 T1 T12 T4 T11 T7 T2 T5 T6
E4 T3 T4 T1 T10 T12 T11 T9 T8 T6 T10 T2 T9

7.5. GA Mutation

 While recombination operates on two or more
parental chromosomes, mutation locally but randomly
modifies a solution. Considering the below chromosomes
where cross over is already performed and suppose the
mutation probability is 0.16 then one can generate two
random numbers and then brings changes about those
structure, if 3 and 8 are then number generated then the
above chromosomes becomes. The structure that is at the
index 3, index 8 that are swapped as a process of

mutation, it is believed to improve the fitness if mutation
is done once in certain iteration and not all:

E2 E4
T8 T3
T7 T4
T11 T8
T5 T10
T1 T12
T12 T11
T4 T9
T3 T1
T7 T6
T2 10
T5 T2
T6 T9

8. PSEUDO-CODE FOR GENETIC
ALGORITHM

Begin
T<-0
Initialise P(t)
while (not termination condition)
 Evaluate P(t)
 Select P(t+1) from P(t)
 Crossover P(t+1)
 Mutate P(t+1)
 t<-t+1
end while
end procedure

8.1. Evaluation Operation

 Test info is an array that stores all the necessary
information of a test case represents the chromosomes.
Fitness is variable that stores fitness value of
chromosomes. Fitar is an array that stores the fitness
value of each chromosome:

Fitness<-0
Order starts from number of test cases
for (each number of test case)
TID<-testinfo[i][e]
Fitness<-fitness+ (order*testinfo[TID-1][1])
Order decremented by one
Put the fitness value in fitar;
increment j
end while

8.2. Selection Operation

for(number of chromosomes times)

T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013

978 Science Publications

JCS

calculate the probability for each chromosomes;
sum of probability of each chromosomes;
calculate the cumulative probability of;
end for
for (two parents)
do
until
generate a random number;
check where the number lies in roulette wheel
Convert the generated number i.e., between 0-1
for(the number of chromosomes times)
if(number lies in-between 0 ,cumulative probability)
break;
else if(check where it lies in cumulative probability)
break; end for
Set Check true;
for (j<-0;j<i; increment j)
if (if number is already used)
set check to false
break; //no need to check other elements of crom[]
end while if check is not true
end for

8.3. Crossover Operation

for(the number of test case times)
if(until the point of cross over)
new matrix first column = elements of selected
chromosomes
end if
else
do
until
initialize the n;
if(n crosses the number of test cases)
then set n to zero
set check true;
for(j from 0 to current index)
if(current chromosomes already in the new matrix)
set check to false
break;
end if
end for
end while if check is not true
new matrix first column = element of selected
chromosomes
end else
end for
for(the number of test case times)
if(until the point of cross over)
new matrix second column = elements of selected
chromosomes

end if
else
do until
initialize the n;
if(n crosses the number of test cases)
then set n to zero
set check true;
for(j from 0 to current index)
if(current chromosomes already in the new matrix)
set check to false
break;
end if ;end for
end while if check is not true
new matrix second column = element of selected
chromosomes
end else
end for

8.4. Mutation Operation

srand(time(NULL));
generate first random number
do
set check true
generate second random number;
if(the two random numbers are same)
set check to false
break;
end while if check is not true
Swap the execution order for first child
Swap the execution order for second child

9. PERFORMANCE ANALYSIS

 For performance analysis we use some random
chromosomes it then uses a fitness function and
checks how at an average is the fitness of each
chromosomes, we observe that in the beginning or
otherwise called first generation are shown in the
Table 5, at an average the fitness value of the
chromosomes is very poor, in order to improve the
fitness at an average it uses the genetic algorithm, its
main postulate being “the survival of the fittest”, this
algorithm mimics the nature and produces the best
optimum solution. Amongst many operations
available in the genetic algorithm cross over and
mutation are the two that is implemented, the two
produces a fairly good outcome. The output which is
produced by the chromosome has the fitness function
as in Table 6.

T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013

979 Science Publications

JCS

 If the average fitness value of the chromosomes are
found it comes out to be 190.6 fitness values. With above
fitness value we search two best parents and perform
cross over for fixed amount of times, for instance with
five iteration we get the following output. The
chromosomes fitness values are shown in Table 7.
 Now after the implementation of genetic algorithm
if we find the average fitness value of the below
execution sequence the fitness value comes out to be
205.6. The best execution sequence of the chromosomes
are shown in the Table 8.

