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ABSTRACT 

This study and its companions (Part II, Part III) will concentrate on optimizing a class of supply chain 
problems known as Multi-Commodities Consumer Supply Chain (MCCSC) problem. MCCSC problem 
belongs to Production-Distribution (P-D) planning category. It aims to determine facilities location, 
consumers’ allocation and facilities configuration to minimize total Cost (CT) of the entire network. These 
facilities can be manufacturer units (MUs), Distribution Centres (DCs) and Retailers/End-users (REs) but 
not limited to them. To address this problem, three major tasks should be undertaken. At the first place, a 
Mixed Integer Non-Linear Programming (MINP) mathematical model is developed. Then, system’s 
behaviors under different conditions will be observed using a simulation modeling tool. Finally, the most 
optimum solution (minimum CT) of the system will be obtained using a multi-objective optimization 
technique. Due to the large size of the problem and the uncertainties in finding the most optimum solution, 
integration of modeling and simulation methodologies is proposed followed by developing new approach 
known as GASG. It is a genetic algorithm on the basis of granular simulation which is the subject of the 
methodology of this research. In part II, MCCSC is simulated using Discrete-Event Simulation (DES) 
device within an integrated environment of SimEvents and Simulink of MATLAB® software package 
followed by a comprehensive case study to examine the given strategy. Also, the effect of genetic operators 
on the obtained optimal/near optimal solution by the simulation model will be discussed in part III. 
 
Keywords: Supply Chain, Genetic Algorithm, Optimization, Simulation, Discrete Event System 

1.  INTRODUCTION 

Supply Chain (SC) is defined as an effective 
coordination and integration of activities undertaken by 
several infrastructures; such as suppliers, manufacturers, 
distributors and retailers; from the procurement of raw 
material to the distribution of final products to the 
customer (Beamon, 1998; Shapiro, 2007; Gupta and 
Maranas, 2003). These activities are mainly categorized 
based on the business divisions namely marketing, 
distribution, planning, manufacturing and purchasing 
(Gupta and Maranas, 2003), where effective 
integration of them will be considered as the primary 
objective of supply chain management (Winser et al., 
2011). A typical SC is depicted in Fig. 1. 

Due to the violated global market, SC organizations 
are highly at risk and significantly responsible for their 

strategic and operational decision makings in different 
levels. Consequences of even an insignificant error that 
leads massive damages are undeniable IBM, 2012. 
Therefore, for a better risk management cost savings and 
revenue growing, it is essential to have a smarter supply 
chain. It can be achieved through exploiting the 
optimization approaches. 

Production and Distribution (P-D) planning are two 
main optimization problems which have been 
investigated in the context of supply chain for nearly 
two decades. Materials assembly and/or 
transformation into final commodity is focused on in 
the first network, while transforming commodities 
from manufacturing plants to distribution centres and 
then delivering to retailers (end-users) is considered in 
the second network (Fahimnia et al., 2012).  
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Fig. 1. A typical supply Chain 
 

Analyzing the existing mutual relationship between 
production and distribution problems can be better dealt 
with in an integrated manner (Park et al., 2007). Many 
studies have been conducted and a large number of 
algorithms and methodologies have been developed 
(Papageorgiou, 2009; Fahimnia et al., 2012) accordingly. 
However, it is still a flourishing research area. This is 
mainly because of the following two reasons (Persson 
and Olhanger, 2002):  

• Maximizing the outstanding indicator of any Supply 
Chain Network (SCN); SC value added performance  

• Managing the market response in a fairly quick 
possible time span through lowering lead time 

An integrated P-D problem typically consists of 
Manufacturing Units (MU), Distribution Centres (DC), 
Warehouses (W) and Retailers (R). It mainly deals with 
simultaneous management of the information flows as 
well as optimization of the decision variables of various 
functions to obtain the best output.  

Due to an extremely large number of decision 
variables subject to different constraints, analyzing the P-
D problem is become very complicated. So that, 
optimal/near optimal solution is hardly obtained. Also, 
varying these constraints over a time makes the system 
dynamic. This attribute beside the stochastic nature of 
the SC, will amplify the difficulties associated with this 
type of problem. Hence, it is essential to develope a 
comprehensive model which should be fairly efficient 
and cost-effective.  

This study is mainly focused on developing an 
intelligent methodology to optimize multi commodities 
consumer supply chain (MCCSC) problem.  

Due to the extent of the work and to facilitate 
presentation, this study is divided into three parts as bellow. 

Part I  

Optimization of multi-commodities consumer supply 
chains (Modeling): entails design, modeling and 

optimization procedure of a SC system with different 
family commodities which will be performed with 
respect to their particularities and constraints. Hence, a 
new methodology-GASG-is developed through which 
outputs of the simulation phase, simultaneously with the 
control of granularity, will be utilized as input of the 
optimization phase. This methodology will be discussed 
in details later in this study. 

