Journal of Computer Science 9 (8): 972-980, 2013

ISSN: 1549-3636

© 2013 Science Publications

doi:10.3844/jcssp.2013.972.980 Published Onling) 2013 (http://www.thescipub.com/jcs.toc)

OPTIMIZATION OF TEST CASESBY PRIORITIZATION

7. Prem Jacob and °T. Ravi

1Department of CSE, Sathyabama University, Cherndia
2Department of CSE, Srinivasa Institute of Enginegand Technology, Chennai, India

Received 2013-06-10, Revised 2013-06-12; Accepte@-DF104
ABSTRACT

Regression testing is testing the software in ordemake sure that the modification made on the
program lines does not affect the other parts efsbftware, it is in maintenance phase and accdants
80% of the maintenance cost and thus optimizingesgon testing is one of the prime motives of
software testers. Here we take the advantage eftsed) test case information available in regrassio
testing and prioritize them based on the numbanaodified lines covered by the test case, the taséc
which covers the most number of modified lines theshighest priority and is executed first and dhe
with the least coverage of modified lines has thedst priority and is executed last provided dewlli
time is not reached, thus even if the testing is firoshed we will have covered maximum modified
lines, the prioritization of the test cases areedosing the genetic algorithm, the genetic algaritakes
test case information from regression testing pstiand produces a sequence of test case to bategec
such that the maximum number of modified code iseced.

Keywords. Regression Testing, Test Case, Genetic Algorithest Buite

1.INTRODUCTION no loss in the ability of a minimized test suiteréwveal
faults in comparison to its non-minimized origirzaher
Software testing requires resources and consumegmpirical evidence shows that the fault detection
30-50% of the total cost of development. It is iagiical ~ capabilities of test suites can be severely comjzed
to repeatedly test the software by executing a ¢et®p by minimization (Sampath, 2008). Because test case
set of test cases under resource constraints (Zhongprioritization techniques do not themselves discmst
2008). Because of these reason researches havgases, they can avoid the drawbacks that can edvem
considered various methods for reducing the cost ofregression test selection and test suite mininumpati
regression testing, this includes test case mimtiua discard test cases (Islam, 2012). Alternativelycases
and regression test selection, test suite mininoizat where the discarding of test cases is acceptgﬂﬂe;:ase
techniques lower cost by reducing a test suite to aprioritization can be used in conjunction with reggion
minimal subset that maintains equivalent coverdgbe® test selection or test suite minimization technijue
original test suite with respect to a particulastte prioritize the test cases in the selected or mirémiitest
adequacy criterion, regression test selection naetho suite (Kapfhammer, 2007).
reduces the cost of regression testing by selecimg

appropriate subset of the existing test suite dase 2. RELATED WORK
information about the program, modified versionc@la
and Ravi, 2013a). Test suite minimization methodd a Huang (2010) has proposed a cost cognizant test

Regression test selection, however, can have diba case prioritization technique based on the usdsbbific
(Smith, 2009). For example, although some empiricalrecords and genetic algorithm. They run a contiolle
evidence indicates that, in certain cases, theliglés or experiment to evaluate the proposed technique’s
Corresponding Author: T. Prem JacotDepartment of CSE, Sathyabama University, Chernndia

////A Science Publications 972 165

T. Prem Jacob and T. Ravi/ Journal of Computer $eién(8): 972-980, 2013

effectiveness. This technique however does not takeThe strings which are candidate solutions to ttercse
care of the test cases similarity. Sabharwal (201§ problem are referred to as chromosomes, the alphabe
proposed a technique for prioritization test case are referred to as genes and the values of geaesbed
scenarios derived from activity diagram using the alleles (Sabharwal, 2011). Unlike traditional séarc
concept of basic information flow metric and geoeti Methods, genetic algorithms rely on a population of
algorithm. Sabharwal (2011) has generated prieitiz candidate solutions. Once the proplem is encoded in
test case in static testing using genetic algorithhey ~ chromosomal manner and a fitness measure for
have applied a similar approach as to prioritiz tase discriminating good solutions from ba}d ones hasnbee
scenarios derived from source code in static tgstin chosen, we can start to evolve solutions to theckea
Andrews and Sasikala (2012) has applied geneticprObIem using the following steps.

algorithm for randomized unit testing to figure dhe 4.1. Initialization

best suitable test cases. Mohsen FallahRad hagdppl
common genetic and bacteriological algorithm for
optimizing testing data in mutation testing.

