Journal of Computer Science 9 (11): 1461-1471, 2013

ISSN: 1549-3636

© 2013 Science Publications

doi:10.3844/jcssp.2013.1461.1471 Published OnlifELY 2013 (http://www.thescipub.com/jcs.toc)

EFFECTIVENESS OF SECOND BEST PARTICLE
INFORMATION FOR PARTICLE SWARM OPTIMIZATION

%Eisuke Kita and *Young-Bin Shin

!Department of Complex System Science, Graduate $ohémformation Science, Nagoya University, Nagdgpan
“Department of Computational Science, Graduate Saifd®ystem Informatics, Kobe University, Kobe Japan

Received 2013-08-25, Revised 2013-09-02; Accepte@-29123
ABSTRACT

Particle Swarm Optimization (PSO) represents theniil solutions of the optimization problem as th
particles and then, the particles move in orddimid the better solution. The particle positions apdated
from the personal best and the global best parfiolgitions which have been ever found. This re$earc
focuses on the use of the second personal besthandecond global best particle positions in otder
improve the search performance of the original R®@rithm. In the present algorithm, the secondalo
best or the second personal best particle posgisandomly used for updating all particle posidofhe
algorithms are compared with the original PSO atgor in five test functions. The results revealtttige
use of the second global best and the second @mdrbast particle positions can improve the search
performance of the original PSO although the biakga is simple.

Keywords: Particle Swarm Optimization, Global Best Parti¢tersonal Best Particle, Second Best Particle

1. INTRODUCTION design by usign Particle Swarm Optimization. P20(8)
applied the Particle Swarm Optimization for anaysf
The gradient-type algorithms such as the Newtah an publications. Heet al. (2009); Lapizco-Encinagt al.

Steepest gradient methods are very popular algasifior ~ (2009); Liuet al. (2006); Qarouni-Faret al. (2007) and
obtaining the solution of the optimization problefiey Zhao et al. (2008) presented the application of the
sometimes reach not global optimum but local optimu  Particel Swarm Optimization for packing problems.
Therefore, some researchers have been studying othe In the original PSO algorithm, the potential solos of
algorithms without the gradient data of the funttg&uch  the optimization problem are defined as the padigthose
as Genetic Algorithm (GA) by Holland (1975) and position vector denotes the design vector of thelicate
Goldberg (1989), Simulated Annealing (SA) by solution. The particle positions are updated frone t
Kirkpatrick et al. (1983), Particle Swarm Optimization yersonal and the global best particle positions. Jérsonal

559857)) gz d geh?n:r?g ;&grhgge(rfgég)(;a?f)s;o };ﬁnnpegéand global best particles denote the best positiich each
' article has ever found and the best position wiilth

which has been presented in 1995 by Kennedy an . . .
Eberhart (1995), is based on a metaphor of sociglParticles have ever found, respectively. One of tisic

interaction such as bird flocking and fish schoglin drawbacks of PSO is the premature convergencegurobl
PSO, which is also a population-based optimization The premature convergence means too early conwergen
algorithm, is available for solving various fungtio of a population of potential solutions, resultingoeing not
optimizations problem and industrial applications global optimal solution but local (sub-) optimalutmn.

(Heet al., 2009; Lapizco-Encinaset al., 2009; Liuet al., This study focuses on the use of second global and
2006; Poli, 2008; Qarouni-Far al., 2007; Zhacet al., second personal best particle positions for imprg\the
2008). Qarouni-Farét al. (2007) presented the timetable search performance of the original PSO algorithime T
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PSO algorithms employing second global and personaposition vector and Xt) the overall best out of all
best particle positions are named as present #igorl  particles in the swarm is as global best particle
and 2, respectively. The present algorithms arepesetl  position vector Xt). The particle position vector(¥)
with the original PSO algorithm in five test furans. and the velocity vector i(f) are updated by the

The remaining part of this study is organized asersonal and global best particle position vectors.
follows. The PSO algorithms and the numerical tssul The original PSO algorithm is summarized as

are explained in section 2 and 3, respectivelyaliin  follows (Fig. 1):
the conclusions are summarized again in section 4.