In order to reduce unexpected complexity, (e.g., 
supply, demand, process. Lalmazloumian and Wong 
(2012) and diversity in MCCSC problems, system’s 
behavior is then modeled mathematically. Moreover, 
cost functions and equations are presented. To examine 
the efficiency of the presented model, simulation 
approach is chosen which will be demonstrated (using 
MATLAB ®) in part II. It will facilitate the GA 
application in problem optimization (part III) that leads 
to validating the quality of the solution. 

 Part II   
Optimization of multi-commodities consumer supply 

chains (Simulation Modeling): investigates the SC 
system as an event-driven problem. SC is a perfect 
environment where via using simulation approaches 
especially Discrete-Event Simulation (DES), 
reproduction and evaluation of what-if scenarios can be 
examined and optimality level and the robustness of the 
proposed strategy can be predicted. 

A simulation modeling of the developed 
mathematical model (part I) is created within an integrate 
environment of SimEvents and Simulink toolboxes of 
MATLAB ®. Furthermore, a typical three echelons SC is 
exploited on the basis of which, a comprehensive case 
study- 10 commodities C, 10 R, 1 DC and 1 MU is 
described (100 interrelated variables subject to a number of 
constraints). The advantage of SimEvents is highlighted in 
simulating the passing entities (orders and stock) through a 
network of different modules; queues, servers, gates, 
switches. over a particular instant of time.  
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Part III   

Optimization of multi-commodities consumer supply 
chains (Genetic Algorithm Application and Results): 
demonstrates the particularities of the GA employed to 
optimize the problem. Results from simulation phase are 
treated as input of this phase. Additionally, the genetic 
operators such as selection, cross over and mutation used 
within the GA are presented.  

Generating the model will yield an algorithm to 
intelligently search for optimized solutions out of 
feasible solutions. The feasible solutions are in the form 
of chromosomes which act within the constraints. This 
mechanism will be introduced in the 3rd part of this 
study. Besides, it can reduce the systems size to the most 
prominent features in order to simplify application of GA 
for their optimization. Finally, the results of the proposed 
methodology-GASG- is presented.  

This study is structured as following. Section 2 
reviews the literatures done in the last decade on 
optimization P-D problems in particular multi-
commodities supply chain. Section 3 provides the 
problem statement followed by mathematical 
formulations of the developed model in section 4. Next, 
Small application of the proposed model demonstrates in 
section 5. The paper is finalized by a summary of the 
obtained results in section 6.  

2. LITERATURE REVIEW  

Several studies have been conducted to investigate 
various level of decision making in Bhatnagar et al. 
(1993) in a fairly review on Multi-Plant Coordination 
problems in SC categorized the integration of decision 
making in SCNs into three main categories namely:  

• Supply and Production(S-P) planning 
• Production and Distribution (P-D) planning 
• Inventory and Distribution (I-D) planning  

Production-distribution planning problems outweigh 
others in terms of their importance and effectiveness in 
global optimization in SCM (Lee et al., 2002; Yimer and 
Demirli, 2010; Fahimnia et al., 2012).  

Optimization of P-D planning problems in the SC has 
attracted the focus of many studies through different 
approaches; including (1) multiple run of deterministic 
models, (2) simulation of deterministic models, or (3) 
stochastic programming (Tsiakis and Papageorgiou, 
2008; Eppen et al., 1989), over different planning 
horizon in the literature. Also, modeling and analyzing of 
such systems have been carried out for many years 
within the integrated planning structure, using 

deterministic or stochastic methods. However, due to a 
wide range of dynamic behaviors in SN they become so 
complicated. Consequently, the refereed methodologies 
are not applicable and popular to be used separately in 
optimization problems. Hence, simulation approaches are 
preferably used in presence of having inappropriate and 
invalid values for evaluation (Lee et al., 2002). To this 
end, a number of surveys were reviewed in the next 
section. The findings pointed out that the following gaps 
in P-D optimization problem analysis. 

• Independent problem analysis of modelling and 
simulation 

• Integrated problem  analysis of modelling and 
simulation 

• Low complexity of case studies used for simulation 

2.1. Independent Analysis of P-D Problems in 
Modelling and Simulation 

Vidal and Goetschalckx (2001) presented a non-
convex optimization tactical global SC model. The 
heuristic solution algorithm was utilized to maximize the 
after tax profits in Transfer Pricing problem (TP). In the 
developed model, decision variables considered as 
transfer prices and the transportation costs allocation. 
With four suppliers located in four countries, having four 
warehouses through which the final product was 
delivered to the customers. The parameters optimization 
was not fulfilled simultaneously but sequentially through 
different functions. 

