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ABSTRACT 

Regression testing is testing the software in order to make sure that the modification made on the 
program lines does not affect the other parts of the software, it is in maintenance phase and accounts for 
80% of the maintenance cost and thus optimizing regression testing is one of the prime motives of 
software testers. Here we take the advantage of selecting test case information available in regression 
testing and prioritize them based on the number of modified lines covered by the test case, the test case 
which covers the most number of modified lines has the highest priority and is executed first and the one 
with the least coverage of modified lines has the lowest priority and is executed last provided deadline 
time is not reached, thus even if the testing is not finished we will have covered maximum modified 
lines, the prioritization of the test cases are done using the genetic algorithm, the genetic algorithm takes 
test case information from regression testing as input and produces a sequence of test case to be executed 
such that the maximum number of modified code is covered. 
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1. INTRODUCTION 

 Software testing requires resources and consumes 
30-50% of the total cost of development. It is impractical 
to repeatedly test the software by executing a complete 
set of test cases under resource constraints (Zhong, 
2008). Because of these reason researches have 
considered various methods for reducing the cost of 
regression testing, this includes test case minimization 
and regression test selection, test suite minimization 
techniques lower cost by reducing a test suite to a 
minimal subset that maintains equivalent coverage of the 
original test suite with respect to a particular test 
adequacy criterion, regression test selection method 
reduces the cost of regression testing by selecting an 
appropriate subset of the existing  test suite based on 
information about the program, modified version (Jacob 
and Ravi, 2013a). Test suite minimization methods and 
Regression test selection, however, can have drawbacks 
(Smith, 2009). For example, although some empirical 
evidence indicates that, in certain cases, there is little or 

no loss in the ability of a minimized test suite to reveal 
faults in comparison to its non-minimized original other 
empirical evidence shows that the fault detection 
capabilities of test suites can be severely compromised 
by minimization (Sampath, 2008). Because test case 
prioritization techniques do not themselves discard test 
cases, they can avoid the drawbacks that can occur when 
regression test selection and test suite minimization 
discard test cases (Islam, 2012). Alternatively, in cases 
where the discarding of test cases is acceptable, test case 
prioritization can be used in conjunction with regression 
test selection or test suite minimization techniques to 
prioritize the test cases in the selected or minimized test 
suite (Kapfhammer, 2007).  

2. RELATED WORK 

 Huang (2010) has proposed a cost cognizant test 
case prioritization technique based on the use of historic 
records and genetic algorithm. They run a controlled 
experiment to evaluate the proposed technique’s 
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effectiveness. This technique however does not take 
care of the test cases similarity. Sabharwal (2011) has 
proposed a technique for prioritization test case 
scenarios derived from activity diagram using the 
concept of basic information flow metric and genetic 
algorithm. Sabharwal (2011) has generated prioritized 
test case in static testing using genetic algorithm. They 
have applied a similar approach as to prioritize test case 
scenarios derived from source code in static testing. 
Andrews and Sasikala (2012) has applied genetic 
algorithm for randomized unit testing to figure out the 
best suitable test cases. Mohsen FallahRad has applied 
common genetic and bacteriological algorithm for 
optimizing testing data in mutation testing. 

3. PROBLEM DEFINITION 

 Prioritization (orderings) of T and f are a function 
that, applied to any such ordering, yields an award 
value to that ordering. For simplicity and without loss 
of generality, the definition assumes that higher award 
values are preferable to lower ones. For given T, a test 
suite, PT, the set of permutations of T and f, a 
function from PT to the real number. Our aim is to 
find T’∈ PT such that: 
 

(∀T’’) (T’’ ∈ PT’) 
(T’’ ≠ T’)  [f (T’) ≥ f(T’’)] 

 
 To measure the success of a prioritization technique 
in meeting the goal, we must describe the goal 
quantitatively. Depending upon the choice of f, the test 
case prioritization problem may be intractable. It is also 
possible to integrate test case prioritization with 
regression test selection or test suite minimization 
techniques (Jacob and Ravi, 2013b). Alternatively, we 
might prioritize test cases in terms of their increasing 
cost-per-coverage of features listed in a requirements 
specification. We restrict our attention, focusing on 
general test case prioritization in application to 
regression testing, independent of regression test 
selection and test suite minimization (Canessane and 
Srinivasan, 2013; Andrews and Sasikala, 2012). 

