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ABSTRACT

This study studies are error registration algoritiomthe maneuvering radar network, which is onéhef
difficult problems of multi-sensor registration. & the maneuvering radar has no orientation bias,
measurement equations of both attitude bias andunement bias can be established by using the cammo
targets observed by different radars. Based oretfuations, the real-time estimation of both atstinas
and measurement bias can be obtained with the livaftscented Kalman filter. The results show that t
method has a fast convergence rate. When the déstahthe sensors is very long, both the absolute
registration and the relative registration of atti# bias and measurement bias can be implemented.

Keywords: Error Registration, Maneuvering Radar Network, ¢témged Transform

1. INTRODUCTION When the sensor platform is moving, Creteal.
(1992) considers the sensor measurement bias &nd th
The error registration and compensation techniqueplatform attitude bias simultaneously, but neglebis
is one of the prerequisites for multi-sensor fusion coupling relationship of the two kinds of the bisse
(Donget al., 2004). Recently, lots of error registration Cryeet al. (1992) implements the relative registration
algorithms have been proposed, e.g., Real TimeiQual of gifferent sensors when the distance between the
Control (RTQC) (Farina and Studer, 1986; Burke, (g radars is very close. Ba al. (2006) discusses the

1996), Neural Network algorithm (Karmiely and qint estimation method of the measurement bias and

Hava, 2000), Maximum Likelihood (ML) (Ong, 4 - - :
. platform attitude bias based on Kalman filter.
2003), Generalized Least Squares (GLS) (Dend., Because the Taylor series expansion (linearizatisn)

2004), Joint Estimation algorithm based on filtgrin used to establish the system model, the estimation

technique (Yunlong and Guohong, 2005), Least il d q y f hil th i bi

Squares (LS) (Meét al., 2006), Bias estimation using accuracy will degrade greatly while the system bias
increases. Bt al. (2006) proposes a general method

targets of opportunity (Kragedt al., 2007) and joint ) ) |
registration and tracking (Liaet al., 2011; Youetal., O estimate system bias of each kind of sensors and
2013). However, the angle error registration anel th navigation system based on Nonlinear Least Square.

distance error registration only for stationary smss I the method the linearization technique is addpte
are considered in the majority of current reseasch. Bo et al. (2006) establishes the joint estimation
far as the ship borne or airborne platforms areequation of the target state and system bias based
considered, the attitude bias and the navigatiod an the known target track and discusses the obseitabil
orientation bias of the kinetic platforms need te b problem of the orientation errors, the measurement
further researched. Because of the coupling eftéct biases and the emendation biases of 3-D sensoesl bas
the different types of the biases, the maneuveringon UKF filter method.

sensor registration is hard to be implemented, of When 3-D maneuvering radar platform has no
which the research fruit is relatively little. orientation error, how to implement the absolute

Corresponding Author: Liu Yu, Institute of Information FusioriNavy Aeronautical and Astronautical University, YainChina

////A Science Publications 1648 JCS



Liu Yu et al. / Journal of Computer Science 9 (1B48-1660, 2013

registration of the platform attitude bias and fe@sor A A A X X
. R . R 11 12 13 g g
measurement bias is researched in this study. flidy s _ L
: fy = A21 A22 A23 Yg_A Yg (1)
is arranged as follows: The reason of the systenr er
A31 A32 A 33 z g z g

of maneuvering platform senor is discussed in detai
part two, the effective system estimation modajiien
at part three, the implementation method of biasWhere:
estimation is discussed at part four and the sitima A1 = COSY COSQ

and analysis is done at part five. A1, = sind cose
A3 = sing

1.1.The Influence Analysis of Carrier Platform A, = cosd singsina-sind cosa
Attitude Bias Ay, = sin9 sin@sina + cosd cosa

As to the maneuvering radar network, the targetzs = COS@sina o
measurement from the sensor is usually given in thes1 = €0 sin@cosa + sina sind

carrier coordinate, as shown Fig. 1 (Crueet al., Az = sind sin@ cosa- sina cosd
1992). In order to transform all the target Assz = COSQCOSO

measurements from the different platforms to an ] ]
9, @ and a are the carrier platform attitudes,

uniform coordinate, a transformation of the target P .
measurements from the geographic coordinate to théespectively express yaw angle, pitch angle and rol

carrier coordinate should be done based on théecarr angle, which are the three angles between theecarri
platform attitude by (Bet al., 2006) Equation (1): coordinate and the geographic coordinate.

