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ABSTRACT  

Iris recognition, the ability to recognize and distinguish individuals by their pattern, is the most reliable 
biometric in terms of recognition and identification performance. However, performance of these systems is 
affected by the heterogeneous images (regarding focus, contrast, or brightness) and with several noise 
factors (iris obstruction and reflection) when the cooperation is not expectable from the subject. Current Iris 
recognition system does not deal with the noise data and substantially increase their error rates in these 
conditions. The non-cooperative iris segmentation takes a vital role in human identification system. This 
can be simplified with the help of canny edge detection as well as Cartesian to polar conversion methods. 
An Iris classification method is proposed on the segmented and normalized iris image that divides the image 
into six regions, followed by independent feature extraction in each region. This will provide the iris 
signature in terms of binary values, then that are compared with each region for the identification. In 
addition to this Fake identification is also done in this study. Fake, the original image is forged by fixing 
lenses over the iris portion. 
 
Keywords: Non-Cooperative Iris Recognition, Edge Detection, Cartesian to Polar Conversion, Iris 

Classification, Feature Extraction, Fake Identification 
 

1. INTRODUCTION  

 The use of biometric systems has been increasingly 
encouraged by both governments and private entities in 
order to replace or increase traditional security systems. 
Biometric is based on a physiological or behavioral 
characteristic of the person.  
 A biometric system provides automatic recognition 
of an individual based on some sort of unique feature or 
characteristic possessed by the individual. Biometric 
systems have been developed based on fingerprints, 
facial features, voice, hand geometry, handwriting, the 
retina and the iris. Biometric systems work by first 
capturing a sample of the feature, such as recording a 
digital sound signal for voice recognition, or taking a 
digital colour image for face recognition. The sample is 
then transformed using some sort of mathematical 

function into a biometric template. The biometric 
template will provide a normalized, efficient and highly 
discriminating representation of the feature, which can 
then be objectively compared with other templates in 
order to determine identity. Most biometric systems 
allow two modes of operation. An enrolment mode for 
adding templates to a database and an identification 
mode, where a template is created for an individual 
and then a match is searched for in the database of 
pre-enrolled templates. 
 Assuming that, in spite of noise, the iris was 
accurately segmented, we propose a classification 
strategy more robust to noise factors. We observed that, 
in most cases, the noisy data is localized in some of the 
iris subparts. Our method is based on the division of the 
segmented iris into six regions, followed by the 
independent feature extraction in each one. Further, 



M. Rajeev Kumar et al. / Journal of Computer Science 9 (9): 1241-1251, 2013 

 
1242 

through the comparison between signatures extracted 
from correspondent iris regions, we obtain six 
dissimilarity values that are fused through a 
classification rule. The hope is that most of the iris 
regions are noise-free and that accurate recognition can 
be achieved, even in highly noisy images. 

2. IRIS RECOGNITION  

 Iris is commonly recognized as one of the most 
reliable biometric measures: it has a random 
morphogenesis and no genetic penetrance. The iris is a 
protected internal organ of the eye, located behind the 
cornea and the aqueous humor. It is the only internal 
organ of the body that is normally visible externally. 
Images of the iris adequate for personal identification 
with very high confidence can be acquired from 
distances of up to about 3 feet (1 meter). The human iris 
begins to form during the third month of gestation. The 
structures creating its distinctive pattern are complete by 
the eighth month of gestation. In fact, the iris patterns are 
characterized by high level of stability and 
distinctiveness. Each individual has a unique iris; the 
difference even exists between identical twins and 
between the left and right eye of the same person.  
 The overall iris recognition system can be given 
by Fig. 1. 
 Flom and Safir (1987) studied the problem and 
concluded that iris morphology remains stable through 