4. GENETIC ALORITHM 

 Genetic Algorithms (GAs) are search methods based 
on principles of natural selection and genetics. GAs 
encodes the decision variables of a search problem into 
finite-length strings of alphabets of certain cardinality. 

The strings which are candidate solutions to the search 
problem are referred to as chromosomes, the alphabets 
are referred to as genes and the values of genes are called 
alleles (Sabharwal, 2011). Unlike traditional search 
methods, genetic algorithms rely on a population of 
candidate solutions. Once the problem is encoded in a 
chromosomal manner and a fitness measure for 
discriminating good solutions from bad ones has been 
chosen, we can start to evolve solutions to the search 
problem using the following steps. 

4.1. Initialization 

 The initial population of candidate solutions is 
usually generated randomly across the search space.  

4.2. Evaluation 

 Once the population is initialized the fitness values 
of the candidate solutions are evaluated. 

4.3. Selection 

 Selection allocates more copies of those solutions 
with higher fitness values and imposes the survival-of-
the-fittest mechanism on the candidate solutions. 

4.4. Recombination 

 Recombination combines parts of two or more 
parental solutions to create new, possibly better solutions 
(i.e., offspring).  

4.5. Mutation 

 While recombination operates on two or more 
parental chromosomes, mutation locally but randomly 
modifies a solution.  

4.6. Replacement 

 The offspring population created by selection, 
recombination and mutation replaces the original 
parental population. Repeat steps from evolution to 
replacement until a terminating condition is met. 

5. PROPOSED METHODOLOGY 

 Genetic algorithm is stochastic search technique, 
which is based on the idea of selection of the fittest 
chromosome. Fitness of the chromosome can be defined 
by a suitable objective function. Genetic algorithm carry 
out a multidimensional search by maintaining population 
of potential user, random methods consisting of a 
combination of iterative search methods and simple 
random search methods can find a solution for a given 
problem. The steps of genetic algorithm are. 
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Table 1. Test case execution history 
Test case ID A B C Expected output Execution history 
T1 30 20 40 Obtuse angle triangle 8,9,10,11,12,13 
T2 30 20 40 Obtuse angle triangle 8,9,10,11,12,13,14,15,16,17 
T3 30 20 40 Obtuse angle triangle 10,11,12,13 
T4 30 20 40 Obtuse angle triangle 10,11,12,13,14,15,16,20,21,22 
T5 30 20 40 Obtuse angle triangle 12,13,14,15,16,20,21,22 
T6 30 20 40  22,23,24,25,28 
T7 30 20 40 Obtuse angle triangle 5,6,7,8,9,10,11,12,13,14,15,16, 
     20,21,15, 16,20,21,35 
T8 - - - 
T9 30 20 40  5,6,7,8,9,10,11,12,13,14,15,16, 
     20,21,15,16,20,12,35 
T10 30 20 40  18,19,20,21,35 
T11 30 20 40 Obtuse angle triangle 24,25 
T12 30 20 40 Obtuse angle triangle 15,16,20,21 

 
5.1. Generate Population 

 Initially population is randomly selected and 
encoded. Each chromosome represents the possible 
solution of the problem.  

5.2. Evaluate the Fitness 

 Fitness of the chromosome can be defined by the 
objective function. This objective function generates a 
real number from the input chromosome. Based on this 
number two or more chromosome can be compared. 

5.3. Apply Selection 

 In general the selection is depending on the 
fitness value of the chromosome. The chromosome 
with higher or lower value will be selected based on 
the problem definition. 

5.4. Apply Crossover and Mutation 

 Parents are chosen and randomly combined. This 
technique for generating random chromosome is 
called crossover.  