geographic
coordinate
ye
carrier
coordinate carrier
Zb w coordinate
Yh
- b 4
geographic
coordinate
> Yo
i
I
[
|
I
|
19 I
|
. a [
geographic !
coordinate |
Xg ll
I
I carrier
Xt coordinate
Xb

Fig. 1. The transform relationship between the carrierdmate and geographic coordinate
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If sensor carrier is the stationary platform, tkigwde and (3, ,3, ,9, ), the attitude angle random error and
bias is usually considered to be zero. Here, th ronon
influence of the transform relationship on the sdrias
estimation has nothing more than a calculation éuard
of coordinate transformation. But for mobile carrie a common target measurement of radar 1 and 2 are
platform such as airplane, vessel and there arayslw respectively Z(r;, a, &) and %(r,, &, &) (the local
some errors in measuring the attitude of the Qab}e cartesian Coordinate). The true target pOSitiOﬂthE
the inertial navigation system, platform compasd.an ECEF coordinate, of which the origin is the earth

Suppose the errors of yaw angle, pitch angle atid ro €ore, is X(X;, Vi, z)- So the corresponding relationship
angle can be expressed as Equation (2): between the measurement of radar 1 and the true

target position is given by Equation (4):

®measurement random error provided by radar 2 are
expressed as€'>g2 ,6(92 ,6a2) and (6r2 ,632 ,662 ). Suppose

AD = g4 + 5,
AP=¢g,+3§,
Aa =g, +9§,

(2) X, = TlAiX 5 + PTl (4)

where, A is the circumgyration transformation matrix

where, g5, €, ande, are expressed as stationary biases,0f attitude angle error of radar 1 given by Equatio
8, 8, andd, are denoted as random biases, which follow (1) Ti is the circumgyration transformation matrix

the zero-mean gauss distribution. which transforms the target position from the local
cartesian coordinate (radar 1) to the ECEF cootdina
1.2. System Model P, is the position of radar 1 in the ECEF coordina¢gl;

Assume there is no orientation errors, the geogeaph s obtained by removing the measurement error faom
coordinates of radar 1 and radar 2 are respectivelyneasurement of radar 1 and transforming the
supposed to be;fe,, Ay, Hy) and B (Lo, Ay, Hy). measurement to the rectangular coordinate, which is

1.3. The System Bias State Equation given by Equation (5):

Suppose yaw angle bias, pitch angle bias, roll _
angle bias, the distance bias, azimuth angle bias a Xs ‘[Xm Ys Zsj

elevatiqn angle bias of radar 1 and radar 2 are (r . s )cos(q . o5 )sin(a . s )
respectively expressed A5, €, 0 0 & & B R e e T Ty
€, 1 €y 1 £ 1 £ . €, ande, . The state equation is = (rl g, -5r1)005(§‘ -861-5e1)005(0(1 -8a1-5a1) (5)
established as Equation (3): (rl e -5, )sin(q &, -5 )

10 e
X (k+1)=f[ X (k) ]+ V,(k) 3) =h(Z., .5, )

where, f () is the error state transfer equathyk) is  where, h(.) is defined as the measurement transform
the course noise random vector which follows th@-ze  function from the polar coordinate to the rectamgul

mean gauss distribution and(k) is its covariance. Xk)  coordinate; ¢, and 3, are respectively the

is the state vector of all the stationary biasetna¢ k, L !

which is defined as: measurement bias vector and random error vector of
radar 1.

' If X, is transformed to the true measurement polar
} coordinate of radar 2, the corresponding relatietwben
the measurements from radar 2 and the true target

X, (k é[s £ € E £ E E £ £ £
(k) 9 e e’ Ty e e Ty '2532592

1.4. The Measurement Equation positions is Equation (6):
The attitude random error and measurement random
error provided by radar 1 are expressedgs, 6, .3, ) Z,= hz[Asz'(Xr F’Tz)} te,, +0,, (6)
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where, A is the circumgyration transformation matrix
of attitude angle error of radar 2 given by (1).i3the
circumgyration  transformation matrix  which
transforms the target position from the local caign
coordinate (radar 2) to the ECEF coordineRr(za. is the
position of radar 2 in the ECEF coordinatgz. ands,

2
are respectively the measurement bias vector an
random error vector of radar 2;(¥) is defined as the

Suppose the state estimation vector and the state
covariance areX, (k) and (k) R respectively at time Kk,
then 2n, +1(ny is the dimension of system state vector)
sampling point; (k|k) and their corresponding weight
i W can be computed with the Unscented Transform
method in (Julier and Uhlmann, 2000). According to

0(3), the one-step prediction of all the samplingnp®

can be obtained by Equation (10):

measurement transform function from the rectangular

coordinate to the polar coordinate, as follows
Equation (7):

[x2+y2+z2
arctar(%/)

arcta

I {/vxzwzﬂz]_

where, X(x, y, z) expresses the 3-D coordinate evalfi
the target in the rectangular coordinate.