all human life, as well estimated the probability for two 
similar irises on distinct persons at 1 in 1072.  
 The cooperative behavior demanded to the users and 
the highly constrained imaging conditions (Rankin et al., 
2012) clearly restrict the range of domains where iris 
recognition can be applied. It is highly probable that 
image capturing on less constrained conditions (either at-
a-distance, on-the-move, with minor users’ cooperation 
and within dynamic imaging environments) lead to the 
appearance of extremely heterogeneous images and with 
several other types of data in the captured iris regions 
(e.g., iris obstructions due to eyelids or eyelashes, 
reflections, off-angle or motion blurred images). 
 The emerging needs for a safer and quicker access 
(buildings, weapons and restricted areas) requires non-
cooperative techniques. In this study, we consider a non-
cooperative technique where the user has no active 
participation in the image-capture process and is not 
even aware of the recognition process. 
 As an example, we can think of a building access 
where users do not need to look through a small hole 
to have their irises recognized, but instead, an image-
capture system captures the necessary information 
from their irises as they approach the door. This is 
much less invasive and will enable the dissemination 
of iris recognition systems to everyday applications. 
Obviously, these image-capture conditions tend to 
acquire images with more heterogeneous 
characteristics with respect to reflection areas, 
brightness and contrast or focus conditions. 

 

 
 

Fig. 1. Stages of iris recognition 
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 The first stage of the iris recognition is the iris 
Acquisition. The eye image can be obtained by using 
CCD Cameras. For the academic purpose, The CASIS, 
MMU and the UBIRIS (Chinese academic) provided 
about thousands of iris images in free of cost. We use 
both of these CASIA, MMU and UBIRIS databases. 
 After the image acquisition, the next stage of the iris 
recognition deals with iris segmentation. This consists of 
localizing the iris inner (pupillary) and outer (scleric) 
borders. Daugman (1993) proposed an integro-
differential operator to find both the iris inner and outer 
borders. Similarly, Camus and Wildes (2002) proposed 
integro-differential operators that search over the IN3 
space, with the goal of maximizing the equations that 
identify the iris borders. Wildes achieved iris 
segmentation through a gradient-based binary edge map 
(Sazonova et al., 2012) construction followed by circular 
Hough transform. Proenca and Alexandre (2006; 2007) 
proposed a method based on Wildes’ method, which, 
together with a clustering process, achieved robustness 
for noncooperative environments. 
 It is possible to varying the pupil’s size depending 
upon various images and in the imaging distance. In 
order to compensate these variations, it is usual to 
translate the segmented iris region into a fixed length 
and dimensionless polar coordinate system. This stage 
is usually accomplished through the method proposed 
by Daugman. The method is termed as Daugman’s 
Rubber Sheet Model. 
 From the view point of feature extraction, previous 
iris recognition method can be roughly divided into three 
major characteristics: Phase-based method, Zero-
crossing representation method and texture-analysis 
based method. Daugman used multiscale quadrature 
wavelet to extract texture phase structure information of 
the iris to generate a 2,048-bit iriscode and compared the 
difference between a pair of iris representation by 
computing their Hamming distance. 
 Finally, the obtained each signature belongs to 
different irises. Otherwise, the system outputs a 
match, meaning that both signatures were extracted 
from the same iris. In this stage, it is common iris 
signature is compared with the database, producing a 
numeric dissimilarity values. If this value is higher 
than a threshold, the system outputs a non-match, 
meaning that to apply different distance metrics 
(Hamming, Euclidean, Weighted Euclidean), or 
methods based on signal correlation. 

3. RELATED WORKS  

3.1. Iris Segmentation  
3.1.1. Daugman Integro-Differential Operator  

 Daugman (2004; 1993), makes use of an Integro-
differential operator for locating the circular iris and 
pupil regions and also the arcs of the upper and lower 
eyelids. The Integro-differential operator is defined as: 
 

r,x ,y r,x y0 0 0

I(x, y)
max G (r) * ds

r 2 rσ
δ
δ π∫  

 
where, I(x, y) is the eye image, r is the radius to search 
for, Gσ(r) is a Gaussian smoothing function and s is the 
contour of the circle given by r, x0, y0. The operator 
searches for the circular path where there is maximum 
change in pixel values, by varying the radius and centre 
x and y position of the circular contour. The operator is 
applied iteratively with the amount of smoothing 
progressively reduced in order to attain precise 
localization. Eyelids are localized in a similar manner, 
with the path of contour integration changed from 
circular to an arc. 