6. TEST CASE OPTIMIZATION USING GA 

 Let’s say a program has test case suite T, now if one 
can make modification in the program p, suppose 
modified program is P’, so in order to test program P’ 
one can generate a prioritize sequence of test cases from 
test case suite T, on the basis of the line of code modified 
(Binkley and College, 1997).  

6.1. Fitness Function 

 The following fitness function will be used. 

 Fitness value (F) = Σ {order * (number of modified 
lines covered by test cases)}. 

6.2. Crossover 

 Here one can use one point cross over with 
crossover probability Pc = 0.33. 
 Crossover Probability = Fitness Function of 
Chromosomes/∑Fitness Function. 

6.3. Mutation 

 Here we will use mutation probability Pm = 0.2. It 
means that 20% of the genes will be muted within a 
chromosome. Table 1 tells us which test case covers 
which line code. This is helpful later on when we know 
the number of modified lines, we can compare the 
number of modified lines with above information and 
sort out which test case covers most modified lines of 
code (Sastry, 2007). Assume that lines 5, 8, 10, 15, 20, 
23, 28, 35 are modified and the modified lines of code 
covered by each test case are shown in the Table 2. It 
shows the test cases which does not at all cover 
modified lines of code though they cover lines. We 
limit only to prioritize the test cases based on number 
of modified lines a test case covers are shown in the 
Table 3. 
 Now we apply genetic algorithm, on this data, 
generate random number without repetition and put it in 
the following column, these pattern of random number 
would represent chromosomes and we would have 
chromosomes, e1, e2, … and so on and then we find the 
fitness of each chromosomes, find probability, perform 
selection and recommend which chromosomes to be 
taken into the popula-tion. Based on the random number 
we came to know that the first random number 
recommends the chromosome1 which is represented as: 
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Table 2. Test case code coverage 
 Test Test Test Test Test Test Test Test Test Test Test Test 
Statement case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 case 10 case 11 case 12 
5       X  X 
6       X  X 
7       X  X 
8 X X     X  X 
9 X X     X  X 
10 X X X X   X  X 
11 X X X X   X  X 
12 X X X X X  X  X 
13 X X X X X  X  X 
14  X  X X  X  X 
15  X  X X  X  X   X 
16  X  X X       X 
17  X 
18          X 
19          X 
20    X X  X  X X  X 
21    X X    X X  X 
22    X X X 
23      X 
24      X 
25      X     X 
26           X 
27 
28      X 
29 
30 
31 
32 
33 
34 
35       X  X X 
 
Table 3. Number of modified lines covered by the test case 
Test case T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 
Number of modified lines 2 4 1 3 2 2 5 2 4 1 0 2 
 
Table 4. Using genetic algorithm on the same data 
 Fitness Normalized Cumulative   Selection of  
Chromosomes value value probability random numbers Recommendation 
T1->T2-> T3-> T4-> T5->T6->T7-> 
T8->T9->T10->T11-> T11-> T12 196 196/573 = 0.342 0.342 0.3 Chromosomes e1 
T2->T4->T6->T8->T10->T12->  
T1->T3->T5-> T7->T9->T11 189 189/573 = 0.329 0.671 0.4 Chromosomes e2 
T5->T6->T8->T9->T12->T1-> 
T7->T11->T2-> T3->T4->T10 188 188/573 = 0.328 1.000 0.2 Chromosomes e1 
 
(T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12) 
 
 Because the selected random number lies between 0-
0.342. Second random number recommends the 
chromosome 2 which is represented as: 

(T2→T4→T6→T8→T10→T12→T1→T3→T5→T7→T
9→T11) 

 
 Because the random number lies between 0.342-
0.671. The third random number recommends the 
chromosome 1 which is represented as: 
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(T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1
1→T12) 

 
 Because the selected random number lies between 0-
0.342. So now we have the following member in our 
mating pool: 
 
T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12 
T2→T4→T6→T8→T10→T12→T1→T3→T5→T7→T

9→T11 
T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12 
 
 Now we will apply the one point crossover on these 
chromosomes and will generate the new off springs: 
 
T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12 
T2→T4→T6→T8→T10→T12→T1→T3→T5→T7→T