A multi variable production model of three-echelon 
supply driven chain (Fig. 2) was studied by Xiao et al. 
(2012) within uncertain quality environment. Also, the 
most suitable supply coordination mechanism on the 
basis of a fuzzy set was provided. The stability of the 
analytical production control model was independently 
analyzed and formulated by providing a numerical 
example. However, a number of simplified assumptions 
limit its applicability in practical situations. It was 
simulated for a three echelon SC with three suppliers and 
one DC for single product over a period of 120 weeks. 

Similarly, Waldemarsson et al. (2013) proposed a 
multi-site, multi-period MILP P-D problem in Forestry 
industry (Fig. 3). Over a planning horizon of one year 
(with monthly periods consideration), the problem was 
aimed to maximize the total supply chain profit. 

The profit function was considered through entire SN 
from procurement and production to transportation of 
pulp products and the use of energy in pulp industry. The 
mathematical model was formulated using CPLEX 
approach via AMPL programming language. 
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Fig. 2. An analytical production model of supply-driven chain (Xiao et al., 2012) 
 

 
 

Fig. 3. Illustration of the supply chain for Sodra Cell 
 

 
 

Fig. 4. Network configuration of the provided case study (Tsiakis and Papageorgiou, 2008) 
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An analysis of seven scenarios was conducted with 5 
pulp mills being able to produce 15 products at each site. 
Even though, there was hard effort to develop such 
mathematical model but it was restricted only to the 
represented scenario not being a general model.  

From the above reviewed researches, it is concluded 
that both approaches have been appropriately reflected 
their advantages in a specific problem. However, 
independent deployment of them has some drawbacks 
too. The cons and pros of analytical and simulation 
modeling is perfectly summarized by Nolan and 
Sorverign (1972).   

Hence, integration of both approaches leads to 
efficiency enhancement to a higher level alongside 
diminishing their shortcomings. Therefore, in section 2.2 
examples of an integrated approach are included. 

2.2. Integrated Analysis of P-D Problems in 
Modelling and Simulation 

Using a hybrid method, Lee et al. (2002) presented 
an integrated P-D model combining the analytical and 
simulation models to satisfy the retailer’s demand 
subject to capacity and inventory balance uncertainties. 
Thus, through utilizing the outputs from optimization 
procedure, the value of the inputs in simulation solution 
are tuned. The production system used in the simulation 
includes two shops having three machine centers with 
one machine plus one input and output buffer. In 
addition, the distribution system was simulated with two 
warehouses and three retailers. Despite the fact that this 
study has focused on integration of modeling and 
simulation in P-D systems, the solutions of phases were 
obtained independently.  

Tsiakis and Papageorgiou (2008) addressed optimal 
design and operation of a multi-product, multi-echelon 
global production and distribution network (Fig. 4) under 
operational and functional uncertainties. The resulting 
MILP model was aimed to minimize the total annualized 
cost of network including both infrastructure and 
operating costs.  However, the proposed model was 
utilized in long-term planning horizon to address 
strategic and tactical supply design. The SCN 
demonstrated in the simulation part contains six MPs in 
which six types of products are produced, but only one 
product family may be manufactured at a time. Also, six 
DCs are fully connected and interrelated to the eight 
corresponding CZs and considered in the proposed SCN. 

An integrated mathematical model is developed by Y. 
Huang et al. (2010) for strategic planning of multi-
location-layer bioethanol supply chain management 
(Fig. 5). The objective function in the proposed 

multistage MILP model minimizes the total supply 
chain costs over the planning horizon (1 year), subject to 
the demand uncertainty. Eight types of feedstock 
resources in a low-carbon fuel making procedure were 
considered over average five locations in California US. 

Yimer and Demirli (2010) proposed a two-phase 
multi-product and multi plant supply chain, depicted in 
Fig. 6, under capacity limitations. The MILP model was 
developed to cover assembling and distribution 
scheduling of the finished products in phase 1. 
Subsequently, based on the output from phase 1, 
component fabrication and raw material procurement 
were formulated in phase 2. These two models were 
generated on the basis of the Build-To-Order (BTO) 
strategy to minimize the aggregate cost in each 
subsystem accordingly. In addition, since the obtained 
search space in phase 1 was so sophisticated including 
too many possible solutions, GA was chosen to apply 
to the methodology. As a numerical test, two supply 
plants, four distribution centers and six retailers were 
considered in the supply chain.  