(7)

Based on (4) and (6), the system bias measuremenf)8

equation at time s established as:
Z,(k)=h A ,(k)T",(k)

T (k)AL (h, (2.(K).,, (K).8, (K)
(=R, (R]+e, (W+3, (K}

2

(8)

P

Equation (8) can be further simplified as Equaf@n

(K).3

€2

(K)3,,(K) +5,,(1) (©)

where, 8_(k) and 8_(k) express the attitude angle
random error vectors of radar 1 and radar 2 res@det

1.5. The Bias Estimation Method

The measurement equation defined by (9) is a
complex nonlinear equation. If the extended Kalman
filter is applied, the linearization error is sade that
the estimation result can't meet the accuracy
requirement. This part will discuss how to obtaire t
efficient bias estimation by using the Unscented
Kalman Filter.

///// Science Publications
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& (k+1k) =1 (K[K)] (10)

With the one-step prediction of sampling point
&(k+1]k) and its weight Y the predicted error state
estimation and the predicted covariance can be
obtained as Equation (11):

2ny
X (k+1]k) = > W, & (k+1k)

(11)
i=0

And Equation (12):

(k+1K)=Q(K

2ny (12)
+3 W, AX; (k +1]k)Aax; (k +1]k)

i=0
Where:

AX; (K +11K) =& (k+1] k)= X, (k+1[k)
The random measurement error is usually

independent of the nonlinear equation. However, the
random measurement error in (9) is different frdva t
observation models in the other references, which i
not independent of the nonlinear equation. The
conventional Unscented Kalman Filter can’t dealhwit
this problem.

Define 6£(k)é[ésl(k),ész(k),ézz(k)} as a new error

vector, where R is its error covariance. Based on
unscented transform, 2m+1 (m is the dimension of
vector 5, (k)) sampling points fors, (k) is done.
Supposed,; (k+1) and E express the sampling points
and their weight respectively. The calculation dopres
in detail are as follows.

Assume the one-step prediction of each sampling
point & (k+1|k) as the center. Another equation could be

JCS
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obtained by applying all the sampling pointsépfk) in Similarly, the interactive covariance between the

measurement (9): measurement vector and the bias vector can bengoyte
Equation (19):

G (k +1\k):h(Ei (k+1K) 3, (k+ J)) (13)

szzzn waXx (k+1k)AzZ; (19)

Consequently, the predicted measurement and :
covariance corresponding&ak+1|k) can be obtained as:

<

Il
(=}

Finally, the bias estimation state update and

2my covariance are respectively Equation (20 and 21):
G (k+1\k):Zquj(k+]Jk) (14)

0 X, (k+1) =X, (k +1)k) + K (k +1)(z(k+1) - Z(k+1K)) (20)
And:

And:
Pq:zi(Equj(k+1k)Aq}(k+1@ @5)  R(k+D=R(kr1H- Kk IR K( k) (21)
=0
where, K(k + 1) = RP™,..

Where:

1.6. Smulation Analysis

AG (k +1]k) =g (k+1]k)=¢g (k+ 1]k) The simulation results when sensors are far away
from each other.
Equation 13-15 apply the theory of Unscented Assume that radar 1 is located at (120.000, 30.200,

Transform, implement the accurate transfer of the100m) and radar 2 is located at (120.500, 30.069, 0
measurement random error with the spread of theThe sample interval of radar is one second. Eveny &f
measurement function (9) and calculate the firskra €fTOrs is stationary errors, which are showiatsle 1.

and the second rank statistic characteristics & th ~ Suppose there are two observable targets in the
random vector, namely the predicted measurementurveillance area. The initialization states of th®
mean and its covariance. If the background follows targets in the ECEF coordinate are supposed tdrbe (
Gauss distribution, the precision of the mean dm t meters) X = [-2800000; 50; 4800000; 85; 3120000; 0]
covariance from Unscented Transform can get to theand X, = [-2780000; 100; 4750000; -150; 3220000; 0].
second rank and the process in detail is referred i Figure 2-5 are the RMS curves of the attitude bias

(Youetal., 2005). _ estimation and the measurement bias estimation of
Based on (14) and (15), the predicted measurementzqar 1 and radar 2, obtained by Monte Carlo

and the corresponding covariance can be obtainedjmyiations with 20 runs. The length of each run is
according to the follow formula Equation (16 ang:17 120. In all simulations, the initialization statef o