3.2. Camus and Wildes’ Method  

 This algorithm (Camus and Wildes, 2002) can be 
used to find the subject’s iris in a close-up image. This 
algorithm searches in an N3 space for the 
circumference parameters (centre (x, y) and radius z) 
by the following function: 
 

n n
,r

,r ,r , r
1 1

I
C (n 1) || g || || g g ||

n
θ

θ θ φ
θ= φ=θ+

 
= − − − −  

 
∑ ∑  

 
where, n is the total number of directions and Iθ,r and 
gθ,r are, respectively, the image intensity and 
derivatives with respect to the radius in the polar 
coordinate system. This methodology is very accurate 
on images where the pupil and iris regions intensities 
are clearly separated from the sclera ones and on 
images that contain no reflections or other noise 
factors. When dealing with noisy data, the algorithm’s 
accuracy deteriorates significantly. 

3.3. Tuceryan’s Methodology  

 Tuceryan (1994) proposed a moment-based texture 
segmentation algorithm, using the moments in small 
windows of the image as texture features and then 
applying a clustering algorithm to segment the image. 
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The second-order regular geometric moments for each 
pixel in the image are computed using: 
 

( )
W/2 W/2

p q
pq m n

W/2 W/2

M I(m,n)x y
− −

 =  
 

∑ ∑  

 
where, Mpq is the regular geometric moment of order pq, 
I (m, n) the pixel image intensity, x, y the neighborhood 
window coordinates and W the width. Tuceryan (1994) 
concluded that these regular moments did not have 
sufficient discriminant capacity and proposed the 
application of the hyperbolic tangent as a non-linear 
transducer followed by an averaging step: 
 

( )( )( )pq pq2
(a,b) wij

1
F (i, j) tanh M (a,b) M

L ∈

= σ −∑  

 
where, Fpq is the feature image of the Mpq moments 
with mean M and Wij  is an L×L average window 
centered at location (i, j). σ is a parameter that 
controls the shape of the logistic function and was 
determined, by trial and error, as 0.01 for most cases. 
At the classification stage, the well-known clustering 
K-means algorithm is applied producing as output the 
n clusters-labeled image. 

3.4. Normalization  
3.4.1. Daugman’s Rubber Sheet Model  

 The homogenous rubber sheet model devised by 
Daugman (2004; 1993) remaps each point within the 
iris region to a pair of polar coordinates (r, θ) where r 
is on the interval [0, 1] and θ is angle [0,2π]. The 
remapping of the iris region from (x, y) Cartesian 
coordinates to the normalized non-concentric polar 
representation is modeled as: 
 

I(r, ) I(X(r, ),Y(r, ))θ = θ θ  
 
With: 
 

p p i

p i

X(r, ) (1 r)X ( )rX ( ) rX

Y(r, ) (1 r)Y ( ) rY ( )

θ = − θ θ + θ

θ = − θ + θ
 

 
where, I(x, y) is the iris region image, (x, y) are the 
original Cartesian coordinates, (r, θ) are the 
corresponding normalized polar coordinates and are 
the coordinates of the pupil and iris boundaries along 

the θ direction. The rubber sheet model takes into 
account pupil dilation and size inconsistencies in 
order to produce a normalized representation with 
constant dimensions. In this way the iris region is 
modeled as a flexible rubber sheet anchored at the iris 
boundary with the pupil centre as the reference point. 
This is represented in Fig. 2. 