2.3. Simulation Analysis of P-D Problems with 
Low Complex Case Studies 

Zamarripa et al. (2012) analyzed a two stage complex 
stochastic programming model considering both internal 
and external sources of uncertainty. Using GA, they 
demonstrated how to minimize firstly, the total cost of 
the SC and secondly, the buyer’s expenses. In this 
research as a subsequence of their previous research 
(Zamarripa et al., 2012); uncertainty sources were 
formulated as the competition behavior of several SCs. 
The proposed model was tested on the SCN with only 
two products and four DCs over the planning horizon of 
three months. However, the model is useful tool for the 
similar problem with small size and low complexity. 

Aliev (2007) developed a Fuzzy integrated multi-
period and multi-product P-D model with uncertain 
demand (soft constrain) and capacity parameters in a 
production environment. The fuzzy decision variables 
are obtained through solving the optimization problem 
using Genetic Algorithm approach with main objective 
of maximizing the overall profit. The SCN considered in 
the case study as illustrated in Fig. 7, consists of two 
Manufacturing Plants (MPs), two Distribution Centers 
(DCs), two Customer Zones (CZs) and two kinds of 
products.  Although, the developed model is supposed to 
be applied on multi-products, only two product families 
are considered in the case study, which point to an 
important limitation of the study. 
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Fig. 5. A snap shot of a bioethanol supply chain (Huang et al., 2010) 
 

 
 

Fig. 6. A BTO supply chain network structure (Yimer and Demirli, 2010) 
 

 
 

Fig. 7. Supply Chain Network considered for simulation of the proposed model (Aliev, 2007) 
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A two-echelon supply network model (Fig. 8) was 
proposed by Fahimnia et al. (2009) in which multiple 
production plants and distributions of items were used in 
the first echelon. In the second echelon, multiple 
warehouses and distribution of products from 
warehouses to the end-user were considered. It targets to 
minimize the sum of the production costs (regular and 
over-time), inventory holding costs, direct and indirect 
transportation costs and backlogging costs subject to the 
following prioritized constraints: (1) capacity 
constraints; (2) demand and shortage constraints; (3) 
balanced constraints at stack buffers; (4) warehouses 
and end-users constraints via using multi-objective 
Genetic Algorithm. The proposed model was validated 
in the SCN with four MPs, four products family where 
they were directly distributed between the five end-
users through six pre-established warehouses. This 
case study is exactly the same as the one in the 
previous publication of author in 2008.  

A multi-product multi-period aggregate P-D problem 
with trans-shipment was proposed by Torabi and 
Moghaddam (2012). Using fuzzy logics programming 
approach, two objective functions total profit 
maximization and manufacturing lead time minimization 
were optimized, subject to demand constraints.The 
developed model was formulated for J number of 
Manufacturing Sites (MS), I types of products and L 
retailers over T periods of planning horizon in two 
distinct scenarios. In the former, it was assumed that 
products shipment between MSs is not permitted and there 
are no relationships between MSs; while in the later, 
mutual connections between MSs were existed and later 
products shipment between MSs was taken place as it is 
illustrated in Fig. 9. However, in the provided case study, 
only three types of products manufactured in four MSs 
demanded from seven SRs (customers) over medium 
planning horizon of three months, are considered. 

A multi-site multi-product supply chain planning was 
presented by Mitra et al. (2008) in multi-objective Pareto 
sense including uncertain demand and machine up-time 
factors using Fuzzy mathematical programming. The 
proposed model was formulated for both with and without 
minimum run length restriction, based on the mid-term 
planning model of McDonald and Karimi (1997), which 
results in LP and MILP problems respectively to minimize 
the entire supply chain costs. Also, this model was 
evaluated through a real scenario for 1 year planning 
horizon with two production locations (S1, S2) connecting 
to two markets (M1 and M2), producing 34 family products 
(P1-P34), with single raw material supplier in each 
production unit. So that, S1 produces family product 1 to 23 

(P1-P23) and S2 manufactures the other 10 family products 
P24-P34 respectively.  

Chen and Li (2013) presented a multi-objective 
inventory optimization problem model. A so-called grey 
system theory was integrated with meta-heuristic 
mathematical method-GA approach to overcome SCN 
uncertainties. Under demand uncertainty, with the aim 
of SC total cost minimization a two stages model was 
developed. The proposed model then was generalized 
for multi-suppliers providing a product or a service to 
a single subsequent unit. Also, it was simulated 
through a case study with two final product 
manufactures, one distribution center, nine production 
center and 11 external suppliers. 

A Closed-Loop Supply Chain (CLSC) network (Fig. 
10) model was investigated by Qiang et al. (2013). The 
main contribution of this research was developing SN 
considering W material suppliers, N manufactures and M 
retailers subject to demand and yield uncertainties which 
are formulated through a finite-dimensional variation 
inequality. Also, it was assumed that the manufacturers 
are in charge of collecting the recycled product directly 
from the demand market. However, in the provided 
numerical example two raw material suppliers, two 
manufacturers and two retailers were considered.  

