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ABSTRACT 

Particle Swarm Optimization (PSO) represents the potential solutions of the optimization problem as the 
particles and then, the particles move in order to find the better solution. The particle positions are updated 
from the personal best and the global best particle positions which have been ever found. This research 
focuses on the use of the second personal best and the second global best particle positions in order to 
improve the search performance of the original PSO algorithm. In the present algorithm, the second global 
best or the second personal best particle position is randomly used for updating all particle positions. The 
algorithms are compared with the original PSO algorithm in five test functions. The results reveal that the 
use of the second global best and the second personal best particle positions can improve the search 
performance of the original PSO although the basic idea is simple. 
 
Keywords: Particle Swarm Optimization, Global Best Particle, Personal Best Particle, Second Best Particle 

1. INTRODUCTION 

 The gradient-type algorithms such as the Newton and 
Steepest gradient methods are very popular algorithms for 
obtaining the solution of the optimization problem. They 
sometimes reach not global optimum but local optimum. 
Therefore, some researchers have been studying other 
algorithms without the gradient data of the function such 
as Genetic Algorithm (GA) by Holland (1975) and 
Goldberg (1989), Simulated Annealing (SA) by 
Kirkpatrick et al. (1983), Particle Swarm Optimization 
(PSO) by Kennedy and Eberhart (1995); Kennedy 
(1997) and Shi and Eberhart (1998) and so on. PSO, 
which has been presented in 1995 by Kennedy and 
Eberhart (1995), is based on a metaphor of social 
interaction such as bird flocking and fish schooling. 
PSO, which is also a population-based optimization 
algorithm, is available for solving various function 
optimizations problem and industrial applications     
(He et al., 2009; Lapizco-Encinas et al., 2009; Liu et al., 
2006; Poli, 2008; Qarouni-Fard et al., 2007; Zhao et al., 
2008). Qarouni-Fard et al. (2007) presented the timetable 

design by usign Particle Swarm Optimization. Poli (2008) 
applied the Particle Swarm Optimization for analysis of 
publications. He et al. (2009); Lapizco-Encinas et al. 
(2009); Liu et al. (2006); Qarouni-Fard et al. (2007) and 
Zhao et al. (2008) presented the application of the 
Particel Swarm Optimization for packing problems.  
 In the original PSO algorithm, the potential solutions of 
the optimization problem are defined as the particles whose 
position vector denotes the design vector of the candidate 
solution. The particle positions are updated from the 
personal and the global best particle positions. The personal 
and global best particles denote the best position which each 
particle has ever found and the best position which all 
particles have ever found, respectively. One of the basic 
drawbacks of PSO is the premature convergence problem. 
The premature convergence means too early convergence 
of a population of potential solutions, resulting in being not 
global optimal solution but local (sub-) optimal solution. 
 This study focuses on the use of second global and 
second personal best particle positions for improving the 
search performance of the original PSO algorithm. The 
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PSO algorithms employing second global and personal 
best particle positions are named as present algorithm 1 
and 2, respectively. The present algorithms are compared 
with the original PSO algorithm in five test functions. 
 The remaining part of this study is organized as 
follows. The PSO algorithms and the numerical results 
are explained in section 2 and 3, respectively. Finally, 
the conclusions are summarized again in section 4. 

2. PSO ALGORITHM 

2.1. Optimization Problem 

 The optimization problem is defined by the 
objective function and the design variables if the 
constraint conditions are negligible. 
 The design variable vector is defined as follows 
Equation (1): 
 

{ }T

1 2 Nd
x x ,x ,...,x=   (1) 

 
 The parameter xi and Dd denote the design variable 
and the total number of design variables, respectively. 
 The objective function to be minimized is defined as 
the function of the design variables Equation (2): 
 

( )F x min→   (2) 

 
 In the evolutionary computation, the satisfaction of 
the particle for the design objective is estimated by the 
fitness function f(x), which is maximized as follows 
Equation (3):  
 