N estimation is supposed to be 0. According to the
Z2(k+1K) =Y Wig (k+1K) (16) simulation results, blgs estimation almost converge
= after 20 steps. The biggest error of all the argés
estimations is roll angle bias estimation, whichuis
2ny _ to 52.1%; the smallest error is yaw angle bias
P-=R, +; W(R+82Z02) (17)  estimation, which is merely 7.1%. What is more, the
- distance bias of radar 2 is up to 91.8%. The reason
that the influence of angle bias to the radar daiac

where, RZ2 is the covariance of measurement randomis relatively big. The distance bias of radar is

error of radar 2 Equation (18): relatively small and is easily submerged by theeoth
biases, which can influence the precision of the
17, =¢ (k+1k) - Z(k+|K) (18) estimation error (The distance bias of radar 1 is

merely 18.4%).
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Fig. 3. The attitude bias RMS of radar 2
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Fig. 5. The range bias RMS of radar 1 and 2
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Table 1. The parameter setting of radar error

1656

Radar 1 Radar 2
Attitude bias (10; 20; -10) (-10; 10; 1.50)
Measurement bias (100m; -0.50; 10) (50m; 10; -20)
Attitude random error (0.10; 0.20; 0.10) (0.20;(0.2.10)
Measurement random error (10m; 0.10; 0.10) (1040;®.10
% Science Publications

Figure 6 and 7 show the true target tracks, the radar
measurements tracks and the registered measurements
tracks, which are generated in real-time in thealloc
Cartesian coordinates of radar 1. In order to
compensating the biases, the present bias estmggio
directly used. As t&ig. 6 and 7, the measurement tracks
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can be effectively modified with the error compeitsa Figure 9-13 have shown that the estimation
of the bias estimations to the sensors even beifbtbe precision of the algorithm in this study is muchtbe
bias estimation converges wholly. This example alsothan that of the algorithm in reference Helmick’'s
illustrates the estimation accuracy of range bes lhtle algorithm. This is mainly because a lot of lineatian

influence on the registration result. is applied in Helmick’s algorithm, which could bgn
The simulation results when sensors are close tathe calculation errors.
each other. The absolute estimations of the biases with the

A further performance analysis of this algorithm is aigorithm in this study at the 200th sampling point
done with the simulation environment in (Helmickdan (namely the 100th sec) are shown as follows:

Rice, 1993) which is denoted as Helmick's algorithm
The parameters of the sensors are same with that in

Helmick’s algorithm. g, 204.9me, =-035¢ =- 0.1
Because only the track distribution figures of the €. =035g =117¢ =- 1.18

targets are shown and the movement parameterseof th k! ! 1

targets are not given in detail in Helmick’s alglom, the € _=229.0mg = 163g = 0.79

simulation movement parameters of the targets is th 2 2 2

study is almost consistent with that in Helmick’s g, =164, =-0.78, = 087

algorithm, which is shown iRig. 8.

Figure 9-13 are the RMS curves of the relative The simulati lts above h h hat ths bi
bias estimations by the algorithm in this study and e simulation results above have shown that tae bi

Helmick’s algorithm with twenty Monte Carlo estimations are almost consistent with their traties

simulations, where the calculation of the relathias ~ €xcept for the distance bias estimation when the
estimations is consistent with that in Helmick’'s distances among the sensors are small. So thetafgor

algorithm ander = ¢ ¢ , €0 =¢ -g +¢& -¢ in this study can also implement the absolute tesgion
2 N B 9 9 9 . . .
_ _ _ of the biases except for the distance bias when the
BN =g, g, BV, g e = €, "Eq - distances among the sensors are small.
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Fig. 10. Azimuth bias estimates
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Fig. 12. Pitch bias estimates
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Fig. 13. Roll bias estimates
In the process of simulation, if the values of each 2. CONCLUSION
kind of random measurement errors and the trueetarg
trajectories are changed, the results show thaRtiS This study presented a study of the registration
of bias estimations will be affected. This conabusis in  algorithm for mobile 3-D radars with no locatiomagr In
line with the conclusion of the past literatures. the study, a modified unscented Kalman filter isposed

In order to estimate all the biases, there are rime ~ In order to estimate the radar attitude and measeme

two observable targets in the common surveillamea a bias in real time. At last some numerical examales
and the targets must be located in two differemidgants ~ US€d to demonstrate the main advantages and feaitire
(Barsholm, 2001). It is easily known that the pregy € algorithm. An important problem left unresohisdo
method can't guarantee the independent obseryabiiit estimate three dimensional location errors.

some biases when the conditions as follows are met
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