Using the concept of Agile Manufacturing with a 
focus on companies’ capability of operating in a 
competitive environment within unstable market dealing 
with changes in uncertainty, Pan and Nagi (2013) 
designed a multi-echelons multi-periods SCN under 
demand uncertainty as result of multiple customers. As it 
is shown in Fig. 11, this problem is formulated as 
Lagrangian relaxation-based heuristic to obtain the 
optimal solution with four echelons containing three 
companies in each level, with one end-user having one 
type of demand for three periods of time. Considering 
production and transportation capacity limits, the main 
objective was to minimize the total lead costs including 
fixed alliance costs between two companies, production, 
raw material holding, finished products holding and 
transportation costs.  

Overall, in all of the reviewed studies, not only 
modeling and simulation has been executed in two 
separate modules, but also all the applied scenarios 
were so simple. Owing to this fact, the complexity 
level of the problem downgrades and it becomes less 
practical. As a result, one cannot tackle with P-D 
problems in various levels of detail. 
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Fig. 8. The proposed two-echelon supply network (Fahimnia et al., 2009) 
 

 
 

Fig. 9. An example of parallel multi-site manufacturing system (Torabi and Moghaddam, 2012) 
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Fig. 10.  Closed-loop supply chain (Qiang et al., 2013) 
 

 
 

Fig. 11. Four-echelons supply chain network (Pan and Nagi, 2013) 
 

Also, the possibility of generalizing models with 
respect to their applicability decreases. This translates 
into less efficient model. Moreover, granularity has been 
ignored since the existing problems have not been 
complex enough to raise its importance. 

As it was observed in the literature, a number of 
potential solutions for this type of problems with similar 
size and complexity exist. Examples include  
Chartniyom et al. (2007); Mohd-Lair et al. (2007); Aliev 
(2007); Papadimitratos et al. (2008); Ferreira et al. 
(2008); Fahimnia et al. (2009) and Dellino et al. (2010). 
However, in these examples predominantly one 
mathematical optimization engine i.e., Genetic 
Algorithm (GA), Fuzzy Logics, Neural Networks (NNs), 
Simulating Annealing (SA), Tabu Search (TS) or 
combination of two of them in conjugation with 
simulation were utilized. Also, It is notified that in these 
researches, optimization and simulation are either 
applied separately in (Dellino et al., 2010; Aliev, 2007; 

Papadimitratos et al., 2008) or used distinctly as validation 
tools (Solon et al., 2009) without considering the 
granularity of the model (Dellino et al., 2010). Hence, a 
new methodology will be discussed in this study. 

3. PROBLEM STATEMENT 

In this section, a Multi-Commodity Consumer Supply 
Chain (MCCSC) optimization problem is developed. 
MCCSC is aimed to determine where to locate 
facilities (DC) and how to allocate customers (R) to 
facilities so to minimize total costs via non-linear 
programming techniques with single objective. Due to 
the large size of the problem on one hand and the 
uncertain circumstances in finding the most optimum 
solution on the other hand, integration of modeling 
and simulation methodologies is utilized. Genetic 
Algorithm (GA) is deployed as a systematic approach 
(Holland, 1975) to resolve this issue.  
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It works based on principles natural selection and 
genetics to evolve better solutions through multiple 
consecutive generations. As a global search method, 
GAs can be used for combinatorial optimization 
problems where the number of possible solutions 
increases exponentially with respect to the number of 
decision variables. The advantage of GAs over similar 
methodologies is the fact that no information about 
gradient of the optimized objective function (local 
minimum/maximum) would be necessary. This is a 
significant point since acquiring any such information in 
combinatorial optimization problems is a rigorous task. 

4. GASG-METHODOLOGY 

GAs as a global search method, when implemented 
appropriately, will converge to a small set of 
optimal/near optimal solutions within the last 
generations. This convergence results in GAs 
operators to be ineffective through the last generation. 
This is due to the fact that the chromosomes in the last 
generations are very similar. Therefore, an evaluator 
is necessary to ensure quality of the solution. This 
evaluator can be introduced as a simulation module 
which is incorporated in conjunction with the 
optimization process and incorporates the natural 
variation of the process. An overview of this 
methodology is depicted in Fig. 12. 

According to the literature review, it was concluded 
that the researchers and practitioners are attempting to 
enhance the decision-making in industrial SCNs toward 
the optimal developments of infrastructures and planning 
with uncertainties. However, it is observed that the 
granularity of problems is greatly ignored in both 
simulation and evaluation phases. Thus, in this research, 
the focus would be more on considering granularity as a 
key issue in optimization of large scale problem in a 
controlled manner. 