( )f x max→   (3) 

 
2.2. Original PSO 

2.2.1. Search Process 

 In the PSO algorithm, the particles represent 
potential solutions of the optimization problem and 
then, the swarm of the particles moves on the solution 
space in order to find the better solution. A particle in 
the swarm has a position vector xi(t) and a velocity 
vector vi(t) in the search space at time. Each particle 
has memory and hence, can remember the best 
position which it ever visited in search space. When 
each particle takes the best fitness function, the 
position vector is known as the personal best particle 

position vector and xi
p(t) the overall best out of all 

particles in the swarm is as global best particle 
position vector xg(t). The particle position vector xi(t) 
and the velocity vector vi(t) are updated by the 
personal and global best particle position vectors. 
 The original PSO algorithm is summarized as 
follows (Fig. 1): 
 
• Initialize iteration number: The iteration t number is 

initialized as t←0 
• Initialize particle position and velocity vectors: For i 

= 1, …, N, the particle position vector xi(t) and 
velocity vector vi(t) are initialized with uniformly 
distributed random vectors 

• Initialize best particle position vectors: The global 
best particle position vector xg(t) and the personal 
best particle position vector xi

p(t) of the particle are 
initialized with zero vectors; xg(t) = 0 and xi

p(t) = 0 
• Evaluate fitness function: For i = 1,…,N, fitness 

function f(xi(t)) is evaluated 
• Check the convergence criterion: If the criterion is 

satisfied, the process goes to next step. Otherwise, 
the process goes to the step 7 

• Output results: The results are output and the 
process is terminated 

• Update particle position vectors: The particle 
velocity vector vi(t) is updated and then, the particle 
position vector xi(t) is updated. (Update algorithm is 
described in the next section) 

• Update iteration number: The iteration number is 
updated so that and then, the process goes to step 3 

 
2.2.2. Update Algorithm 

 In the original PSO algorithm, the position and the 
velocity vectors of the particle i(i = 1,…,N) are updated 
according to the following rules Equation (4 and 5): 
 

( ) ( ) ( ) ( )( )
( ) ( )( )

p
i i 1 i i i

2 2 i
g

v t 1 v t c r x t x t

c r x t x t

+ = ω + × −

+ × −
  (4) 

 
( ) ( ) ( )i i ix t 1 x t v t 1+ = + +   (5) 

 
 The parameter w is the inertia weight. The 
parameter c1 and c2 are acceleration coefficient and is the 
iteration time-step. The variable r1 and r2 are random 
numbers in the range of [0,1]. The parameter N is the 
swarm size or the total number of particles in the swarm. 
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Fig. 1. PSO algorithm 

 
 The inertia weight governs how much percentage of 
the velocity should be retained from the previous time 
step to the next time step. The inertia weight is updated 
by the following self-adapting formula Equation (6): 
 

( )max max min
max

t
w w w w

t
= − − ×   (6) 

 
 The parameter wmax and wmin denote the maximum 
and minimum inertia weights, respectively. The 
parameter t and tmax are the iteration step and the 
maximum iteration steps in the simulation, respectively. 
 The parameters c1 and c2 determine the relative pull 
of xi

p(t) and xg(t). According to the recent work done by 
Clerc (1999), the parameters are given as follows: 
 

1 2c c 1.5= =   (7) 

 
 The update algorithm of the particle position is 
summarized as follows: 
 
• Update the particle velocity vector: The particle 

velocity vector vi(t+1) is calculated by Equation (4) 
• Update the particle position vector: The particle 

position vector xi(t+1) is calculated by Equation (5) 
• Update global best particle position vector: The set 

is defined as follows: 

{ } ( ) ( ) ( ){ }g p p
i 1 NS S x t ,x t ,..., x t= =  

 
The global best particle position vector is updated 
as follows: 

 