2 PSO ALGORITHM . _In_|t_|al_|ze iteration number: The iteration t number
initialized as +-0

2.1. Optimization Problem e Initialize particle position and velocity vectoor i

=1, .., N, the particle position vectori(® and
The optimization problem is defined by the velocity vector (t) are initialized with uniformly
objective function and the design variables if the distributed random vectors
constraint conditions are negligible. « Initialize best particle position vectors: The gibb
The design variable vector is defined as follows best particle position vector(f) and the personal
Equation (1): best particle position vector’§) of the particle are
initialized with zero vectors;%t) = 0 and ¥(t) = 0
X={X1,Xz,---,XNd}T L . EvaIL_Jate fitnegs function: For i = 1,...,N, fitness
function f(x(t)) is evaluated

e Check the convergence criterion: If the criterign i

The parameter;>xand Oy denote the design variable satisfied, the process goes to next step. Otherwise
and the total number of design variables, respelgtiv the process goes to the step 7
The objective function to be minimized is defiresl « Output results: The results are output and the
the function of the design variables Equation (2): process is terminated
« Update particle position vectors: The particle
F(x) - min (2) velocity vector \(t) is updated and then, the particle
position vector Xt) is updated. (Update algorithm is
In the evolutionary computation, the satisfactifn described in the next section)
the particle for the design objective is estimabgdthe ~ * Update iteration number: The iteration number is
fitness function f(x), which is maximized as follew updated so that and then, the process goes t@ step

Equation (3):
2.2.2. Update Algorithm

f(x) - max ©) In the original PSO algorithm, the position ané th
velocity vectors of the particle i(i = 1,...,N) aredated
2.2. Original PSO according to the following rules Equation (4 and 5)

2.2.1. Search Process v, (t+1) =y, (9 + 6 1 x((9- % (1)
In the PSO algorithm, the particles represent . g (4)

: . LI c2r2><(x (t)—x,(t))
potential solutions of the optimization problem and
then, the swarm of the particles moves on the sniut
space in order to find the better solution. A paetiin X (t+1)=x () +v (t+1) (5)
the swarm has a position vectoltk and a velocity
vector \(t) in the search space at time. Each particle The parameter w is the inertia weight. The
has memory and hence, can remember the besparameter cand g are acceleration coefficient and is the
position which it ever visited in search space. Whe iteration time-step. The variable and 5 are random
each particle takes the best fithess function, thenumbers in the range of [0,1]. The parameter Nhés t
position vector is known as the personal best glarti  swarm size or the total number of particles indhvarm.
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Initialize iteration number

y

Initialize particle position and velocity vectors
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Initialize best (and second best) particle position vectors
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Check the convergence criterion
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| Update particle position vectors |
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Output results |

I Update iteration number I—

Fig. 1. PSO algorithm

The inertia weight governs how much percentage of

the velocity should be retained from the previonset
step to the next time step. The inertia weightgdated
by the following self-adapting formula Equation:(6)

t
W =Wy _(Wmax_w min)x t
max

(6)

The parameter i, and W, denote the maximum
and minimum inertia weights, respectively. The
parameter t and.i; are the iteration step and the
maximum iteration steps in the simulation, respetyi

The parameters, @nd ¢ determine the relative pull
of x(t) and X(t). According to the recent work done by
Clerc (1999), the parameters are given as follows:

c,=¢,=15

(7)

The update algorithm of the particle position is

summarized as follows:

 Update the particle velocity vector: The particle
velocity vector (t+1) is calculated by Equation (4)

s={s}={2() % (} .k ()}

The global best particle position vector is updated
as follows:

x9(t+1) — argmax 1($)

Update personal best particle position vector:iFor
1,...,N, the set is defined as follows:

The personal best particle position vector is updat
as follows:

xP(t+1) — argmax, l( $)

2.3. Present Algorithm 1
2.3.1. Search Process

The search process of the present algorithm 1 is

+ Update the particle position vector: The particle similar except for the uses of the second globait be

position vector Xt+1) is calculated by Equation (5)

particle position vector %t). This algorithm uses the

«  Update global best particle position vector: The se personal best particle position vectof(ty, the first

is defined as follows:
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global best particle position vectot) for updating the
particle position and velocity vectors.
The present algorithm 1 is summarized as follows:

» Initialize iteration number: The iteration numbést
initialized as +-0

» Initialize particle position and velocity vectofor i

1,...,N, the particle position vector;(ty and
velocity vector \(t) are initialized with uniformly
distributed random vectors

e Initialize best particle position vectors: The gibb
best particle position vectorf(¥) and the personal
best particle position vectorP§) of the particle are
initialized with zero vectors;%t) = 0 and ¥(t) = 0

» Initialize second global best particle position
vectors: The global best particle position vector
x%(t) is initialized with zero vectorst) = 0

» Evaluate fitness function: For i = 1,...,N, fithess
function f(x(t)) is evaluated

e Check the convergence criterion: If the criterign i

satisfied, the process goes to next step. Otherwise

the process goes to the step 8

e Output results: The results are output and the

process is terminated

« Update particle position vectors: The particle

velocity vector \(t) is updated and then, the particle *

position vector Xt) is updated. (Update algorithm is
described in the next section.)

» Update iteration number: The iteration number is

updated so thaktt+1 and then, the process goes
to step 3

2.3.2. Update Algorithm with Second Global
Best Particle

The original PSO have no handling mechanism for,

avoiding the local optimization except for the usie

xiP(t). In the present algorithm 1, each particle can
remember the second global best particle position

vector ¥4(t) in addition to the global best particle
position vector Xt) and the personal best particle
position vector R(t). The use of ¥(t) can reduce the

chance of local optimum convergence of PSO. In this

algorithm, the particle velocity vector is updatadthe
following equation:

v (t+1) =wv () +qg X(Xip(t)_)ﬁ (t))
e, x (%2 (1) - x, (1))

+Cyf, x(xgz(t) - X (t))

(8)
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The parameter is the inertia weight. The parameter
¢, ¢ and g are the acceleration coefficient and the
parameter is the iteration time. Besideg,rand g are
random numbers uniformly distributed in the rande o
The parameter,@nd ¢ are taken as the same values in
the original PSO; c= ¢, = 1.5. Effect of the parameter
c; to the search performance is discussed in the
numerical examples.

The update rule (8) has been already presented in
the paper. The numerical discussions and the
applications were not described in the reference.
Therefore, in this study, it is discussed in numalri
examples.

The update algorithm of the particle position veéso
summarized as follows:

* Generate uniformly distributed random number: The
uniformly distributed random number r is generated
in the range of [0,1]

Update particle velocity vector: 1£0.5, the particle
velocity vector (t+1) is calculated by Equation (4).
Otherwise, the vector (¢+1) is calculated by
Equation (8)

Update the particle position vector. The particle
position vector Xt+1) is calculated by Equation (5)
Update global best particle position vector: The se
is defined as follows:

g ={g}={e(d () o¢(d 80}

The global best particle position vector is updaisd
follows.

x?(t+1) — argmay, 1(3)
Update second global best particle position vector:

The set & is defined the set®Srom which »(t+1)
is excluded as follows:

P =g-¢(t+]

The second global best particle position vector
x%(t+1) is updated as follows:

x%(t+1) ~ arg ma>§,2( 82)

« Update personal best particle position vector:iFor
1,...N, the set is defined as follows:

s={sh={r().x()}

JCS
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The personal best particle position vector is updiat 2.4.2. Update Algorithm with Second Personal

as follows: Best Particle
The present algorithm 1 uses the second global
xP(t+1) — argmax, { 9) best particle position vector%%t) for avoiding the

local optimization. On the other hand, the present
i algorithm 2 uses the second personal best particle
2.4. Present Algorithm 2 position vector ¥%(t) instead of the second global best

particle position vector%(t).
2.4.1. Search Process In the present algorithm 1, the second global best

The search process of the present algorithm 2 igparticle position vector%(t) makes an identical effect
almost same as that of the original PSO algoritkoept ~ on all particles. 2The second personal best particle
for the use of the second personal best partictitipn ~ POsition vector ¥*(t) makes the different effect on
vector ¥Xt). This algorithm uses the personal best each_ particle. Therefore, p.artlcles.m the present
particle position vector Xt), the global best particle algorithm 2 tend to search wider region than them i

. ., the present algorithm 1.
position vector Xt) and the second personal best particle