Hence, GASG, where the output of modeling phase 
will be treated as the input of the Simulation phase, 
simultaneously with the control of Granularity will be 
used as a methodology in developing the model for this 
study. This translates into ensuring the validity of the 
solution. In the case of this study, the integrated 
simulation approach is described to improve the 
network’ total cost using SimEvents-designed to 
simulate Discrete Event Systems (DES)-that is 
embedded in Simulink ®. This enables engineers to take 
advantage of integrating data processing, computing 
tools and visualization both in MATLAB and Simulink®. 
More details about how to evaluate the result will be 

presented in part II -Optimization of Multi-Commodities 
Supply Chains- GA Application and Results. 

GASG optimization paradigm will dominate the 
following problems: 

• An algorithm that does not cover the whole search 
space 

• An algorithm that gets consistently trapped at the 
local optima 

In addition to the above advantages, through GASG 
the proposed methodology will be successfully 
implemented. So, an integrated GA optimization engine 
will validate the quality of the solution simultaneously 
with a simulation module that is incorporated as fitness 
function evaluator. In other words, the output variables 
of optimization problem are considered as simulation 
model performance measures which are naturally 
quantitative. Therefore, GA ability to search through the 
complete set of configurations of the system for a static 
set of input data will be combined with the simulation’s 
ability to validate any combination of input data for a set 
of configurations. Finally, through well-defining the 
granularity that describes the level and the size of the 
units in the model (Bollen et al., 2007) which is a critical 
decision parameter in the system, optimization/validation 
will be done.  

4.1. Validation of the Proposed Optimization 
Paradigm 

The vast majority of the problems in SCM are solved 
through deploying the mathematical programming 
approaches. The mathematical approaches are as: (1) 
deterministic, (2) stochastic, (3) economic and (4) 
simulation approaches, (5) Fuzzy-based, (6) scenario-
based and (7) hybrid approaches (Lalmazloumian and 
Wong, 2012). 

In this study the proposed optimization paradigm and 
the quality of the solutions obtained from the previous 
step will be validated through simulation approach.  

Simulation, as a powerful tool is extensively utilized 
in modeling, analyzing and validating of complex 
systems. Accurate analysis and visualization of 
alternatives are also possible through simulation (Tumay, 
1995). Supply chain Networks problems are no 
exception to that. Due to time dependency of this type of 
problems that make them dynamic, complexity and 
uncertainty can be analyzed perfectly, by means of 
simulation tools (Persson and Araldi, 2009).  

Discrete-event driven simulation is the most 
powerful tool to deal with supply chain problems 
because of the dynamic entity of SNs. 
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Fig. 12. A framework of GASG methodology 
 
Examples of such simulation tools include: 
SIMPROCESS (Swegles, 1997), AUTOMODE, 
ARENA (Persson and Araldi, 2009) and MATLAB 
(Fahimnia et al., 2012).  

SIMPROCESS is a hierarchical modeling tool that 
combines process mapping, discrete-event simulation 
and Activity Based Costing (ABC) with a user-friendly 
interface. AUTOMODE (Automotive Model-Based 
Development) and ARENA (developed by Rockwell 
Automation) are well-designed for discrete-event 
simulation. However, MATLAB software package 
provides the user with both optimization and Simulation 
Toolboxes. In this work, the programming part 
(optimization module using GA) will be generated in 
MATLAB programming environment (m.file). 
Subsequently, the output of this step will be treated as 
the input of simulation through Sim-Event simulation 
toolbox.  The superiority of MATLAB comparing to 
other existing software packages is a number of 

predefined mathematical functions.  This feature gives 
users the capability of retrieving necessary functions to 
apply mathematical operations on model’s equations or 
inequalities. More details about SimEvents functionality 
will be explained in part II of this study. 

5. THE CASE STUDY PRIMARY 
SCENARIO 

In this section, a typical three layers medium term 
planning model for a supply chain is presented. These 
three stages are commonly: Manufacturer (factory), 
Distribution Center and Retailer. The first and the 
most upstream stage 1 has one facility (factory) which 
feeds into stage 2 that is a Distribution Center (DC). 
As it is shown in Fig. 13, it is assumed that finished 
goods can be delivered either directly from 
manufacturer to retailer or indirectly form 
manufacturer to DC and then to retailer.  
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Fig. 13. Three layers supply chain system 
 
Moreover, due to the assumed transportation policies, 

reverse transportation cycle would also be considered in 
development procedure of this model.  

Also, the number of retailer-zones and demand 
forecasts for each product is available at end-users. In 
addition, the number, location and the capacity of DCs 
are known. The main objective function in this study is 
obviously the cost function. It minimizes the sum of the 
following costs: 

• Production costs 
• Holding costs 
• Packaging costs 
• Transportation costs 
• Retailer variable/fixed costs 

More details about the objective function are 
presented in section 6. 