( ) ( )g
S ix t 1 arg max f S+ ←  

 
• Update personal best particle position vector: For i = 

1,…,N, the set is defined as follows: 
 
 { } ( ) ( ){ }p p p

i i iS S x t ,x t= =  

 
The personal best particle position vector is updated 
as follows: 

 
 ( ) ( )p

p p
i iS

x t 1 arg max f S+ ←  

 
2.3. Present Algorithm 1 

2.3.1. Search Process 

 The search process of the present algorithm 1 is 
similar except for the uses of the second global best 
particle position vector xg(t). This algorithm uses the 
personal best particle position vector xi

p(t), the first 
global best particle position vector xg2(t) and the second 
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global best particle position vector xg2(t) for updating the 
particle position and velocity vectors. 
 The present algorithm 1 is summarized as follows: 
 
• Initialize iteration number: The iteration number t is 

initialized as t←0 
• Initialize particle position and velocity vectors: For i 

= 1,…,N, the particle position vector xi(t) and 
velocity vector vi(t) are initialized with uniformly 
distributed random vectors 

• Initialize best particle position vectors: The global 
best particle position vector xg(t) and the personal 
best particle position vector xi

p(t) of the particle are 
initialized with zero vectors; xg(t) = 0 and xi

p(t) = 0 
• Initialize second global best particle position 

vectors: The global best particle position vector 
xg2(t) is initialized with zero vectors; xg2(t) = 0 

• Evaluate fitness function: For i = 1,…,N, fitness 
function f(xi(t)) is evaluated 

• Check the convergence criterion: If the criterion is 
satisfied, the process goes to next step. Otherwise, 
the process goes to the step 8 

• Output results: The results are output and the 
process is terminated 

• Update particle position vectors: The particle 
velocity vector vi(t) is updated and then, the particle 
position vector xi(t) is updated. (Update algorithm is 
described in the next section.) 

• Update iteration number: The iteration number is 
updated so that t←t+1 and then, the process goes 
to step 3 

 
2.3.2. Update Algorithm with Second Global 

Best Particle 

 The original PSO have no handling mechanism for 
avoiding the local optimization except for the use of 
xi

p(t). In the present algorithm 1, each particle can 
remember the second global best particle position 
vector xg2(t) in addition to the global best particle 
position vector xg(t) and the personal best particle 
position vector xi

p(t). The use of xg2(t) can reduce the 
chance of local optimum convergence of PSO. In this 
algorithm, the particle velocity vector is updated by the 
following equation: 
 

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

p
i i 1 1 i i

g
2 2 i

g2
3 3 i

v t 1 v t c r x t x t

c r x t x t

c r x t x t

+ = ω + × −

+ × −

+ × −

  (8) 

 The parameter is the inertia weight. The parameter 
c1, c2 and c3 are the acceleration coefficient and the 
parameter is the iteration time. Besides, r1,r2 and r3 are 
random numbers uniformly distributed in the range of 
The parameter c1 and c2 are taken as the same values in 
the original PSO; c1 = c2 = 1.5. Effect of the parameter 
c3 to the search performance is discussed in the 
numerical examples. 
 The update rule (8) has been already presented in 
the paper. The numerical discussions and the 
applications were not described in the reference. 
Therefore, in this study, it is discussed in numerical 
examples. 

The update algorithm of the particle position vector is 
summarized as follows: 
 
• Generate uniformly distributed random number: The 

uniformly distributed random number r is generated 
in the range of [0,1] 

• Update particle velocity vector: If r≥0.5, the particle 
velocity vector vi(t+1) is calculated by Equation (4). 
Otherwise, the vector vi(t+1) is calculated by 
Equation (8) 

• Update the particle position vector: The particle 
position vector xi(t+1) is calculated by Equation (5) 

• Update global best particle position vector: The set 
is defined as follows: 

 

{ } ( ) ( ) ( ) ( ){ }g g g g2 p p
i 1 NS S x t ,x t ,x t ,...,x t= =  

 
The global best particle position vector is updated as 
follows. 