Table 5. First generation
E1 E2 E3 E4 E5
T5 T8 T9 T3 T2
T2 T7 T1 T4 T4
T7 T3 T8 T1 T6
T8 T5 T2 T10 T8
T9 T1 T7 T12 T10
T3 T12 T3 T11 T12
T1 T4 T6 T9 T1
T10 T11 T4 T8 T3
T12 T6 T5 T7 T5
T11 T10 T12 T2 T7
T4 T2 T10 T5 T9
T6 T9 T11 T6 T11

Table 6. Fitness function
Chromosomes E1 E2 E3 E4 E5
Fitness value 208 178 216 162 189

Table 7. Fitness values
Chromosomes E1 E2 E3 E4 E5
Fitness value 208 216 202 206 196

Table 8. Final generation
F1 F2 F3 F4 F5
T5 T9 T9 T5 T9
T2 T1 T1 T2 T1
T7 T8 T8 T7 T8
T8 T2 T7 T8 T7
T9 T7 T12 T12 T11
T3 T3 T4 T4 T4
T1 T6 T11 T11 T12
T10 T4 T6 T6 T10
T12 T5 T10 T9 T6
T11 T12 T2 T3 T5
T4 T10 T3 T10 T2
T6 T11 T5 T1 T3

Table 9. Fitness value
Iteration 1 2 3 4 5 6
Average fitness 190.6 201.6 205 205.6 200 205.6

 On performing five iterations and finding the
fitness value we get the following result are shown in
the Table 9.
Plotting graph for the above result we get the following
curve, which suggest the genetic algorithm does not
always guarantee the answer.

10. CONCLUSION

 Here the genetic algorithm is applied on the test
cases with their execution history. We used a fitness
function which gives higher value if a test case covers
more line of code and a test case which has higher fitness
value is provide higher priority in ordered sequence.
When we applied genetic algorithm a large number of
time we will get a nearly optimized solution. The input
given to the genetic algorithm is a set of chromosomes
and the chromosomes are set of test cases with the
execution history, below is an instance of chromosome:

T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12

 We consider a random execution sequence
generated by random number generator function
available in stdlib library (c language) the sequence so
generated becomes one chromosomes, we use five
chromosomes, generates the fitness of each chromosomes
and then the average fitness value is found. In the first
generation the average fitness value comes out to be
190.6, we use iteration value five as a fixed terminating
condition, after the fifth iteration we find that the
average fitness value of the population becomes 205.6 a
much better one than the first generation.

Fig. 1. Fitness plot for each iteration

T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013

980 Science Publications

JCS

This means that the final population has a set of
chromosomes, whose execution sequence is nearly the
best optimum solution are shown in the Fig. 1. We
considers a random terminating value, we can perform
analysis on bench mark problems and derive the
terminating criteria by which we can find the least
iteration value that will provide guarantee the near
optimal solution.

11. REFERENCES

Andrews, J. and T. Sasikala, 2012. An effective
orchestration algorithms pertained to benchmark
applications. Natl. J. Adv. Comput. Manage., 3: 1-5.

Binkley, D. and L. College, 1997. Semantics guided
regression test cost reduction. IEEE Trans. Soft.
Eng., 23: 498-516. DOI: 10.1109/32.624306

Canessane, R.A. and S. Srinivasan, 2013. Framework for
analyzing the system quality.

Guillaumier, K., 2003. Generic chromosome
representation and evaluation for genetic algorithms.
University of Malta.

Huang, Y., 2010. Hypergraph based visual categorization

and segmentation. The State University of New
Jersey.

Islam, M.M., 2012. MOTCP: A tool for the prioritization of
test cases based on a sorting genetic algorithm and
Latent Semantic Indexing. Proceedings of the 28th
IEEE International Conference on Software
Maintenance, Sept. 23-28, IEEE Xplore Press, Trento,
pp: 654-657. DOI: 10.1109/ICSM.2012.6405346

Jacob, T.P. and T. Ravi, 2013a. Detecting of software
source code defects using test case prioritization
rules. Proceedings of the 2nd International
Conference on Latest Computational Technologies,
(CT’ 13), London.

Jacob, T.P. and T. Ravi, 2013b. Regression testing: Tabu
search technique for code coverage. Ind. J. Comput.
Sci. Eng.

Kapfhammer, G.M., 2007. A comprehensive framework
for testing database-centric applications. PhD
Thesis, Pennsylvania State University.

Sabharwal, S., 2011. A genetic algorithm based approach
for prioritization of test case scenarios in static
testing. Proceedings of the 2nd International
Conference on Computer and Communication
Technology, Sept. 15-17, IEEE Xplore Press,

Allahabad, pp: 304-309. DOI:
10.1109/ICCCT.2011.6075160

Sampath, S., 2008. Prioritizing user-session-based test
cases for web applications testing. Proceedings of
the 1st International Conference on Software
Testing, Verification and Validation, Apr. 9-11,
IEEE Xplore Press, Lillehammer, pp: 141-150. DOI:

10.1109/ICST.2008.42
Sastry, K., 2007. Genetic algorithms and genetic

programming for multiscale modeling: Applications
in materials science and chemistry and advances in
scalability. Ph.D. Thesis, University of Illinois at
Urbana-Champaign.

Smith, A.M., 2009. An empirical study of incorporating
cost into test suite reduction and prioritization.
Proceedings of the 24th Symposium on Applied
Computing, Mar. 08-12, Honolulu, HI., pp: 461-467.
DOI: 10.1145/1529282.1529382

Zhong, H., 2008. An experimental study of four typical
test suite reduction techniques. Inform. Software
Technol., 50: 534-546. DOI:

10.1016/j.infsof.2007.06.003