3.5. Image Registration  

 The system employs an image registration technique, 
which geometrically warps a newly acquired image, into 
alignment with a selected database image. When 
choosing a mapping function to transform the original 
coordinates, the image intensity values of the new image 
are made to be close to those of corresponding points in 
the reference image. Even though the homogenous 
rubber sheet model accounts for pupil dilation, imaging 
distance and non-concentric pupil displacement, it does 
not compensate for rotational inconsistencies. In the 
Daugmann system, rotation is accounted for during 
matching by shifting the iris templates in the θ direction 
until two iris templates are aligned.  
 The mapping function must be chosen so as to 
minimize: 
 

2
d ax y

(I (x, y) I (x u,y v)) dxdy− − −∫ ∫  

 
 While being constrained to capture a similarity 
transformation of image coordinates (x, y) to (x′, y′), 
that is: 
 

x ' x x
sR( )

y ' y y

     
= − φ     

     
 

 
 With s a scaling factor and R (φ) a matrix 
representing rotation by φ. In implementation, given a 
pair of iris images Ia and Id the warping parameters s and 
φ are recovered via an iterative minimization procedure. 
 

 
 
Fig. 2. Rubber sheet model 
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3.6. Iris Coding  

3.6.1. Gabor Filters  

 Gabor filters (Gabor, 1946) are able to provide 
optimum conjoint representation of a signal in space and 
spatial frequency. A Gabor filter (Wang et al., 2012) is 
constructed by modulating a sine/cosine wave with a 
Gaussian. This is able to provide the optimum conjoint 
localization in both space and frequency, since a sine 
wave is perfectly localized in frequency, but not 
localized in space. Modulation of the sine with a 
Gaussian provides localization in space, though with 
loss of localization in frequency. Decomposition of a 
signal is accomplished using a quadrature pair of 
Gabor filters, with a real part specified by a cosine 
modulated by a Gaussian and an imaginary part 
specified by a sine modulated by a Gaussian. 
 The real and imaginary filters are also known as 
the even symmetric and odd symmetric components 
respectively. The centre frequency of the filter is 
specified by the frequency of the sine/cosine wave and 
the bandwidth of the filter is specified by the width of 
the Gaussian. Daugmann makes uses of a 2D version 
of Gabor filters in order to encode iris pattern data. A 
2D Gabor filter over the an image domain (x, y) is 
represented as: 

 

( )
( ) ( ) ( ) ( )

2 22 2x x / y y /0 0 2 i u x x v y y0 0 0 0G x,y e e
 

−    
    

− α + − β − − + −∏ ∏=  

 
where, (x0, y0) specify position in the image, (α, β) 
specify the effective width and length and (u0, v0) specify 
modulation, which has spatial frequency ω0 = 2020vu+. 
The odd symmetric and even symmetric 2D Gabor filters 
are shown in below Fig. 3. 
 Daugmann demodulates the output of the Gabor 
filters in order to compress the data. This is done by 
quantizing the phase information into four levels, for 
each possible quadrant in the complex plane. It has 
been shown by Oppenheim and Lim that phase 
information, rather than amplitude information provides 
the most significant information within an image. 
Taking only the phase will allow encoding of 
discriminating information in the iris, while discarding 
redundant information such as illumination, which is 
represented by the amplitude component. 
 These four levels are represented using two bits of 
data, so each pixel in the normalized iris pattern 

corresponds to two bits of data in the iris template. A 
total of 2,048 bits are calculated for the template and an 
equal number of masking bits are generated in order to 
mask out corrupted regions within the iris. This creates a 
compact 256-byte template, which allows for efficient 
storage and comparison of irises. The Daugmann system 
makes use of polar coordinates for normalization, 
therefore in polar form the filters are given as: 
 

2 2 2 2i ( ) (r r ) / i( ) /0 0 0H(r, ) e e e
− ω θ−θ − = α − θ−θ βθ =  

 
where, (α, β) are the same as in above and (r0, θ0) specify 
the centre frequency of the filter. 

3.7. Log-Gabor Filters  

 A disadvantage of the Gabor filter (Gabor, 1946) is 
that the even symmetric filter will have a DC component 
whenever the bandwidth is larger than one octave. 
However, zero DC components can be obtained for any 
bandwidth by using a Gabor filter which is Gaussian on a 
logarithmic scale; this is known as the Log-Gabor filter. 
The frequency response of a Log-Gabor filter is given as: 
 

2
0

2
0

(log(f / f ))
G(f ) exp

2(log( / f ))

 −=  σ 
 

 
where, f0 represents the centre frequency and σ gives the 
bandwidth of the filter.  