 
( ) ( )g

g g
iS

x t 1 arg max f S+ ←  

 
• Update second global best particle position vector: 

The set Sg2 is defined the set Sg from which xg(t+1) 
is excluded as follows: 

 
( )g2 g gS S x t 1= − +  

 
The second global best particle position vector 
xg2(t+1) is updated as follows: 

 
( ) ( )g 2

g2 g2
iS

x t 1 argmax S+ ←  

 
• Update personal best particle position vector: For i = 

1,…N, the set is defined as follows: 
 

{ } ( ) ( ){ }p p p
i i iS S x t ,x t= =  
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The personal best particle position vector is updated 
as follows: 

 

( ) ( )p

p p
i iS

x t 1 arg max f S+ ←  

 
2.4. Present Algorithm 2 

2.4.1. Search Process 

 The search process of the present algorithm 2 is 
almost same as that of the original PSO algorithm except 
for the use of the second personal best particle position 
vector xi

p2(t). This algorithm uses the personal best 
particle position vector xi

p(t), the global best particle 
position vector xg(t) and the second personal best particle 
position vector xi

p2(t) for updating the particle position 
and velocity vectors. 
 The present algorithm 2 is summarized as follows: 

 
• Initialize iteration number: The iteration number t is 

initialized as t←0 
• Initialize particle position and velocity vectors: For i 

= 1,…N, the particle position vector xi(t) and 
velocity vector vi(t) are initialized with uniformly 
distributed random vectors 

• Initialize best particle position vectors: The global 
best particle position vector xg(t) and the personal 
best particle position vector xi

p(t) of the particle are 
initialized with zero vectors; xg(t) = 0 and xi

p(t) = 0 
• Initialize second personal best particle position 

vectors: For i = 1,…,N, the second personal best 
particle position vector xi

p(t) is initialized with zero 
vectors; xi

p2(t) = 0 
• Evaluate fitness function: For i = 1,…,N, fitness 

function f(xi(t)) is evaluated 
• Check the convergence criterion: If the criterion is 

satisfied, the process goes to next step. Otherwise, 
the process goes to the step 8 

• Output results: The results are output and the 
process is terminated 

• Update particle position vectors: The particle 
velocity vector vi(t) is updated and then, the particle 
position vector xi(t) is updated. (Update algorithm is 
described in the next section) 

• Update iteration number: The iteration number is 
updated so that t←t+1 and then, the process goes to 
step 3 

2.4.2. Update Algorithm with Second Personal 
Best Particle 

 The present algorithm 1 uses the second global 
best particle position vector xg2(t) for avoiding the 
local optimization. On the other hand, the present 
algorithm 2 uses the second personal best particle 
position vector xi

p2(t) instead of the second global best 
particle position vector xg2(t). 
 In the present algorithm 1, the second global best 
particle position vector xg2(t) makes an identical effect 
on all particles. The second personal best particle 
position vector xi

p2(t) makes the different effect on 
each particle. Therefore, particles in the present 
algorithm 2 tend to search wider region than them in 
the present algorithm 1. 
 In the present algorithm 2, each particle can 
remember the positions of the global best particle 
position vector xg(g), the personal best particle position 
vector xi

p(t) and the second personal best particle 
position vector xi

p2(t). In this algorithm, the particle 
velocity vector is updated by the following equation: 
 

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

p
i i 1 1 i i

g
2 2 i

p2
4 4 i

v t 1 v t c r x t x t

c r x t x t

c r x t x t

+ = ω + × −

+ × −

+ × −

  (9) 