3. PROBLEM DEFINITION

The initial population of candidate solutions is
usually generated randomly across the search space.

4.2. Evaluation

Once the population is initialized the fithessues

Prioritization (orderings) of T and f are a furusti of the candidate solutions are evaluated.

that, applied to any such ordering, yields an award4.3. Selection
value to that ordering. For simplicity and withdass
of generality, the definition assumes that higheaal
values are preferable to lower ones. For given fEsa
suite, PT, the set of permutations of T and f, a
function from PT to the real number. Our aim is to 4.4. Recombination
find T'0 PT such that:

Selection allocates more copies of those solutions
with higher fitness values and imposes the survi¥al
the-fittest mechanism on the candidate solutions.

Recombination combines parts of two or more
i~ , parental solutions to create new, possibly betiertions
(ar)) E;r(?P'::() . (i.e., offspring).
T 2T T) =2 (T
4.5. Mutation

To measure the success of a prioritization teahaiq While recombination operates on two or more

in meeting the goal, we must describe the goalparental chromosomes, mutation locally but randomly
quantitatively. Depending upon the choice of f, thst modifies a solution.

case prioritization problem may be intractableslalso
possible to integrate test case prioritization with 4.6. Replacement

regression test selection or test suite minimizatio The offspring population created by selection,
techniques (Jacob and Ravi, 2013b). Alternativélg, recombination and mutation replaces the original
might prioritize test cases in terms of their isi®g parental population. Repeat steps from evolution to
cost-per-coverage of features listed in a requirdme replacement until a terminating condition is met.
specification. We restrict our attention, focusiog

general test case prioritization in application to 5. PROPOSED METHODOLOGY
regression testing, independent of regression test

selection and test suite minimization (Canessand an Genetic algorithm is stochastic search technique,

Srinivasan, 2013; Andrews and Sasikala, 2012). which is based on the idea of selection of theedttt
chromosome. Fitness of the chromosome can be define
4. GENETIC ALORITHM by a suitable objective function. Genetic algoritbarry

out a multidimensional search by maintaining pofoia
Genetic Algorithms (GAs) are search methods basechf potential user, random methods consisting of a
on principles of natural selection and genetics.sGA combination of iterative search methods and simple
encodes the decision variables of a search problemn random search methods can find a solution for argiv
finite-length strings of alphabets of certain caddity. problem. The steps of genetic algorithm are.

////A Science Publications 973 JCS

T. Prem Jacob and T. Ravi/ Journal of Computer $eién(8): 972-980, 2013

Table 1. Test case execution history

Test case ID A B C Expected output Execution history

T1 30 20 40 Obtuse angle triangle 8,9,10,11,12,13

T2 30 20 40 Obtuse angle triangle 8,9,10,11,124185116,17

T3 30 20 40 Obtuse angle triangle 10,11,12,13

T4 30 20 40 Obtuse angle triangle 10,11,12,13,1246180,21,22

T5 30 20 40 Obtuse angle triangle 12,13,14,15,181202

T6 30 20 40 22,23,24,25,28

T7 30 20 40 Obtuse angle triangle 5,6,7,8,9,102,13,14,15,16,
20,21,15, 16,20,21,35