9→T11 
T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12 
 
 When we apply one point crossover to the selected 
population then we get these offspring’s: 
 
T1→T2→T3→T4→T5→T6→T7→T9→T11→T8→T1

0→T12 
T2→T4→T6→T8→T10→T12→T1→T9→T11→T3→

T5→T7 
T1→T2→T3→T4→T5→T6→T7→T9→T11→T8→T1

0→T12 
 
 Suppose if the crossover probability is 0.3 then we 
select 2 chromosomes from the offspring and one from 
the parents based on the fitness function value. This 
process is repeated certain fixed number of iterations, on 
repeating this procedure multiple times, we will get the 
nearly optimum solution are shown in the Table 4. 

7. STEP BY STEP PROCEDURE FOR 
GENETIC ALGORITHM 

7.1. GA Initialization 

 In this module sample population is initialized. It is 
generated randomly. Population is a collection of 
chromosomes. Each chromosome consists of genes in it. 
Here order is the priority of the test case, if the test case 

is to be executed first then the order of the test case will 
be n, where n is the number of test case, NML is number 
of lines modified. E1, E2,.. are the chromosomes, to 
generate this random pattern we use rand() present in 
stdlib of c language, if “K” the random number 
generated it should satisfy this condition K ≤ N, the other 
condition is that the number should not repeat, thus if we 
calculate the total number of possibilities then one will 
have to calculate the value of N X (N-1) X (N-2) X (N-
3)….1 this value will be very large if N is large, thus 
genetic algorithm would much optimize the load of find 
such a possibilities. 

7.2. GA Evaluation 

 Once the population is initialized, the fitness values 
of the candidate solutions are evaluated. This is where 
we attempt to identify the most successful members of 
the population and typically we accomplish this using a 
fitness function (Guillaumier, 2003): 
 
Order NML E1 E2 E3 E4 E5 
12 2 5 9 . . . 
11 4 4 4 . . . 
10 6 8 2 . . . 
9 7 9 10 . . . 
8 6 1 5 . . . 
7 1 2 11 . . . 
6 0 10 12 . . . 
 
 The fitness calculation is done for each chromosome 
using the following formula: 
 

n

1

fitness vlaue of each chromosomes Order NML= ×∑  

 
 Here one can find the order and number of 
modified lines of each test cases in a test case pattern 
present in a chromosomes, gives the fitness value of a 
particular chromosomes. Here for instance if one takes 
the first chromosome e1, then one has test case 5 
scheduled to be executed first, test case 4 comes second 
thus, for first test case We take the value 5 and index it 
in the array of matrix, this gives as the order and 
number of the particular test case in column one and 
two, we find the product of order and number of 
modified line test case 5 and it comes out to be 48 as 
8×6 then one can proceed with test case 4 it comes out 
to be 63 and then we add 48+63, this process continues 
till then end of all the test cases finally we get the 
fitness of chromosomes e1 and we calculate for e1-e5.   
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7.3. GA Selection 

 In the selection process typically we call the fitness 
function to identify the individuals that we use to create 
the next generation. We calculate the probability and 
cumulative probability of the population by the formula: 
 

Probabliltyof a chromosome

Fitness of the particular chromosomes

(fitness of all chromosomes)

=

∑

 

 

1

ith

Cumulative probability of ith chromosome

probability=∑
 

 
 After finding the cumulative probability, one use 
roulette wheel technique to find the parents, so that one 
can perform crossover and mutation operation. 

7.4. GA Crossover 

 Recombination combines parts of two or more 
parental solutions to create new, possibly better 
solutions. Consider that the following two chromosomes 
(e1, e2) were selected to be the fittest amongst the five 
chromosomes. The execution sequence of these two 
chromosomes: 
 
E2 T8 T7 T3 T5 T1 T12 T4 T11 T6 T10 T2 T9 
E4  T3  T4  T1  T10 T12 T11 T9 T8 T7 T2 T5 T6 
 
 In one point cross over one generates the a random 
number smaller than the number of test cases, then one 
can take that random number of point of crossover,  we 
calculate the cross over probability: 
 