 
 The parameter is the inertia weight. The parameter 
c1,c2 and c4 are the acceleration coefficient and the 
parameter t is the iteration time. Besides, r1, r2 and r4 are 
random numbers uniformly distributed in the range of 
[0,1]. The parameter c1 and c2 are taken as the same 
values in the original PSO; c1 = c2 = 1.5. Effect of the 
parameter c4 to the search performance is also discussed 
in the numerical examples.  
 The present algorithm 2 shares the information of 
xi

p(t), xg(t) and xi
p2(t). Obviously, xi

p2(t) is worse than 
xi

p(t). If only Equation (7) is used for updating particle 
velocity vector, the result must be worse than that of 
original PSO. Therefore, the update rules (4) and (8) are 
employed alternately. The update algorithm of the 
present algorithm 2 is summarized as follows: 
 
• Generate uniformly distributed random number: The 

uniformly distributed random number r is generated 
in the range of [0,1] 

• Update particle velocity vector: If r≥0.5, the 
particle velocity vector vi(t+1) is calculated by 
Equation (4). Otherwise, the vector vi(t+1) is 
calculated by Equation (9) 



Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013 

 
1466 Science Publications

 
JCS 

• Update particle position vector: The particle position 
vector xi(t+1) is calculated by Equation (5) 

• Update global best particle position vector: The set 
is defined as follows: 

 

{ } ( ) ( ) ( ){ }g p p
i 1 NS S x t ,x t ,..., x t= =  

 
The global best particle position vector is updated as 
follows: 

 
( ) ( )g

S ix t 1 arg max f S+ ←  

 
• Update personal best particle position vector: For i 

=1,…,N, the set is defined as follows: 
 

{ } ( ) ( ) ( ){ }p p p p2
i i i iS S x t ,x t , x t= =≪  

 
The personal best particle position vector is updated 
as follows: 

 
( ) ( )p

p p
i iS

x t 1 arg max f S+ ←  

 
• Update second personal best particle position vector: 

For i = 1,…,N, the set Sp2 is defined from the set Sp 
from which xi

p(t+1) is excluded as follows: 
 

{ } ( )p2 p2 p p
i iS S S x t 1= = − +  

 
The second personal best particle position vector is 
updated as follows: 

 
( ) ( )p 2

p2 p2
i iS

x t 1 arg max f S+ ←  

 
3. NUMERICAL EXAMPLES 

3.1. Test Functions 

 Sphere, Rosenbrock, Rastrigin, Griewank and 
Schaffer’s f6 functions are considered as test functions. 

3.1.1. Sphere function 

 Sphere function is defined as follows Equation (10): 
 

( ) ( )n 2
1 i ii 1

f x x 100 x 100
=

= − ≤ ≤∑   (10) 

 
 The vector x is defined as follows Equation (11): 
 

{ }T

1 2 nx x ,x ,..., x=   (11) 

 The sphere function of n = 2is shown in Fig. 2a. 

3.1.2. Rosenbrock function 

 Rosenbrock function is defined as follows 
Equation (12): 
 

( ) ( ) ( ){ }
( )

2 2n 1 2
2 i 1 i ii 1

i

f x 100 x x x 1

30 x 30

−
+=

= − −

− ≤ ≤

∑
  (12) 

 
 The Rosenbrock function of n = 2 is shown in Fig. 2b. 

3.1.3. Rastrigin Function 

 Rastrigin function is a multi-modal function defined 
as follows Equation (13): 
 

( ) ( )
( )

n 2
3 i ii 1

i

f x x 10cos2 x 10

5.12 x 5.12

=
= − π +

− ≤ ≤

∑
  (13) 

 
 The Rastrigin function of n = 2is shown in Fig. 2c. 
A lot of local optimal solutions exist around a global 
optimal solution. 

3.1.4. Griewank Function 

 Griewank function is defined as follows Equation (14): 
 

( )

( )

nb 2 i
4 ii 1 i 1

i

1 x
f x x cos 1

4000 i

600 x 6000

= =
= − +

− ≤ ≤

∑ ∏
  (14) 

 
 The Griewank function of n = 2 is shown in Fig. 2d. 