T8 - - -

T9 30 20 40 5,6,7,8,9,10,11,12,13,14,15,16,
20,21,15,16,20,12,35

T10 30 20 40 18,19,20,21,35

T11 30 20 40 Obtuse angle triangle 24,25

T12 30 20 40 Obtuse angle triangle 15,16,20,21

5.1. Generate Population Fitness value (F) £ {order * (hnumber of modified

. . . lines covered by test cases)}.
Initially population is randomly selected and

encoded. Each chromosome represents the possible.2. Crossover

solution of the problem. Here one can use one point cross over with

5.2. Evaluate the Fitness crossover probability Pc=033. _
Crossover Probability = Fitness Function of
Fitness of the chromosome can be defined by theChromosome3/Fitness Function.
objective function. This objective function genesata .
real number from the input chromosome. Based o thi 6.3. Mutation
number two or more chromosome can be compared. Here we will use mutation probability Pm = 0.2. It
. means that 20% of the genes will be muted within a
5.3. Apply Selection chromosomeTable 1 tells us which test case covers
In genera| the selection is depending on the which line code. ThIS i_S helpful later on when weoWw
fitness value of the chromosome. The chromosometh® number of modified lines, we can compare the
with higher or lower value will be selected based o ggglkz)ert th_rgﬁdt';'stdcggzsc‘c’)v't:rsatr’:c‘)’; 'rrr‘]‘;‘))(;?:golr‘o é‘snd
L ut whi \% ified i
the problem definition. code (Sastry, 2007). Assume that lines 5, 8, 10,205
5.4. Apply Crossover and Mutation 23, 28, 35 are modified and the modified lines ofle
p ¢ h q doml bined. Thi covered by each test case are shown inTidde 2. It
arents are chosen and rancomly combin€d. 1N, q5 the test cases which does not at all cover
technique for generating random chromosome 'Smodified lines of code though they cover lines. We
called crossover. limit only to prioritize the test cases based omber
6. TEST CASE OPTIMIZATION USING GA ?;Sggl_ﬂed lines a test case covers are showrhen t
, . . Now we apply genetic algorithm, on this data,
Let's say a program h‘_"‘S test case suite T, nowef generate random number without repetition and tour i
can make modification in the program p, supposee following column, these pattern of random numbe
modified program is P’, so in order to test progrBm \yqid represent chromosomes and we would have
one can generate a prioritize sequence of test desm chromosomes, el, €2, ... and so on and then weHind t
test case suite T, on the basis of the line of coddified fithess of each Chromosomesy find probabmty, m‘n‘
(Binkley and College, 1997). selection and recommend which chromosomes to be
6.1. Fitness Function taken into the popula-tion. Based on the randombarm
we came to know that the first random number
The following fitness function will be used. recommends the chromosomel which is represented as:

////A Science Publications 974 JCS

T. Prem Jacob and T. Ravi/ Journal of Computer $eién(8): 972-980, 2013

Table 2. Test case code coverage
Test Test Test Test Test Test Test Test Test Test Test Test

Statement casel case2 case3 case4 caseb5 caseseé7 case8 case9 case 10 case 11 case 12
5 X X

6 X X

7 X X

8 X X X X

9 X X X X

10 X X X X X X

11 X X X X X X

12 X X X X X X X

13 X X X X X X X

14 X X X X X

15 X X X X X X
16 X X X X
17 X

18 X

19 X

20 X X X X X X
21 X X X X X
22 X X X

23 X

24 X

25 X X

26 X

27

28 X

29

30

31

32

33

34

35 X X X

Table 3. Number of modified lines covered by the test case

Test case T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
Number of modified lines 2 4 1 3 2 2 5 2 4 1 0 2
Table 4. Using genetic algorithm on the same data

Fitness Normalized Cumulative Selection of
Chromosomes value value probability random numberRecommendation
T1->T2-> T3-> T4-> T5->T6->T7->
T8->T9->T10->T11-> T11->T12 196 196/573=0.342 342 0.3 Chromosomes el
T2->T4->T6->T8->T10->T12->
T1->T3->T5-> T7->T9->T11 189 189/573 = 0.329 0.671 0.4 Chromosomes e2
T5->T6->T8->T9->T12->T1->
T7->T11->T2-> T3->T4->T10 188 188/573 = 0.328 1.000 0.2 Chromosomes el