3.8. Zero-Crossings of the 1D Wavelet  

 1D wavelets are used for encoding iris pattern data. 
The mother wavelet is defined as the second derivative 
of a smoothing function θ(x): 
 

2

2

d (x)
(x)

dx

θψ =  

 
 The zero crossings of dyadic scales of these filters 
are then used to encode features. The wavelet transform 
of a signal f(x) at scale s and position x is given by: 
 

2
2

s 2

d (x)
W f (x) f * s (x)

dx

 θ=  
 

 

 
2

2
s2

d
s (f * )(x)

dx
= θ  

 

s (1 / s) (x / s)θ = θ   
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Fig. 3.  A quadrature pair of 2D Gabor filters (left) real component or even symmetric filter characterised by a cosine modulated by a 

Gaussian (right) imaginary component or odd symmetric filter characterised by a sine modulated by a Gaussian 

 
 Ws f(x) is proportional to the second derivative of 
f(x) smoothed by θs(x) and the zero crossings of the 
transform correspond to points of inflection in f*θs(x). 
The motivation for this technique is that zero-crossings 
correspond to significant features with the iris region. 

4. PROPOSED METHODOLOGY 

4.1. Noncooperative Iris Recognition 

 The non-cooperative iris recognition is the 
process of automatic recognition where individuals 
using images of their iris captured at a distance and 
without requiring any active participation. It is shown 
in the following Fig. 4. 
 The main drawback of real time implementation 
of Iris recognition (Burge and Bowyer, 2013) is lies in 
the segmented image. Where most cases the eye image 
contains noise such that eyelids, eyelash. These noisy 
patterns spread across iris and gives less active 
components of iris patterns. So that the segmentation 
part of iris is not possibly acquired and it not at all 
useful for further stages of iris recognition system. 
The non-cooperative system is possible 
(Neurotechnology, 2013) by applying a new algorithm 
namely, multiple signature. i.e., the human iris is 
going to be divided into six regions. 
 In the context of non-cooperative recognition 
(Proenca and Alexandre, 2006; 2007), the most 
relevant value is the accuracy degradation as function 
of the images’ quality. We observed that our method 
is clearly less dependent of the image characteristics, 
since it presented the smallest accuracy degradation 
between both sessions-just about 0.14%. This is in 

contrast with all the remaining methods, especially 
those proposed by Daugman and Camus and Wildes. 
It must be stressed that our method is the one that 
presented the highest accuracy on images from the 
second session, indicating that it is well adapted to 
deal with noisy images. The multiple signature 
algorithm based on segmentation is shown in Fig. 5. 
 In Fig. 5, (a) Division of the iris in four different 
parts. (b) Division of the iris in “outer” and “inner” parts. 
(c) Correspondent regions of (a) in the normalized iris 
image. (d) Correspondent regions of (b) in the 
normalized iris image. 
 Our proposal’s computation time is about 17% 
higher than that of Wildes algorithm; these 17% are 
used in the feature extraction and clustering process. 
We consider that with proper algorithm optimization 
this computation time gap about 0.3 seconds) will 
become irrelevant. 
 Division of the whole iris into six regions is the 
main concept behind multiple signatures. Here Regions 1 
to 4 correspond to successive quadrants of the iris. 
Regions 5 and 6 correspond, respectively, to the outer 
and inner parts of the iris. 
 The main motivation for this division was the 
observation that the most common types of noise (iris 
obstructions and reflections) are usual, respectively, in 
the upper/lower and left/right portions of the iris. 
Also, reflections resultants from natural and artificial 
lighting environments are predominantly localized, 
respectively, in the outer and inner iris regions. The 
proposed division strategy minimizes the number of 
regions simultaneously affected by each type of noise.
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Fig. 4. Non-cooperative system 
 