3.1.5. Schaffer’s F6 Function 

 Schaffer’s f6 function is defined as follows 
Equation (15): 
 

( )
( )

( )

2

5 22

i

sin | x | 0.5
f x 0.5

1 0.001| x |

100 x 100

−= +
+

− ≤ ≤

  (15) 

 
 The function |x| denotes the absolute value of the 
vector x. The Schaffer's f6 function of is n = 2 shown 
in Fig. 2e. 
 The dimension of functions is n = 2 for Schaffer’s f6 
function or n = 30 for the other functions. The threshold 
for function optimization is also shown in the same table. 
In minimization of the function, it is concluded that the 
global minimum of the function can be found when the 
function value is smaller than the threshold value. 
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(d) 

 

 
(e) 

 
Fig. 2. Test Functions (a) Sphere function (b) Rosenbrock function (c) Rastrigin function (d) Griewank function (e) Schaffer's 

f6 function 

 
 Swarm size and maximum iteration number are 
shown in Table 1. According to the work done by 
Clerc (1999), the parameters c1 and c2 are specified as 
c1 = c2 = 1.5. 
 The results are compared in the estimation value, 
which is defined as the quotient of the average search 
time and the success rate as follows Equation (16): 
 

Averagesearch time
Estimation

Successrate
=   (16) 

 The average search time denotes the average 
iteration number at which the global optimum could 
be found. The success rate denotes, in total number of 
simulations, the percentage of the number of 
simulations at which the minimum solution can be 
found. The threshold for finding the optimal solution 
is shown in Table 2. When a smaller solution than the 
threshold can be found, it is concluded that the 
simulation is terminated successfully. 
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Table 1. Simulation parameters 

Swarm size 033 
Maximum iteration 10000 

 
Table 2. Threshold for test functions 

Function  Threshold 

Sphere 0.01 
Rosenbrock  100.00 
Rastrigin  100.00 
Griewank 0.10 
Schaffer f6 10−5 

 

3.2. Effect of c3 on Present Algorithm 1 

 Simulations are performed 20 times from different 
initial populations by the present algorithm 1. The 
results are shown in Table 3. The results show that the 
best value of the parameter c3 depends on the function 
to be solved. Comparison of the estimation values 
shows that the best values of the parameter c3 are c3 = 5 
for Sphere, Rosenbrock, Griewank and Schaffer's f6 
functions and c3 = 2.5 or 5 for Rastrigin function. It is 
concluded that c3 = 5 is good for all functions. 

3.3. Effect of c4 on Present Algorithm 2 

 Simulations are performed 20 times from different 
initial populations by the present algorithm 2. The 
results are shown in Table 4. The results show that 
the best parameter c3 depends on the function. The 
best values of the parameter are for Sphere, 
Rosenbrock, Rastrigin and Griewank functions c4 and 
c4 = 5 for Schaffer’s f6 functions. It is concluded that 
is c4 = 5.5 good for all functions. 

3.4. Comparison with Other Studies 

 Swarm size and maximum iteration number are 30 
and 10000, respectively. According to the work done 
by Clerc (1999), the parameters c1 and c2 are specified 
as c1 = c2 = 1.5. The best results by present algorithms 
are compared with the results in the study by Eberhart 
and Shi (2000) and Trelea (2003). The results are 
shown in Table 5. The results by the present 
algorithms are better than them in the references. 
Comparison of the present algorithm 1 and 2 shows 
that the present algorithm 1 is better for Rosenbrock 
and Griewank functions and the present algorithm 2 is 
for other functions. 