(T1-T2-T3-T4-T5-T6-T7-T8-T9-T10-TL (T2-T4-T6-T8-T10-T12-T1-T3-T5.T7-T
1-T12) 9-T11)

Because the selected random number lies between 0- Because the random number lies between 0.342-
0.342. Second random number recommends the.671. The third random number recommends the
chromosome 2 which is represented as: chromosome 1 which is represented as:

///// Science Publications 975 JCS

T. Prem Jacob and T. Ravi/ Journal of Computer $eién(8): 972-980, 2013

(T1-T2-T3-T4-T5-T6-T7-T8-T9-T10-T1 is to be executed first then the order of the ¢ase will
1-.T12) be n, where n is the number of test case, NML islyer
of lines modified. E1, E2,.. are the chromosomes, t
Because the selected random number lies between Qenerate this random pattern we use rand() preesent
0.342. So now we have the following member in our stdlib of ¢ language, if “K” the random number
mating pool: generated it should satisfy this conditio= K, the other
condition is that the number should not repeats thwe
T1-T2-T3-T4-T5-T6-T7-T8-T9-T10-T1 calculate the total number of possibilities there amill

1-T12 have to calculate the value of N X (N-1) X (N-2)(X-
T2.T4.T6T8LT10.T12.T1oT30T5.T7T 3)....1 this value will be very large if N is largthus
9.,T11 genetic algorithm would much optimize the load iofif
T1-T2-T3-T4-T5.T6-T7-T8-T9-T10-T1 such a possibilities.
1-T12 7.2. GA Evaluation
Now we will apply the one point crossover on these Once the population is initialized, the fitnessues
chromosomes and will generate the new off springs: of the candidate solutions are evaluated. This here/

we attempt to identify the most successful memiodérs
T1oT2.T3.T4-T5.T6T7oT8oT9LT10-T1 the population and typically we accomplish thisngsa

1.T12 fithess function (Guillaumier, 2003):
T2-T4-T6-T8-T10-T12-T1oT35T55T7-T
9.T11 Order NML El E2 E3 E4 ES
T1.T2.T3.T4-T5.T6.T7-T8.TO.T10.T1 12 2 5 9
1.T12 11 4 4 4
10 6 8 2
When we apply one point crossover to the selectetiz g |S1) éo
population then we get these offspring’s: 7 1 > 1
6 0 10 12

T1-T2-T3-T4-T5-T6-T7-T9-T11-T8-T1

0-T12 The fit lculation is done f h ch
T2.T4-T6-T8-T10-T12-T1-T9-T11-T3- __'nefiiness caicuiation IS done for each chromasom
T5.T7 using the following formula:
T1-T2-T3-T4-T5.T6-T7-T9-T11-T8-T1 .
0-T12 fitnessviaue ofeachchromosome§ Order N
1

Suppose if the crossover probability is 0.3 them w)
select 2 chromosomes from the offspring and onm fro Here one can find the order and number of
the parents based on the fitness function valugs Th modified lines of each test cases in a test caserpa
process is repeated certain fixed number of ienation ~ Présent in a chromosomes, gives the fitness vaiue o
repeating this procedure multiple times, we wilt e particular chromosomes. Here for instance if orkeda

nearly optimum solution are shown in theble 4. the first chromosome el, then one has test case 5
scheduled to be executed first, test case 4 coruesd
7. STEP BY STEP PROCEDURE FOR thus, for first test case We take the value 5 ad@x it
in the array of matrix, this gives as the order and
GENETIC ALGORITHM number of the particular test case in column oné an
71. GA Initialization two, we find the product of order and number of

modified line test case 5 and it comes out to beag8
In this module sample population is initializetlid 8x6 then one can proceed with test case 4 it comes ou
generated randomly. Population is a collection of to be 63 and then we add 48+63, this process amagin
chromosomes. Each chromosome consists of genes in itill then end of all the test cases finally we dke
Here order is the priority of the test case, if tbst case fitness of chromosomes el and we calculate forsel-e