 
 (a) (b) 
 

 
 (c) (d) 
 

Fig. 5. Multiple signatures 
 
 Based on this, we proposed a new iris 
classification strategy that divides the segmented and 
normalized iris into six regions and makes an 
independent feature extraction and comparison for 
each of these regions. Iris classification is achieved 
through a fusion rule that uses a threshold set to 
combine the dissimilarity values resultant from the 
comparison between correspondent iris regions.  
 This indicates that the proposed method is adequate 
for less constrained image capturing environments, such 
as in a non-cooperative setting and broadens the range of 
domains where iris recognition can be applied. However, 
we stress that these results are dependent on the previous 
accurate iris segmentation, which is highly challenging, 
given the dynamics of non-cooperative environments. 

The requirement of optical frameworks that are able to 
capture iris images with enough quality and of real-time 
face and eye localization methods is assumed too. 

5. IMPLEMENTATION RESULT  

5.1. Iris Databases 

 There are presently seven public and freely available 
iris image databases for biometric purposes: CASIA, 
MMU, BATH, UPOL, ICE and UBIRIS (Proenca and 
Alexandre, 2006; 2007; Phillips et al., 2010; UBIID, 
2004). The CASIA database is by far the most widely 
used for iris biometric purposes. However, its images 
incorporate few types of noise, almost exclusively 
related with eyelid and eyelash obstruction, similarly to 
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the images from MMU and BATH databases. UPOL 
images were captured with an optometric framework, 
obtaining optimal images with extremely similar 
characteristics. Although ICE and WVU databases 
contain images with more noise factors, their lack of 
images (Fenker and Bowyer, 2012) with significant 
reflections within the iris rings constitutes a weak 
point regarding the simulation of Non-cooperative 
imaging conditions. Oppositely, images of the 
UBIRIS database were captured under natural lighting 
and heterogeneous imaging conditions, which explains 
their higher heterogeneity. Based on the manual 
verification of the iris segmentation accuracy in each 
of the images, we selected 800 images from 80 
subjects of the UBIRIS database. 

5.2. Description of Experiments 

 We implemented the recognition method described 
by Daugman (2004; 1993) and compared the obtained 
results when following the method as described by the 
author and using the proposed iris division and 
classification strategies. Initially, we made the feature 
extraction and comparison using the whole segmented 
iris, extracting a total of 2,048 bits. Further, according to 
Fig. 3, we divided the iris into six regions and, through 
feature extraction, obtained 512 and 1,024 bits, 
respectively, for the signatures extracted from the iris 
regions 1 to 4 and 5 to 6. 
 The Iris recognition method is divided into the 
following stages.  

5.3. Segmentation 

 The segmentation is the first phase of the Iris 
recognition. This phase can extract only the iris part from 
the human eye. We implement the circular edge 
detection method by using canny edge detector followed 
by the Cartesian to polar conversion for segmentation.  
 Initially the segmented result is obtained by 
removing the pupil and the eyelash. These are 
removed by using the threshold values as shown in 
Fig. 6, so the performance of the segmentation is not 
satisfied. Then the segmentation is done without 
removing eyelash and pupil. 

5.4. Canny Edge Detection 

 Canny edge detection algorithm is to be considering 
as one among the optimal solution than other based on 
the detection, localization and number of responses. This 
algorithm runs in various steps like smoothing, finding 
gradients, Non-Maximum suppression, double 

thresholding and edge tracking by hysteresis. The 
gradient magnitude can be possible by: 
 

2 2
x y

x y

| G | G G

| G | G | G |

= +

= +
 

 
 The direction of the edges must be determined 
stored as shown below: 
 

y

x

| G |
arctan

| G |

 
θ =   

 
 

 
5.5. Cartesian to Polar Conversion 

 The Cartesian to polar conversion can be done by 
the following equation: 
 

2 2 2 2 2 1 y
r x y r x y tan

x
−  = + = + θ =  
 

 

 

5.6. Normalization 

 After the segmentation of both iris borders, to 
compensate for the varying size of the pupil and 
capturing distance, we translated the images into a 
dimensionless polar coordinate system, according to the 
process known as the Daugman Rubber Sheet 
(Daugman, 1993; Ma et al., 2004). Generally the 
segmentation phase will remove the pupil and other than 
the iris. In order to reduce the complexity of 
normalization process the segmentation phase itself 
extracts the required part as shown in (Fig. 4) from the 
iris. The output of the normalization is given in Fig. 7. 