E2 T8 T7 T3 T5 T1 T12 T4 T11 T7 T2 T5 T6 
E4 T3 T4 T1 T10 T12 T11 T9 T8 T6 T10 T2 T9 
 
7.5. GA Mutation 

 While recombination operates on two or more 
parental chromosomes, mutation locally but randomly 
modifies a solution. Considering the below chromosomes 
where cross over is already performed and suppose the 
mutation probability is 0.16 then one can generate two 
random numbers and then brings changes about those 
structure, if 3 and 8 are then number generated then the 
above chromosomes becomes. The structure that is at the 
index 3, index 8 that are swapped as a process of 

mutation, it is believed to improve the fitness if mutation 
is done once in certain iteration and not all: 
 

E2 E4 
T8 T3 
T7 T4 
T11 T8 
T5 T10 
T1 T12 
T12 T11 
T4 T9 
T3 T1 
T7 T6 
T2 10 
T5 T2 
T6 T9 

8. PSEUDO-CODE FOR GENETIC 
ALGORITHM 

Begin  
T<-0 
Initialise P(t) 
while (not termination condition) 
       Evaluate P(t) 
       Select P(t+1) from P(t) 
       Crossover P(t+1) 
       Mutate P(t+1)   
       t<-t+1  
end while  
end procedure  

8.1. Evaluation Operation 

 Test info is an array that stores all the necessary 
information of a test case represents the chromosomes. 
Fitness is variable that stores fitness value of 
chromosomes. Fitar is an array that stores the fitness 
value of each chromosome: 
 
Fitness<-0 
Order starts from number of test cases 
for (each number of test case) 
TID<-testinfo[i][e] 
Fitness<-fitness+ (order*testinfo[TID-1][1]) 
Order decremented by one 
Put the fitness value in fitar; 
increment j 
end while 

8.2. Selection Operation 

for(number of chromosomes times) 
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calculate the probability for each chromosomes; 
sum of probability of each chromosomes; 
calculate the cumulative probability of; 
end for 
for (two parents) 
do 
until 
generate a random number; 
check where the number lies in roulette wheel 
Convert the generated number i.e., between 0-1 
for(the number of chromosomes times) 
if(number lies in-between 0 ,cumulative probability) 
break; 
else if(check where it lies in cumulative probability) 
break; end for 
Set Check true; 
for (j<-0;j<i; increment j) 
if (if number is already used) 
set check to false 
break; //no need to check other elements of crom[] 
end while if  check is not true 
end for 

8.3. Crossover Operation 

for(the number of test case times) 
if( until the point of cross over) 
new matrix first column = elements of selected 
chromosomes 
end if 
else 
do 
until 
initialize the n; 
if(n crosses the number of test cases) 
then set n to zero 
set check true; 
for(j from 0 to current index) 
if(current chromosomes already in the new matrix) 
set check to false 
break; 
end if 
end for 
end while if check is not true 
new matrix first column = element of selected 
chromosomes 
end else 
end for 
for(the number of test case times) 
if( until the point of cross over) 
new matrix second column = elements of selected 
chromosomes 

end if 
else 
do until 
initialize the n; 
if(n crosses the number of test cases) 
then set n to zero 
set check true; 
for(j from 0 to current index) 
if(current chromosomes already in the new matrix) 
set check to false 
break; 
end if ;end for 
end while if check is not true 
new matrix second column = element of selected 
chromosomes 
end else 
end for 

8.4. Mutation Operation 

srand(time(NULL)); 
generate first random number 
do 
set check true 
generate second random number; 
if(the two random numbers are same) 
set check to false 
break; 
end while if  check is not true 
Swap the execution order for first child 
Swap the execution order for second child 

9. PERFORMANCE ANALYSIS 

 For performance analysis we use some random 
chromosomes it then uses a fitness function and 
checks how at an average is the fitness of each 
chromosomes, we observe that in the beginning or 
otherwise called first generation are shown in the 
Table 5, at an average the fitness value of the 
chromosomes is very poor, in order to improve the 
fitness at an average it uses the genetic algorithm, its 
main postulate being “the survival of the fittest”, this 
algorithm mimics the nature and produces the best 
optimum solution. Amongst many operations 
available in the genetic algorithm cross over and 
mutation are the two that is implemented, the two 
produces a fairly good outcome. The output which is 
produced by the chromosome has the fitness function 
as in Table 6. 