////A Science Publications 976 JCS

T. Prem Jacob and T. Ravi/ Journal of Computer $eién(8): 972-980, 2013

7.3. GA Sdlection mutation, it is believed to improve the fitnessrifitation

_ . . is done once in certain iteration and not all:
In the selection process typically we call thadis

functionto identify the individuals that we use to create E2 E4
the next generation. We calculate the probabilitgl a T8 T3
cumulative probability of the population by therfarla: T7 T4
m11 T8
Probablilty of achromosonre T5 T10
Fitness of the particular chromoson T1 T12
Z(ﬁtness of all chromosomes) T12 T11
T4 T9
Cumulative probability of ith chromoson |T3 T]J
ith T7 T6
= probability T2 10
' T5 T2
- . . T6 T9
After finding the cumulative probability, one use
roulette wheel technique to find the parents, st tne 8. PSEUDO-CODE FOR GENETIC
can perform crossover and mutation operation. ALGORITHM
7.4. GA Crossover _
Begin
Recombination combines parts of two or more T<-0
parental solutions to create new, possibly betterinitialise P(t)
solutions. Consider that the following two chromoss while (not termination condition)
(e1, e2) were selected to be the fittest amongsfitie Evaluate P(t)
chromosomes. The execution sequence of these two Select P(t+1) from P(t)
chromosomes: Crossover P(t+1)
Mutate P(t+1)
E2 T8 T7 T3 T5 T1 T12 T4 T11T6 T10 T2 T9 t<-t+l
E4 T3 T4 T1 T10T12T11 T9 T8 T7 T2 T5 T6 endwhile
end procedure
In one point cross over one generates the a randong 1 Evaluation Operation
number smaller than the number of test cases, ¢dhen o
can take that random number of point of crossowee, ~ Test info is an array that stores all the necgssar
calculate the cross over probability: information of a test case represents the chromesom

Fitness is variable that stores fitness value of
chromosomes. Fitar is an array that stores theditn

E2 T8 T7 T3T5 T1 T12 T4 T11T7 T2 T5T6 | -\ e of each chromosome:

E4 T3 T4 T1 T1I0T12 T11 T9 T8 T6 T10 T2 T9

) Fitness<-0
7.5. GA Mutation Order starts from number of test cases
for (each number of test case)

While recombination operates on two or more TID<-testinfo[i][¢]

parental chromosomes, mutation locally but randomlyFitness<-fitness+ (order*testinfo[TID-1][1])
modifies a solution. Considering the below chromme® 5 4er decremented by one

where cross over is already performed and supfuse t pyt the fitness value in fitar:

mutation probability is 0.16 then one can genetai increment

random numbers and then brings changes about thosend while

structure, if 3 and 8 are then number generateq tie . .

above chromosomes becomes. The structure thathe at 8.2. Selection Operation

index 3, index 8 that are swapped as a process ofor(number of chromosomes times)

///// Science Publications 977 JCS

T. Prem Jacob and T. Ravi / Journal of Computegréda 9 (8): 972-980, 2013

calculate the probability for each chromosomes;
sum of probability of each chromosomes;
calculate the cumulative probability of;

end for

for (two parents)

do

until

generate a random number;

check where the number lies in roulette wheel
Convert the generated number i.e., between 0-1
for(the number of chromosomes times)
if(number lies in-between 0 ,cumulative probab)lity
break;

else if(check where it lies in cumulative probdl)li
break; end for

Set Check true;

for (j<-0;j<i; increment j)

if (if number is already used)

set check to false

break; //no need to check other elements of crom[]
end while if check is not true

end for

8.3. Crossover Operation

for(the number of test case times)
if(until the point of cross over)
new matrix first column =
chromosomes

end if

else

do

until

initialize the n;

if(n crosses the number of test cases)

then set n to zero

set check true;

for(j from O to current index)

if(current chromosomes already in the new matrix)
set check to false

break;