Table 3. Results by present algorithm 1 
c3 1 1.5 2 2.5 3 
Sphere function 
Estimation 345.00 614.0 538.0 659.0 429.0 
c3 3.50 4.0 4.5 5.0 5.5 
Estimation 299.00 351.0 308.0 292.0 416.0 
Rosenbrock function 
c3 1.00 1.5 2.0 2.5 3.0 
Estimation 1431.00 936.0 543.0 477.0 444.0 
c3 3.50 4.0 4.5 5.0 5.5 
Estimation 287.00 282.0 352.0 240.0 244.0 
Rastrigin function 
c3 1.00 1.5 2.0 2.5 3.0 
Estimation 1.65 266.0 419.0 1.9 238.0 
c3 3.50 4.0 4.5 5.0 5.5 
Estimation 155.00 119.0 202.0 112.0 780.0 
Griewank function 
c3 1.00 1.5 2.0 2.5 3.0 
Estimation 728.00 313.0 561.0 486.0 373.0 
c3 3.50 4.0 4.5 5.0 5.5 
Estimation 355.00 270.0 328.0 223.0 209.0 
Schaffer function 
c3 1.00 1.5 2.0 2.5 3.0 
Estimation 11.80 8.9 12.1 11.4 8.6 
c3 3.50 4.0 4.5 5.0 5.5 
Estimation 9.00 10.6 11.0 6.8 12.0 

 
Table 4. Results by present algorithm 2 

c4 1 1.5 2 2.5 3 

Sphere function 
Estimation 1024.0 1205.0 1178.0 922.0 489.0 
c4 3.5 4.0 4.5 5.0 5.5 
Estimation 421.0 685.0 851.0 387.0 291.0 
Rosenbrock function 
c4 1.0 1.5 2.0 2.5 3.0 
Estimation 618.0 894.0 1415.0 1035.0 645.0 
c4 3.5 4.0 4.5 5.0 5.5 
Estimation 729.0 370.0 586.0 398.0 273.0 
Rastrigin function 
c4 1.0 1.5 2.0 2.5 3.0 
Estimation 131.0 148.0 98.0 115.0 81.0 
c4 3.5 4.0 4.5 5.0 5.5 
Estimation 62.0 84.0 86.0 68.0 58.0 
Griewank function 
c4 1.0 1.5 2.0 2.5 3.0 
Estimation 1235.0 563.0 1136.0 590.0 675.0 
c4 3.5 4.0 4.5 5.0 5.5 
Estimation 512.0 315.0 352.0 402.0 309.0 
Schaffer f6 function 
c4 1.0 1.5 2.0 2.5 3.0 
Estimation 14.9 9.5 5.6 10.2 5.4 
c4 3.5 4.0 4.5 5.0 5.5 
Estimation 3.8 6.0 10.3 2.8 3.1 
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Table 5. Comparsion with other studies 
Algorithm Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2 
Sphere function 
Estimation 530 344 292 291 
Rosenbrock function 
Algorithm  Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2 
Estimation 669 614 240 273 
Rastrigin function 
Algorithm Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2 
Estimation 213 156 112 58 
Griewank function 
Algorithm  Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2 
Estimation 323 348 223 309 
Schaffer f6 function 
Algorithm Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2 
Estimation 532 215 6.8 2.8 

 
4. CONCLUSION 

 This study describes the use of the second best 
particle position for improving the original PSO. In the 
original PSO, the particle position vectors are updated 
from the personal best and the global best position 
vectors which particles have ever found. This research 
focuses on the use of the second global best and the 
second personal best particle positions in order to 
improve the search performance of the original PSO. In 
the present algorithms, the second global best and the 
second personal best particle positions are randomly 
used for updating the particle position vectors. 
 Present algorithms are compared with the original 
PSO algorithm in five test functions. The results revealed 
that the use of the second best positions can improve the 
search performance of the original PSO. In all cases, the 
success rate is bigger than or equal to 0.9 and the 
estimation, which is defined as the quotient of the average 
search time and the success rate, is also better than the 
previous studies. The present results were compared with 
the previous study. The results by the present algorithms 
were better than them in the references. 
 In the near future, we would like to discuss the 
applicability of the present algorithms to actual 
engineering applications. 
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