T. Prem Jacob and T. Ravi / Journal of Computer Science 9 (8): 972-980, 2013 

 
979 Science Publications

 
JCS 

 If the average fitness value of the chromosomes are 
found it comes out to be 190.6 fitness values. With above 
fitness value we search two best parents and perform 
cross over for fixed amount of times, for instance with 
five iteration we get the following output. The 
chromosomes fitness values are shown in Table 7. 
 Now after the implementation of genetic algorithm 
if we find the average fitness value of the below 
execution sequence the fitness value comes out to be 
205.6. The best execution sequence of the chromosomes 
are shown in the Table 8. 
 
Table 5. First generation 
E1 E2 E3 E4 E5 
T5 T8 T9 T3 T2 
T2 T7 T1 T4 T4 
T7 T3 T8 T1 T6 
T8 T5 T2 T10 T8 
T9 T1 T7 T12 T10 
T3 T12 T3 T11 T12 
T1 T4 T6 T9 T1 
T10 T11 T4 T8 T3 
T12 T6 T5 T7 T5 
T11 T10 T12 T2 T7 
T4 T2 T10 T5 T9 
T6 T9 T11 T6 T11 
 
Table 6. Fitness function 
Chromosomes E1 E2 E3 E4 E5 
Fitness value 208 178 216 162 189 
 
Table 7. Fitness values 
Chromosomes E1 E2 E3 E4 E5 
Fitness value 208 216 202 206 196 
 
Table 8. Final generation 
F1 F2 F3 F4 F5 
T5 T9 T9 T5 T9 
T2 T1 T1 T2 T1 
T7 T8 T8 T7 T8 
T8 T2 T7 T8 T7 
T9 T7 T12 T12 T11 
T3 T3 T4 T4 T4 
T1 T6 T11 T11 T12 
T10 T4 T6 T6 T10 
T12 T5 T10 T9 T6 
T11 T12 T2 T3 T5 
T4 T10 T3 T10 T2 
T6 T11 T5 T1 T3 

 
Table 9. Fitness value 
Iteration 1 2 3 4 5 6 
Average fitness 190.6 201.6 205 205.6 200 205.6 

 On performing five iterations and finding the 
fitness value we get the following result are shown in 
the  Table 9. 
Plotting graph for the above result we get the following 
curve, which suggest the genetic algorithm does not 
always guarantee the answer. 

10. CONCLUSION 

 Here the genetic algorithm is applied on the test 
cases with their execution history. We used a fitness 
function which gives higher value if a test case covers 
more line of code and a test case which has higher fitness 
value is provide higher priority in ordered sequence. 
When we applied genetic algorithm a large number of 
time we will get a nearly optimized solution. The input 
given to the genetic algorithm is a set of chromosomes 
and the chromosomes are set of test cases with the 
execution history, below is an instance of chromosome: 
 
T1→T2→T3→T4→T5→T6→T7→T8→T9→T10→T1

1→T12 
 
 We consider a random execution sequence 
generated by random number generator function 
available in stdlib library (c language) the sequence so 
generated becomes one chromosomes, we use five 
chromosomes, generates the fitness of each chromosomes 
and then the average fitness value is found.  In the first 
generation the average fitness value comes out to be 
190.6, we use iteration value five as a fixed terminating 
condition, after the fifth iteration we find that the 
average fitness value of the population becomes 205.6 a 
much better one than the first generation.  
 

 
 
Fig. 1. Fitness plot for each iteration 
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This means that the final population has a set of 
chromosomes, whose execution sequence is nearly the 
best optimum solution are shown in the Fig. 1. We 
considers a random terminating value, we can perform 
analysis on bench mark problems and derive the 
terminating criteria by which we can find the least 
iteration value that will provide guarantee the near 
optimal solution. 
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