end if

end for

end while if check is not true
new matrix first column =
chromosomes

end else

end for

for(the number of test case times)
if(until the point of cross over)
new matrix second column =
chromosomes

elements of selected

element of selected

////A Science Publications

978

end if

else

do until

initialize the n;

if(n crosses the number of test cases)

then set n to zero

set check true;

for(j from O to current index)

if(current chromosomes already in the new matrix)
set check to false

break;

end if ;end for

end while if check is not true
new matrix second column =
chromosomes

end else

end for

element of selected

8.4. Mutation Operation

srand(time(NULL));

generate first random number

do

set check true

generate second random number;
if(the two random numbers are same)
set check to false

break;

end while if check is not true

Swap the execution order for first child
Swap the execution order for second child

9. PERFORMANCE ANALYSIS

For performance analysis we use some random
chromosomes it then uses a fitness function and
checks how at an average is the fitness of each
chromosomes, we observe that in the beginning or
otherwise called first generation are shown in the
Table 5, at an average the fitness value of the
chromosomes is very poor, in order to improve the
fitness at an average it uses the genetic algorittsn
main postulate being “the survival of the fittestfjs
algorithm mimics the nature and produces the best
optimum solution. Amongst many operations
available in the genetic algorithm cross over and
mutation are the two that is implemented, the two
produces a fairly good outcome. The output which is

elements of selectedproduced by the chromosome has the fitness function

as inTable6.

JCS

T. Prem Jacob and T. Ravi / Journal of Computegréda 9 (8): 972-980, 2013

If the average fitness value of the chromosomes ar On performing five iterations and finding the
found it comes out to be 190.6 fitness values. \Wiihve fitness value we get the following result are shdwn
fithess value we search two best parents and merfor the Table9.

cross over for fixed amount of times, for instamzéh Plotting graph for the above result we get theofwihg
five iteration we get the following output. The curve, which suggest the genetic algorithm does not
chromosomes fitness values are showhahle 7. always guarantee the answer.

Now after the implementation of genetic algorithm
if we find the average fitness value of the below 10. CONCLUSION
execution sequence the fitness value comes outeto b
205.6. The best execution sequence of the chromesom Here the genetic algorithm is applied on the test
are shown in th&able 8. cases with their execution history. We used a $igne

function which gives higher value if a test caseers

Table5. First generation more line of code and a test case which has hiifhess
El E2 E3 E4 ES value is provide higher priority in ordered sequenc
T5 T8 9 T3 T2 When we applied genetic algorithm a large number of
T2 T7 Tl T4 T4 time we will get a nearly optimized solution. Theput
T7 T3 T8 T1 T6

given to the genetic algorithm is a set of chromoss

T8 ik T2 T10 T8 and the chromosomes are set of test cases with the
T9 T1 T7 T12 T10 tion hist bel . inst fch

T3 T1o T3 11 T12 execution history, below is an instance of chromoso

T1 T4 T6 T9 T1

T10 T11 T4 T8 T3 T1-T2-T3-T4-T5-T6-T7-T85T9-T10-T1

T12 T6 T5 T7 T5 1-T12

T11 T10 T12 T2 T7

T4 I2 T10 TS T We consider a random execution sequence
T6 T9 T11 T6 T11

generated by random number generator function

Table 6. Fitness function available in stdlib library (c language) the seqeeso

generated becomes one chromosomes, we use five
chromosomes, generates the fitness of each chronesso
and then the average fitness value is found. nfifst

Chromosomes E1l E2 E3 E4 E5
Fitness value 208 178 216 162 189

) eneration the average fitness value comes outeto b
Table 7. Fitness values 9 9

190.6, we use iteration value five as a fixed teating

Chromosomes E1 E2 E3 E4 ES condition, after the fifth iteration we find thahet

Fitness value 208 216 202 206 196

average fitness value of the population becomes6285

Table 8. Final generation much better one than the first generation.