.. : ! . In the present algorithm 2, each particle can
2 ’
position vector #1t) for updating the particle position remember the positions of the global best particle

and velocity vectors. _ , position vector ¥g), the personal best particle position
The present algorithm 2 is summarized as follows: |, otor ¥t and the second personal best particle
position vector R%(t). In this algorithm, the particle
« Initialize iteration number: The iteration numbest  velocity vector is updated by the following equatio
initialized as +-0

» Initialize particle position and velocity vectoFor i v, (t+1) =wv (t)+q¥ x(xip(t)— X (t))
= 1,._..N, the particle _p_o_sit_ion ve_ctori(b} and o, X(Xg(t)—xi (t)) ©)
velocity vector \(t) are initialized with uniformly
distributed random vectors +C, 1, X(sz(t) =X (t))

» Initialize best particle position vectors: The gibb
best particle position vector’(®) and the personal The parameter is the inertia weight. The parameter
best particle position vector’t) of the particle are  C1,C; and g are the acceleration coefficient and the
initialized with zero vectors;%t) = 0 and ¥(t) = 0 parameter t is the iteration time. Besidgsrrand y are

. Initialize second personal best particle position random numbers uniformly distributed in the rande o
i o [0,1]. The parameter;@nd ¢ are taken as the same

vect.ors. FO!’.I = 1N, the .sg-co.nd per.sonal t)estvalues in the original PSO; & ¢ = 1.5. Effect of the

particle position vectorXt) is initialized with zero  parameter cto the search performance is also discussed

vectors; ¥(t) = 0 in the numerical examples.
e Evaluate fitness function: For i = 1,...,N, fithess The present algorithm 2 shares the information of
function f(x(t)) is evaluated xP(t), x%(t) and ¥*t). Obviously, ¥4t) is worse than

«  Check the convergence criterion: If the criterisn i %(t). If only Equation (7) is used for updating pele
satisfied, the process goes to next step. OtherwiseVelocity vector, the result must be worse than ibiat
the process goes to the step 8 original PSO. Therefore, the update rules (4) @)date

. . employed alternately. The update algorithm of the
Output _results._ The results are output and thepresent algorithm 2 is summarized as follows:
process is terminated

* Update particle position vectors: The particle .  Generate uniformly distributed random number: The

velocity vector \t) is updated and then, the particle uniformly distributed random number r is generated
position vector Xt) is updated. (Update algorithm is in the range of [0,1]
described in the next section) « Update particle velocity vector: 1f>0.5, the

* Update iteration number: The iteration number is particle velocity vector t+1) is calculated by
updated so thattt+1 and then, the process goes to Equation (4). Otherwise, the vector(t¥l) is
step 3 calculated by Equation (9)
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* Update particle position vector: The particle gosit The sphere function of n = 2is showrFig. 2a
vector x(t+1) is calculated by Equation (5)
» Update global best particle position vector: The se
is defined as follows: Rosenbrock function is defined as follows
Equation (12):

fa )= S5 {1000k %) (x - )

(-30= % <30

3.1.2. Rosenbrock function

The global best particle position vector is updaed (12)

follows:

x3(t+1) - arg max 1( $) The Rosenbrock function of n = 2 is showifrig. 2b.
3.1.3. Rastrigin Function

» Update personal best particle position vector: iFor Rastrigin function is a multi-modal function degih
=1,...,N, the set is defined as follows: as follows Equation (13):
S =<{F}={ () ¥ .x( 1} f,(x)=Y" (x? -10cosaux + 10

13
(-5.12< x <512 (13)

The personal best particle position vector is updiat

as follows: The Rastrigin function of n = 2is shown kig. 2¢
A lot of local optimal solutions exist around a Igid
xP(t+1) — argmax, '( ‘5) optimal solution.