5.7. Multiple Signatures 

 When we talk about noncooperation (Proenca and 
Alexandre, 2006; 2007), the captured iris images are 
normally with the noisy one. That is, most of the images 
are with obstruction and reflection. So the introduction 
of multiple signatures is necessary here. Generally the 
size of the normalized image is 240×20. This is going to 
be divided into six regions as four 60×20 patterns and 
two 240×10 patterns. The concept of multiple signatures 
is given in Fig. 8. 

5.8. Iris Coding 

 This iris data encoding was accomplished through 
the use of two-dimensional Gabor filter. 
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 (a) (b) 
 

Fig. 6. (a) Required Segmented Result. (b) Poor Performance Result 
 

 
 

Fig. 7. Required Normalization Result with Size of 240×20 
 

 
 

Fig. 8. Multiple Signature 1/6, 2/6, 3/6, 4/6 are 60×20 patterns and Multiple Signature 5/6 and 6/6 are 240×10 patterns 
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5.9. Feature Comparison 

 The binary feature comparison (Ellavarason and 
Rathgeb, 2013; Czajka, 2013) allowed the use of the 
Hamming distance as the similarity measure between 
two iris signatures. The output of the final iris 
recognition is given in Fig. 9. 

6. FAKE IDENTIFICATION  

 The fake identification module enables the user to 
find weather the query image is an original or forged 
one. If the given image is finding to be as a fake one, 
there is no need for iris recognition for that particular 
image. This can be identified as given in Fig. 10. That is 
the difference between the original image and the fake 
image is shown here. In order to identify the fake image, 
the Fast Fourier Transform (FFT) is applied on the given 
image. When the lenses are fixed over the iris portion the 

quality of the real image is going to be affected. This 
added advance can be used for fake identification. 
 The method proposed by Daugman, is probably 
the most well-known. He proposed the method of using 
FFT (Kumar et al., 2011) in order to check the high 
frequency spectral magnitude in the frequency domain, 
which can be observed distinctly and periodically from 
the printed iris pattern because of the characteristics of 
the periodic dot printing. However, the high frequency 
component cannot be detected in case that input printed 
iris image is blurred or defocused purposely and the fake 
iris may be accepted as live one consequently. Therefore, 
there are two problems concerned, i.e., non-clear (e.g., 
defocused, motion blurred) and clear printed iris. A 
system that employs fixed-focus optical lens tends to 
result in defocused iris images. Motion blurred images are 
often happens if imitator wobbles purposely when 
spoofing the iris system. 

 

 
 
Fig. 9. The input image data\img_005_1_2.jpg is Matced with the database image data\img_005_1_3.jpg. Here 005 indicate 

the 5th person 
 

 
 

Fig. 10. Comparison of original image with fake image after applying FFT 
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 Lee et al. (2006) proposed a new method of detecting 
fake iris attack based on the Purkinje image by using 
collimated Infra-Red Light Emitting Diode (IR-LED). 
Especially, they calculated the theoretical positions and 
distances between the Purkinje images based on the 
human eye model. However, this method requires 
additional hardware and need the user’s full cooperation. 

7. CONCLUSION 

 In this study, we addressed the problems motivated 
by the existence of noise in the captured iris images and 
the correspondent increase of the error rates, with 
particular relevance to the false rejections, in the context 
of non cooperative iris recognition. The main 
concentration here is the complexity of the non-
cooperative iris segmentation. Also fake identification is 
introduced for the lens images fixing over the iris portion. 
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