F1 F2 F3 F4 F5 A

T5 T9 T9 T5 T9

T2 T1 T1 T2 T1 .

T7 T8 T8 T7 T8

T8 T2 T7 T8 T7 210 1

T9 T7 T12 T12 T11 2 505

T3 T3 T4 T4 T4 B -

T1 T6 T11 T11 T12 = 200 -

T10 T4 T6 T6 T10 £

T12 T5 T10 T9 T6 Z 195 4

T11 T12 T2 T3 T5 X

T4 T10 T3 T10 T2 190 1

T6 T11 T5 T1 T3 " T ' ; —
0 1 2 3 4 5

Table 9. Fitness value Iteration

Iteration 1 2 3 4 5 6

///// Science Publications 979 JCS

T. Prem Jacob and T. Ravi / Journal of Computegréda 9 (8): 972-980, 2013

This means that the final population has a set ofJacob, T.P. and T. Ravi, 2013b. Regression tesfTialgu
chromosomes, whose execution sequence is nearly the search technique for code coverage. Ind. J. Comput.
best optimum solution are shown in thég. 1. We Sci. Eng.

considers a random terminating value, we can parfor Kapfhammer, G.M., 2007. A comprehensive framework
analysis on bench mark problems and derive the for testing database-centric applications. PhD

terminating criteria by which we can find the least Thesis, Pennsylvania State University.
iteration value that will provide guarantee the mea Sabharwal, S., 2011. A genetic algorithm basedasubr
optimal solution. for prioritization of test case scenarios in static
testing. Proceedings of th@nd International
11. REFERENCES Conference on Computer and Communication
Technology, Sept. 15-17, IEEE Xplore Press,
Andrews, J. and T. Sasikala, 2012. An effective Allahabad, pp: 304-309. DOl

orchestration algorithms pertained to benchmark ~ 10.1109/ICCCT.2011.6075160 _
applications. Natl. J. Adv. Comput. Manage., 3.1-5 Sampath, S., 2008. Prioritizing user-session-basetl
Binkley, D. and L. College, 1997. Semantics guided cases for web applications testing. Proceedings of

regression test cost reductiofEEE Trans. Soft. the 1st International Conference oBoftware
Eng., 23: 498-510I: 10.1109/32.624306 Testing, Verification and ValidationApr. 9-11,
Canessane, R.A. and S. Srinivasan, 2013. Framef@ork IEEE Xplore Presd,illehammer, pp: 141-150. DOL:

10.1109/ICST.2008.42

Sastry, K., 2007. Genetic algorithms and genetic
programming for multiscale modeling: Applications
in materials science and chemistry and advances in

analyzing the system quality.
Guillaumier, K., 2003. Generic chromosome
representation and evaluation for genetic algorithm

University of Malta. . . , d L
Huang, Y., 2010. Hypergraph based visual categiwiza fjcrggr?glgha?bgig;hegs, University of lliinoist a

and segmentationThe State University of New gmjth A.M., 2009. An empirical study of incorpdrag

Jersey. o cost into test suite reduction and prioritization.
Islam, M.M., 2012. MOTCP: A tool for the priorititan of Proceedings of the 24th Symposium on Applied

test cases based on a sorting genetic algorithm and Computing, Mar. 08-1Zionolulu, HI., pp461-467.

Latent Semantic Indexing. Proceedings of the 28th DOI: 10.1145/1529282.1529382

IEEE International Conference onSoftware Zhong, H., 2008. An experimental study of four tai

MaintenanceSept. 23-28, IEEE Xplore Pregsgento, test suite reduction techniques. Inform. Software

pp: 654-657. DOI10.1109/ICSM.2012.6405346 Technol., 50: 534-546. DOl
Jacob, T.P. and T. Ravi, 2013a. Detecting of saftwa 10.1016/j.infsof.2007.06.003

source code defects using test case prioritization

rules. Proceedings of the 2nd International

Conference on Latest Computational Technologies,

(CT’ 13), London.

////A Science Publications 980 JCS