It is assumed that a factory works 24 h (around the 
clock); so that weekly production capacity available is 
24×7= 168( hr). Also, there are 10 lines of product 
families F1, F2, …, F10. The demand forecasts for the 
period of one month (four weeks) are known (e.g., will 
be randomly generated 100 to 5000). The problem’s 
parameters and input data, the subscripts and superscripts 
are denoted as bellow: 

• The subscript t (t = 1,..,4) refers to week t 
• The subscript j (j = 1,..,10) refers to product family j 
• The subscript r (r = 1,..,5) refers to retailer r 
• The subscript s (s = 1, 2, 3) refers to stage s 

• s = 1 refers to the Manufacturing Unit (MU) 
• s = 2 refers to the Distribution Center (DC) and 
• s = 3 refers to the retailer 

• The subscript p refers to production parameters 
• The subscript m refers to transportation parameters 
• The subscript r refers to operations taken in the store 

The demand for product family j = 1,2,…,10, at the 
manufacturer level (s1) by the end of week  t = 1,…,4, is 
denoted as D1jt. The demand for product family j = 
1,2,…,10, at the retailer level (s3) by the end of week  t = 
1,…,4, is denoted as D3jt. Moreover, the product costs 
and average times are given: 

• cj
p  = The cost to produce one unit of family j in the 

factory 
• ṕj

p = The average time to produce one unit of family 
j in the factory. (It will be assigned later as the 
minimum run length of product family j in week t 
have not been determined yet) 

5.1. Objective Functions 

As in many supply chain optimization problems is 
addressed; the main objective function will minimize the 
aggregate of the following costs: (1) production costs; 
(2) packaging costs; (3) holding costs; (4) transportation 
costs- either directly from factory to retailer or indirectly 
from factory through distribution center to the retailer; (5) 
backordering costs. As it was mentioned before, it is 
assumed that all transportation times are identical and equal 
to 1 week; hence, if y2jt (y3jt) are transported in week t from 
factory to DC (retailer), then they will be delivered at their 
destination in week t+1. The same procedure is true once z2jt  
is transported form DC to retailer. The total system cost will 
be minimized through the entire planning horizon, using the 
following objective function (1): 
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Transportation cost if indirect delivery method chose; 

from factory to Distribution Centers (DC) and then to the 
end-user; is consisted of two sub costs: delivery cost 

from factory to DC by 
4 10 m

20 2 jtt 1 j 1
C y

= =∑ ∑  and 

by
4 10 m

023 jtt 1 j 1
C z

= =∑ ∑  delivery from DC to the end-user 

(retailers). Otherwise, if the end products delivered 
directly by retailer form factory it would only 

include
4 10 m

03 3 jtt 1 j 1
C y

= =∑ ∑ . 

In order to obtain the optimal or near optimum 
solution of the above equation, the costs in regards to 
weights and penalty should also be considered. 
Moreover, subject to the implied conditions, there is a 
possibility for backordering costs to be considered. The 
variables in regards to each cost of the objective function 
are separately identified in the following sections.  

5.1.1. Holding Costs 

h1t
p = The inventory holding cost in factory for one 

unit of any type in week t 
h2t

p = The inventory holding cost in DC for one unit of 
any type in week t 

hc1jt
p = The holding capacity at factory for product 

family j in week t 
hc2jt

p = The holding capacity at DC for product family j 
in week t 

5.1.2. Packaging Costs 

cɺɺ t
p = The cost of material for producing  one container 

(with m×n×o dimension) at week t. 
l1jt

p = Labor/hour for loading/unloading the container for 
product family j in the factory at week t. 

λj
p = Number of units of product family j fitted in the 

container. 
λ

c = The volume of  the container 

5.1.3. Transportation Costs 

w = (1,2,3) refers to the type of truck whether it is 
small, medium or large respectively. 

l1wt
m = labor/hour cost for loading/unloading the 

containers for any type of products to the trucks 
w at factory at week t (truck loading and 
unloading cost of container $/ container). 

λw
m = The volume/ of truck w. 

c20w
m = The cost of moving one unit of any type from 

factory to DC with truck w. 
c03w

m = The cost of moving one unit of any type from 
factory to retailer with truck w. 

c023w
m = The cost of moving one unit of any type from 

DC to retailer with truck w. 
τ = The transportation time from the factory to DC, 

from the factory to retailer and from the DC to 
retailer; e.g.; it can be assumed that all 
transportation times are identical and equal to 1 
week. 