«  Update second personal best particle position vecto 3-1.4. Griewank Function
Fori=1,..N, the_set’%|s defined from the set’s Griewank function is defined as follows Equatita)¢
from which xP(t+1) is excluded as follows:
) 5 f4(x):i ® x2-T1" cos™L +1
gt ={g}=9- () ao00==" ~ F1a®% (14)
(-600< x < 6009
The second personal best particle position vedor i

updated as follows: The Griewank function of n = 2 is shownfig. 2d.
xP?(t+1) < argmay,, { &) 3.1.5. Schaffer's F6 Function
Schaffer's f6 function is defined as follows
3. NUMERICAL EXAMPLES Equation (15):
. P
3.1. Test Functions f.(x) =05+ sin® [ x| 0.52
Sphere, Rosenbrock, Rastrigin, Griewank and (1+ 0.001] Xz]) (15)

Schaffer’s 6 functions are considered as testtfans. (—100s % < 10()

3.1.1. Sphere function The function |x| denotes the absolute value of the

Sphere function is defined as follows Equation{10 vector x. The Schaffer's f6 function of is n = ZDam
in Fig. 2e
f, (x)= z_"ﬁlxiZ(_loOS X < 10() (10) The dimension of functions is n = 2 for Schaffd6s
= function or n = 30 for the other functions. Theettrold
; - ; . for function optimization is also shown in the satalele.
The vector xis defined as follows Equation (11): In minimization of the function, it is concludedaththe
_ T global minimum of the function can be found wheg th
X ‘{xl'xz""’xn} (11) function value is smaller than the threshold value.
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Fig. 2. Test Functions (apphere function(b) Rosenbrock functioric) Rastrigin function(d) Griewank function(e) Schaffer's
f6 function

Swarm size and maximum iteration number are The average search time denotes the average
shown inTable 1 According to the work done by jieration number at which the global optimum could
Clerc (1999), the parametersand ¢ are specified as o 5nd. The success rate denotes, in total number

G=e=15 imulations, th t f th ber of
The results are compared in the estimation value S'My'ations, the percentagé ot the number o

which is defined as the quotient of the averageckea simulations at which the minimum solution can be

time and the success rate as follows Equation (16): found. The threshold for finding the optimal sotuti
is shown inTable 2. When a smaller solution than the
Estimation= Averagesearch tim (16) thresho_ld _can bt_a found, it is concluded that the
Successrate simulation is terminated successfully.
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Table 1. Simulation parameters

Table 3.Results by present algorithm 1

Swarm size 033 C3 1 1.5 2 2.5 3
Maximum iteration 10000  Sphere function
Estimation 345.00 614.0 538.0 659.0 429.0
Table 2. Threshold for test functions Estimation 293580 3£5L1?o 3?)'5.0 2525(2).0 fig.o
Function Threshold Rosenbrock function
Sphere 0.01 C3 1.00 15 2.0 2.5 3.0
Rosenbrock 100.00 Estimation 1431.00 936.0 543.0 477.0 444.0
Griewank 0.10 Estlm_at_lon _287.00 282.0 352.0 240.0 244.0
Schaffer f6 10° Rastrigin function
C3 1.00 15 2.0 2.5 3.0
Estimation 1.65 266.0 419.0 1.9 238.0
. C3 3.50 4.0 4.5 5.0 55
3.2. Effect of g on Present Algorithm 1 Estimaton 15500 119.0 2020 1120 780.0
. . . . Griewank function
. .S|mulat|or?s are performed 20 times from different Cs 1.00 15 20 25 3.0
initial populations by the present algorithm 1. The Estimation  728.00 313.0 561.0 486.0 373.0
results are shown imable 3. The results show that the ¢; 3.50 4.0 4.5 5.0 55
best value of the parametey depends on the function Estimation ~ 355.00 2700 3280 223.0 209.0
to be solved. Comparison of the estimation vaIuestha‘ﬁerf”nCt'on1 00 15 ’0 ot 30
shows that the best values of the parametareg = 5 Eastimation 11.80 8.9 121 11.4 8.6
for Sphere, Rosenbrock, Griewank and Schaffer's f6c, 3.50 4.0 4.5 5.0 55
functions and £= 2.5 or 5 for Rastrigin function. It is Estimation 9.00 10.6 11.0 6.8 120
concluded thatg£= 5 is good for all functions.
. Table 4.Results by present algorithm 2
3.3. Effect of g on Present Algorithm 2 o 1 15 > 25 3
Simulations are performed 20 times from different Sphere function
initial populations by the present algorithm 2. The Estimation 1024.0 1205.0 1178.0  922.0  489.0
results are shown iable 4. The results show that C 3.5 4.0 4.5 5.0 5.5
the best parameter; depends on the function. The Estimation ~ 421.0 6850 ~ 851.0  387.0  291.0
best values of the parameter are for Sphere,?OsenbrOCk funcil%n 15 20 25 3.0
Rosenbrock, Rastrigin and (_3newan!< functionsand E43timation 618.0 8940 14150 10350 6450
c, = 5 for Schaffer’'s f6 functions. It is concludduht C 35 4.0 45 5.0 55
is ¢ = 5.5 good for all functions. Estimaton ~ 729.0 3700 586.0 398.0 273.0
: : ; Rastrigin function
3.4. Comparison with Other Studies o 9 o 15 ’0 . 20
Swarm size and maximum iteration number are 30Estimation 131.0 148.0 98.0 115.0 81.0
and 10000, respectively. According to the work done ¢4 35 4.0 4.5 5.0 5.5
by Clerc (1999), the parametersand ¢ are specified ~ Estimation 62.0 84.0 86.0 680 580
as G = ¢ = 1.5. The best results by present algorithms Griewank function
are compared with the results in the study by Eerh ¢ 1.0 1.5 2.0 25 3.0
and Shi (2000) and Trelea (2003). The results areESt'matlon 123550 52%0 11:’20 5598'0 (;730
show.n in Table 5 The results .by the present E45timation 5120 315.0 3500 4020  309.0
algorithms are better than them in the references.gchaffer f6 function
Comparison of the present algorithm 1 and 2 showsg, 1.0 15 20 25 3.0
that the present algorithm 1 is better for Roseabro Estimation 14.9 9.5 5.6 10.2 5.4
and Griewank functions and the present algorithim 2 ¢4 3.5 4.0 4.5 5.0 5.5
for other functions. Estimation 3.8 6.0 10.3 2.8 3.1
////4 Science Publications 1469 JCS
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Table 5.Comparsion with other studies