5.1.4. Retailer Fixed and Variable Costs 

c3
r = Labor/hour cost of container loading/unloading 

of one unit of any type to the self in the store. 
λjt

r = The capacity of shelf for product family j in 
week t. 

sc3jt = The unit shortage cost of product family j at 
retailer in week t.  

5.1.5. Weight and Penalty Costs 

α = The penalty cost of one unit of any type demand 
shortage  

5.1.6. Decision Variables 

The objective is to minimize the total production 
costs, holding costs, transportation cost, tardiness costs 
(e.g.; lost items, late items …) and the penalty costs 
for delivery over the planning horizon (e.g.; four 
weeks). In addition, controlling the granularity factor 
will be significantly effective in enhancing the 
optimization procedure: 

xjt  = Number of units of family j  produced at factory 
during week t. 

x1j0 = Number of units of family j packed and loaded in 
the container at factory at time 0. 

x1jt = Number of units of family j packed and loaded in 
the container at factory at time t. 

x1j4 = Number of units of family j packed and loaded in 
the container at factory by the end of the 
planning horizon (week 4). 

y2jt  = Number of units of family j transported from 
factory to DC in week t. 

y3jt  = Number of units of family j transported from 
factory to retailer in week t. 
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zjt   = Number of units of family j transported from DC 
to retailer in week t. 

q2j0 = Number of units of family j being held in storage 
at DC at time 0. 

q3jt  = Number of units of family j being held at storage 
at DC at the end of week t. 

v2jt = Number of units of family j that have not yet 
arrived at DC in week t. 

v2j4 = Number of units of family j that have not been 
delivered to DC by the end of the planning 
horizon (week 4). 

2jtqɺ  = Number of units of family j being left at DC at 
the end of week t. 

2j4qɺ  = Number of units of family j being left at DC at 

the end of the planning horizon (week 4). 
v3j0 = Number of units of family j that have not yet 

arrived at the retailer at time 0. 
v3jt = Umber of units of family j that have not arrived 

yet at the retailer by the end of week t. 
 v3j4 = Number of units of family j that have not been 

delivered to the retailer by the end of the 
planning horizon (week 4). 

3 jtvɺ  = Number of units of family j being left at 

retailer’s shelf at the end of week t. 

3 j4vɺ  = Number of units of family j being left retailer’s 

shelf at the end of the planning horizon (week 4). 
G = Granularity of the problem- the size of the 

minimum unit transferring through the container. 
 

The focus would on the last 50 m of SC. It deals with 
all systems, subsystems, activities and information flows 
from MU; once a product is produced; to DC and from 
DC to RE. Therefore, based on the orders that have 
received by DC from RE, the products will transport to 
DC and allocate to the particular retailer. When an order 
is preceded an inventory level must be updated and a 
total cost of the order should be calculated at the end of 
the net. Minimizing the total cost is a primary objective 
which leads retailers remains competitive in the global 
market. For instance, having maximum order and stock 
levels of 5000 randomly generated the total cost of the 
entire supply network using equatioan 1 can be calculated 
which is shown in Fig. 14 and 15 are illustrating the total 
costs of the net in 3 dimensions. The number of weeks, 
products and the costs are denoted as x, y and z 
coordinates respectively. As it is observed, total cost can 
be reported in two granular trends: (1) cost of each family 
product per week and (2) cost of each order per week.

 

 
 

Fig. 14. Total costs of 10 products/4 weeks 
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Fig. 15. Total costs of 10 products/5 retailer/4 weeks 
 

6. CONCLUSION 

In this study, out of the existing methodologies in 
addressing MCCSC problems, GASG was selected due 
to its integrated, appropriate and effective nature. This 
methodology can be used for optimization of single or 
multi-objective P-D problems in a controlled 
environment. It will be capable of being applied on large 
scale problems with various scenarios. Also, on the basis 
of the desired application, the problem can be analyzed 
through different granular levels.  

 Due to the dynamic nature of SNs, discrete event- 
driven simulation tool will be used in part II to simulate 
the system’s behavior. There are a number of well-
designed simulations tools such as SIMPROCESS, 
AUTO MODE, ARENA and MATLAB® used in SC 
model simulation. Since MATLAB® provides the user 
with optimization and simulation (SimEvents and 
Simulink) toolboxes, as well as user-friendly interfaces 
for data evaluation; it will be utilized for the purpose of 
predicting the outputs of the given strategy. He 
programming part will be executed in C packaging 
language linked with MS Excel as the programming 
interface. C-Programming language is the most popular 
middle language used in implementation of business 
oriented applications and easy to compile in any 
operating systems. Numerical results will also be 
provided in part II. In order to validate the robustness of 
the algorithm, historical data of the SC and demand 
forecast will be collected from the local supplier. Finally, 

the developed program will be applied on it to optimize 
the entire SCN for the midterm planning horizon.  
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