Algorithm Eberhart and Shi (2000) Trelea (2003) serg 1 Present 2
Sphere function

Estimation 530 344 292 291
Rosenbrock function

Algorithm Eberhart and Shi (2000) Trelea (2003) edent 1 Present 2
Estimation 669 614 240 273
Rastrigin function

Algorithm Eberhart and Shi (2000) Trelea (2003) sere 1 Present 2
Estimation 213 156 112 58
Griewank function

Algorithm Eberhart and Shi (2000) Trelea (2003) edent 1 Present 2
Estimation 323 348 223 309
Schaffer f6 function

Algorithm Eberhart and Shi (2000) Trelea (2003) sere 1 Present 2
Estimation 532 215 6.8 2.8

4. CONCLUSION

This study describes the use of the second best
particle position for improving the original PSOh the
original PSO, the particle position vectors are aipd
from the personal best and the global best position
vectors which particles have ever found. This redea
focuses on the use of the second global best amd th ! -
second personal best particle positions in order to  Addison-Wesley, Reading, ISBN-10: 0201157675,
improve the search performance of the original PBO. pp: 412.
the present algorithms, the second global besttaed He, C., Y.B. Zhang, JW. Wu and C. Chang, 2009.
second personal best particle positions are randoml ~ Research of three-dimensional container-packing
used for updating the particle position vectors. problems based on Discrete Particle Swarm

Eberhart, R.C. and Y. Shi, 2000. Comparing ineviéghts
and constriction factors in particle swarm optirtia
Proceedings of the Congress on Evolutionary
Computation, Jul. 16-19, IEEE Xploe Press, La ,JJolla
CA., pp: 84-88. DOI: 10.1109/CEC.2000.870279
Goldberg, D.E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. 1st Edn.,

Present algorithms are compared with the original

PSO algorithm in five test functions. The resulteealed
that the use of the second best positions can wepitee
search performance of the original PSO. In all sae

Optimization algorithm. Proceedings of the
International Conference on Test and Measurement,
Dec. 5-6, IEEE Xplore Pressjong Kong, pp: 425-
428. DOI: 10.1109/ICTM.2009.5413015

success rate is bigger than or equal to 0.9 and thgyg)iang, J.H., 1975. Adaptation in Natural and fictal

estimation, which is defined as the quotient ofdlierage
search time and the success rate, is also betarttte
previous studies. The present results were compaitbd
the previous study. The results by the presentridihgos
were better than them in the references.

In the near future, we would like to discuss the
applicability of the present algorithms to actual

engineering applications.
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